1
|
Nascimento GR, Bazan SF, de Lima GF. A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity. Acta Crystallogr C Struct Chem 2024; 80:458-471. [PMID: 39115532 DOI: 10.1107/s2053229624006867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22-) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector-chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Guilherme Randow Nascimento
- Grupo de pesquisa em Química Inorgânica Teórica - GPQIT, Departamento de Química, Universidade Federal de Minas Gerais, Brazil
| | - Selma Fabiana Bazan
- Laboratório de Química Computacional - LaQC, Instituto de Física e Química, Universidade Federal de Itajubá, Brazil
| | - Guilherme Ferreira de Lima
- Grupo de pesquisa em Química Inorgânica Teórica - GPQIT, Departamento de Química, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
2
|
Li Y, Xiao J, Dong H, Li L, Dong J, Huang D. Enhanced chalcopyrite-catalyzed heterogeneous Fenton oxidation of diclofenac by ABTS. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132908. [PMID: 37924703 DOI: 10.1016/j.jhazmat.2023.132908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The widely used 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) has gained growing attention in advanced oxidation processes (AOPs), whereas there was limited knowledge regarding the feasibility of ABTS in enhancing heterogeneous Fenton oxidation so far. Hereof, ABTS was introduced into the chalcopyrite (CuFeS2)- catalyzed heterogeneous Fenton oxidation process to degrade diclofenac (DCF), and the degradation efficiency was enhanced by 25.5% compared with CuFeS2/H2O2 process. The available reactive oxygen species (ROS) and the enhanced mechanism were elaborated. Experimental results uncovered that •OH was the dominant reactive species responsible for the DCF degradation in the CuFeS2/H2O2/ABTS process, and ABTS•+ was derived from both •OH and Fe(IV). The presence of ABTS contributed significantly to the redox cycle of surface Fe of CuFeS2, and the roles of reductive sulfur species and surface Cu(I) in promoting surface Fe cycling also could not be neglected. In addition, the effects of several influencing factors were considered, and the potential practicability of this oxidation process was examined. The results demonstrate that the CuFeS2/H2O2/ABTS process would be a promising approach for water purification. This study will contribute to the development of enhancing strategies using ABTS as a redox mediator for heterogeneous Fenton oxidation of pharmaceuticals.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Liu H, Li X, Zhang X, Coulon F, Wang C. Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation. CHEMOSPHERE 2023; 337:139404. [PMID: 37399998 DOI: 10.1016/j.chemosphere.2023.139404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Javanroudi SR, Fattahi N, sharafi K, Arfaeinia H, Moradi M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023; 9:e19992. [PMID: 37809581 PMCID: PMC10559683 DOI: 10.1016/j.heliyon.2023.e19992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Advanced oxidation processes (AOPs) based on oxidants have attracted attention for the degradation of organic pollutants. The combination of chalcopyrite with oxidants such as persulfate, peroxide, percarbonate, and others shows promise as a system due to its ability to activate through various pathways, leading to the formation of numerous radical and non-radical species. In this review, the generation of sulfate radical (SR) and hydroxyl radical (HR) in AOPs were summarized. The significance of chalcopyrite in various approaches including Fenton, photo-Fenton, and photo/Fenton-like methods, as well as its involvement in electrochemical Fenton-based processes was discussed. The stability and reusability, toxicity, catalyst mechanism, and effects of operational parameters (pH, catalyst dosage, and oxidant concentration) are evaluated in detail. The review also discusses the role of Fe2+/3+, Cu1+/2+, S2- and Sn2- present in CuFeS2 in the generation of free radicals. Finally, guidelines for future research are presented in terms of future perspectives.
Collapse
Affiliation(s)
- Setareh Rostami- Javanroudi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Yang H, Tai F, Wang T, Zheng X, Ge C, Qin Y, Fu H. Hydrogen peroxide and iron ions can modulate lipid peroxidation, apoptosis, and the cell cycle, but do not have a significant effect on DNA double-strand break. Biochem Biophys Res Commun 2023; 651:121-126. [PMID: 36822125 DOI: 10.1016/j.bbrc.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Hydroxyl radical (·OH) generated by the Fenton reaction between transition metal ions and hydrogen peroxide (H2O2) can induce significant cellular damage. However, the specific mechanism of ·OH-induced cell death has not been systematically studied. In this study, we reacted FeSO4 and Fe3O4 magnetic nanoparticles with H2O2 and found that ·OH generated from the intracellular Fenton reaction can lead to significant cell death. The Fenton reaction between Fe2+ with H2O2 resulted in a shift in lipid peroxidation and cell cycle arrest. It is noteworthy that the ·OH generated from the Fenton reaction triggered severe apoptosis but did not lead to DNA double-strand breakage. Our results suggest that the Fenton reaction had acute cytotoxicity, which was primarily due to ·OH produced from the Fenton reaction inducing lipid peroxidation and apoptosis and modulating the cell cycle, but not by inducing DNA damage.
Collapse
Affiliation(s)
- Hexi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Fumin Tai
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Tiantian Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Hanjiang Fu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
6
|
Liu X, Yao Y, Lu J, Zhou J, Chen Q. Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation. CHEMOSPHERE 2023; 311:136972. [PMID: 36283427 DOI: 10.1016/j.chemosphere.2022.136972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous Fenton-like systems were exploited for the degradation of Reactive Red X-3B (RR X-3B) using iron-carbon composite, sponge iron, chalcopyrite and pyrite as catalysts. The effect of operational variables on the catalytic activity and metal leaching behavior of catalysts was evaluated and the catalytic mechanism was discussed. The experimental results showed that under the optimum conditions, chemical oxygen demand (COD) removals by Fenton-like systems could reach 89.91%, 86.84%, 80.11% and 60.02% with iron-carbon composite, sponge iron, chalcopyrite and pyrite, respectively. Micro-electrolysis of iron-carbon composite and sponge iron resulted in higher COD removal at acid pH range. Electron Paramagnetic Resonance (EPR) analysis and quenching tests showed that •OH was the main reactive oxygen species responsible for the degradation of RR X-3B. A large amount of Fe2+ leached from iron-carbon composite and sponge iron, which served as a homogeneous Fenton catalyst during the degradation of RR X-3B. In contrast, much lower amount of Fe2+ was leached from chalcopyrite and pyrite, and surface catalysis of the minerals played more important role in the generation of •OH. Surface characterization and density functional theory (DFT) calculation results illustrated that ≡Fe(II) was the primary surface catalytic site during the reaction. The reduction of ≡Fe(III) and ≡Cu(II) can be facilitated by sulfides on the mineral surface. The Fenton-like systems catalyzed by iron-based materials exhibited higher H2O2 utilization and COD removal than classical Fenton system. With the lower metal leaching concentration and stable surface property, chalcopyrite and pyrite may be more practical applicable from a long-term catalytic activity point of view.
Collapse
Affiliation(s)
- Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yuan Yao
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China.
| | - Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
7
|
Yang R, Zeng G, Zhou Z, Xu Z, Lyu S. Naphthalene degradation dominated by homogeneous reaction in Fenton-like process catalyzed by pyrite: Mechanism and application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Xi G, Chen S, Zhang X, Xing Y, He Z. Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13197-13209. [PMID: 36125685 DOI: 10.1007/s11356-022-23023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, natural chalcopyrite (NCP) was used to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) oxidatively. Before and after the NCP reaction, the physical and chemical properties were characterized by SEM-EDS, XRD, XPS, XRF, and VSM. The effects of the amount of NCP and PMS, the initial pH value, and the reaction temperature on the catalytic performance of NCP were systematically studied. The research results show that the degradation efficiency of the NCP/PMS system for CBZ can reach 82.34% under the optimal reaction conditions, and the degradation process follows a pseudo-second-order kinetic model. The results of the radical quenching experiment and EPR analysis show that the active species in the system are OH·, SO4-·, and 1O2, of which SO4-· is the main active species. In addition, this study shows that the NCP/PMS system can degrade CBZ with high efficiency of 90.73% only with the assistance of 0.15 g/L Fe0. This study determined the optimal reaction conditions for natural chalcopyrite to activate PMS to degrade CBZ and clarified the activation mechanism, which broadened the application of natural ores in the field of water treatment.
Collapse
Affiliation(s)
- GaoYang Xi
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuxun Chen
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuhang Zhang
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu Xing
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
9
|
Peracetic acid activation by natural chalcopyrite for metronidazole degradation: Unveiling the effects of Cu-Fe bimetallic sites and sulfur species. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Shan Y, Lu W, Xi J, Qian Y. Biomedical applications of iron sulfide-based nanozymes. Front Chem 2022; 10:1000709. [PMID: 36105309 PMCID: PMC9465017 DOI: 10.3389/fchem.2022.1000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Nanozymes have attracted great interest owing to their marvelous advantages, such as high stability, facile preparation, and high tunability. In particular, iron sulfide-based nanozymes (termed as ISNs), as one of the most researched nanomaterials with versatile enzyme-mimicking properties, have proved their potential in biomedical applications. In this review, we briefly summarize the classification, catalytic mechanisms of ISNs and then principally introduce ISNs’ biomedical applications in biosensors, tumor therapy, antibacterial therapy, and others, demonstrating that ISNs have promising potential for alleviating human health.
Collapse
Affiliation(s)
- Yunyi Shan
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenjie Lu
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Juqun Xi
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yayun Qian
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- *Correspondence: Yayun Qian,
| |
Collapse
|
12
|
Huang J, Zhou Y, Deng S, Shangguan Y, Wang R, Ge Q, Feng X, Yang Z, Ji Y, Fan T, Chen B, Li B, Zheng C, Hu X, Chen H. Photo-assisted reductive cleavage and catalytic hydrolysis-mediated persulfate activation by mixed redox-couple-involved CuFeS 2 for efficient trichloroethylene oxidation in groundwater. WATER RESEARCH 2022; 222:118885. [PMID: 35932701 DOI: 10.1016/j.watres.2022.118885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Persulfate (PS, S2O82-) activation through transition metal sulfides (TMS) has gained increasing attention since it can decompose a wide variety of refractory halogenated organic compounds in groundwater and wastewater. However, the processes of PS activation by TMS and particularly the formation of •OH radical under anoxic and acidic conditions (pH ∼2.8) remain elusive. Herein, by employing mixed redox-couple-involved chalcopyrite (CuFeS2) (150 mg/L) nanoparticles for PS (3.0 mM) activation, 96% of trichloroethylene was degraded within 120 min at pH 6.8 under visible light irradiation. The combination of experimental studies and theoretical calculations suggested that the Cu(I)/Fe(III) mixed redox-couple in CuFeS2 plays a crucial role to activate PS. Cu(I) acted as an electron donor to transfer electron to Fe(III), then Fe(III) served as an electron transfer bridge as well as a catalytic center to further donate this received electron to the O-O bond of PS, thus yielding SO4•- for trichloroethylene oxidation. Moreover, for the first time, •OH radicals were found to form from the catalytic hydrolysis of PS onto CuFeS2 surface, where S2O82- anion was hydrolyzed to yield H2O2 and these ensuing H2O2 were further transformed into •OH radicals via photoelectron-assisted O-O bond cleavage step. Our findings offer valuable insights for understanding the mechanisms of PS activation by redox-couple- involved TMS, which could promote the design of effective activators toward PS decomposition for environmental remediation.
Collapse
Affiliation(s)
- Junyi Huang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanhao Zhou
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shimao Deng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiuyue Ge
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigang Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xijun Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Abstract
Phosphorus in water not only degrades water quality but also leads to a waste of resources. In this study, adsorption thermodynamics and kinetics were used to study the effect of sponge iron on phosphorus removal, and a filtration bed was used to simulate the phosphorus removal in polluted water. The results showed that the maximum theoretical adsorption capacity of the modified sponge iron was increased from 4.17 mg/g to 18.18 mg/g. After desorption with 18.18 mol/L of sodium hydroxide and reactivation with 6% (w%) sulfuric acid, the activation rate of modified sponge iron can reach 98%. In a continuous operation experiment run for approximately 200 days, the sponge iron phosphorus removal percolation bed showed a good phosphorus removal ability. Under the condition of TP = 10 mg/L, HRT = 1 H, the comprehensive phosphorus removal rate was 30–89%, and the accumulated phosphorus adsorption per unit volume was 6.95 kg/m3. Wastewater from the regeneration of the sponge iron base can be used to recover guano stone. The optimum conditions were pH = 10, n (Mg2+):n (PO43−):n (NH4+) = 1.3:1:1.1. Under the optimum conditions, the phosphorus recovery rate could reach 97.8%. The method provided in this study has theoretical and practical significance for the removal and recycling of phosphorus in polluted water.
Collapse
|
14
|
Hajiahmadi M, Zarei M, Khataee A. An effective natural mineral-catalyzed heterogeneous electro-Fenton method for degradation of an antineoplastic drug: Modeling by a neural network. CHEMOSPHERE 2022; 291:132810. [PMID: 34767845 DOI: 10.1016/j.chemosphere.2021.132810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, the heterogeneous electro-Fenton method was used to remove Paclitaxel as an antineoplastic medicine. The cathode based on three-dimensional graphene (3DG) was applied as a gas diffusion electrode. The potential of five eco-friendly and recyclable iron minerals derived from nature (Magnetite, Siderite, Hematite, Limonite, and Pyrite) was investigated. Among the applied iron minerals, Pyrite showed the best, and Magnetite and Siderite showed good catalytic activity at pH 3.0. The current intensity of 300 mA, pHi 7.0, Paclitaxel concentration of 3 mg L-1, amount of Pyrite 4.5 g L-1, and time of 120 min was the optimum condition of the process with the removal efficiency of 99.13% in the presence of Pyrite. Repeating the experiments eight times revealed the reusability of the prepared 3DG as a cathode. Also, using radical scavengers indicated the principal role of the hydroxyl radicals (OH) in the treatment process. Analysis of total organic carbon reached 77.64% mineralization of 3 mg L-1 Paclitaxel at 360 min. Finally, ten by-products of small molecules were identified by gas chromatography-mass spectrometry device.
Collapse
Affiliation(s)
- Mahsa Hajiahmadi
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| |
Collapse
|
15
|
Hydrothermal and Co-Precipitated Synthesis of Chalcopyrite for Fenton-like Degradation toward Rhodamine B. Catalysts 2022. [DOI: 10.3390/catal12020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, Chalcopyrite (CuFeS2) was prepared by a hydrothermal and co-precipitation method, being represented as H-CuFeS2 and C-CuFeS2, respectively. The prepared CuFeS2 samples were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy mapping (EDS-mapping), powder X-ray diffractometer (XRD), X-ray photoelectron spectrometry (XPS), and Raman microscope. Rhodamine B (RhB, 20 ppm) was used as the target pollutant to evaluate the degradation performance by the prepared CuFeS2 samples. The H-CuFeS2 samples (20 mg) in the presence of Na2S2O8 (4 mM) exhibited excellent degradation efficiency (98.8% within 10 min). Through free radical trapping experiment, the major active species were •SO4− radicals and •OH radicals involved the RhB degradation. Furthermore, •SO4− radicals produced from the prepared samples were evaluated by iodometric titration. In addition, one possible degradation mechanism was proposed. Finally, the prepared H-CuFeS2 samples were used to degrade different dyestuff (rhodamine 6G, methylene blue, and methyl orange) and organic pollutant (bisphenol A) in the different environmental water samples (pond water and seawater) with 10.1% mineral efficiency improvement comparing to traditional Fenton reaction.
Collapse
|
16
|
Choquehuanca A, Ruiz-Montoya JG, La Rosa-Toro Gómez A. Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Different iron oxides were evaluated for the discoloration of methylene blue (MB) at neutral pH by heterogeneous photo-Fenton-like reactions with a UV-LED lamp. Fe3O4, α-Fe2O3, and a-FeOOH catalysts were synthesized and characterized by X-ray diffraction, scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy, and adsorption isotherms of N2. The results show high crystallinity and relatively low surface areas for Fe3O4 and α-Fe2O3, and amorphous structure with high surface area for the case of a-FeOOH. The discoloration of MB by iron oxides as catalysts was studied using UV-Vis spectroscopy. Despite the relative high adsorption of MB for magnetite (12%) compared to the other oxides, it shows a slow discoloration kinetics. Besides, amorphous oxide (named a-FeOOH) shows a higher discoloration kinetics with negligible adsorption capacity. The pseudo first-order kinetic constant values for Fe3O4, α-Fe2O3, and a-FeOOH are 5.31 × 10−3, 6.89 × 10−3, and 13.01 × 10−3 min−1; and the discoloration efficiencies at 120 min were 56, 60, and 82%, respectively. It was testified that low crystallinity iron oxide can be used in the efficient discoloration of MB by photo-Fenton process with a hand UV-A lamp.
Collapse
Affiliation(s)
- Astrid Choquehuanca
- Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería , 15333 Lima , Perú
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería , 15333 Lima , Peru
| | - José G. Ruiz-Montoya
- Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería , 15333 Lima , Perú
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería , 15333 Lima , Peru
| | - Adolfo La Rosa-Toro Gómez
- Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería , 15333 Lima , Perú
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería , 15333 Lima , Peru
| |
Collapse
|
17
|
Li Y, Dong H, Li L, Xiao J, Xiao S, Jin Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. WATER RESEARCH 2021; 202:117451. [PMID: 34330026 DOI: 10.1016/j.watres.2021.117451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
In this work, the novel application of chalcopyrite (CuFeS2) for sodium percarbonate (SPC) activation towards sulfamethazine (SMT) degradation was explored. Several key influencing factors like SPC concentration, CuFeS2 dosage, reaction temperature, pH value, anions, and humic acid (HA) were investigated. Experimental results indicated that SMT could be effectively degraded in the neutral reaction media by CuFeS2/SPC process (86.4%, 0.054 min-1 at pH = 7.1). The mechanism of SPC activation by CuFeS2 was elucidated, which was discovered to be a multiple reactive oxygen species (multi-ROS) process with the coexistence of hydroxyl radical (•OH), carbonate radical (CO3•-), superoxide radical (O2•-), and singlet oxygen (1O2), as evidenced by quenching experiments and electron spin resonance (ESR) tests. The generated •OH via the traditional heterogeneous Fenton-like process would not only react with carbonate ions to yield other ROS but also involve in SMT degradation. The abundant surface-bound Fe(II) was deemed to be the dominant catalytic active sites for SPC activation. Meanwhile, it was verified that the reductive sulfur species, the interaction between Cu(I) and Fe(III) as well as the available O2•- derived from the activation of molecular oxygen and the conversion of •OH favored the regeneration of Fe(II) on CuFeS2 surface. Furthermore, the degradation intermediates of SMT and their toxicities were evaluated. This study presents a novel strategy by integrating transition metal sulfides with percarbonate for antibiotic-contaminated water treatment.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
18
|
Lai L, He Y, Zhou H, Huang B, Yao G, Lai B. Critical review of natural iron-based minerals used as heterogeneous catalysts in peroxide activation processes: Characteristics, applications and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125809. [PMID: 33865112 DOI: 10.1016/j.jhazmat.2021.125809] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution. In contrast, natural iron-based minerals are more available and cheaper, and also hold a great promise in peroxide activation processes for pollutant degradation. In this review, we classify different natural iron-based materials into two categories: iron oxide minerals (e.g., magnetite, hematite, and goethite,), and iron sulfide minerals (e.g., pyrite and pyrrhotite,). Their overview applications in peroxide activation processes for pollutant degradation in wastewaters are systematically summarized for the first time. Moreover, the peroxide activation mechanisms induced by natural minerals, and the influences of reaction conditions in different systems are discussed. Finally, the application prospects and existing drawbacks of natural iron-based minerals in the peroxide activation processes for wastewater treatment are proposed. We believe this review can shed light on the application of natural iron-based minerals in peroxide activation processes and present better perspectives for future researches.
Collapse
Affiliation(s)
- Leiduo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yongli He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Lu J, Chen Q, Zhao Q, Liu X, Zhou J. Catalytic activity comparison of natural ferrous minerals in photo-Fenton oxidation for tertiary treatment of dyeing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30373-30383. [PMID: 33893582 DOI: 10.1007/s11356-021-14042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Natural ferrous minerals are readily available and recyclable catalysts in photo-Fenton-like oxidation for wastewater treatment. In this work, typical ferrous oxide and sulfide minerals including magnetite, chalcopyrite, and pyrrhotite were exploited as catalysts in heterogeneous photo-Fenton oxidation for purification of biological effluent of dyeing wastewater. In a wide initial pH range (3.0~7.5), ferrous mineral-based heterogeneous photo-Fenton-like reactions were proven to be effective on the oxidation of recalcitrant pollutants. COD removals achieved 60.57%, 58.83%, and 57.41% using pyrrhotite, chalcopyrite, and magnetite, respectively, as catalyst under ultraviolet irradiation of 220~275 nm at H2O2 concentration of 9.8 mM. The corresponding COD removals were 51.75% and 34.09% with or without ferrous sulfate additions in UV/H2O2 systems. Minerals exhibited excellent stability and reusability with photo-catalytic activity reduction of less than 10% in the reuse of 5 cycles. Dissolved iron concentrations were determined to be 1.86 mg L-1, 4.62 mg L-1, and 7.53 mg L-1 for magnetite, chalcopyrite, and pyrrhotite, respectively, at pH 3 and decreased to zero in neutral pH environment, which were much lower than those required for homogenous Fenton reaction. It was deduced that oxidation of recalcitrant pollutants was mainly catalyzed by Fe(II) on the mineral surface. The more reactive oxygen species such as hydroxyl radicals were resulted from the reaction of surface Fe (II) with H2O2, H2O2 photolysis, and charge separation of minerals under UV irradiation.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
- Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qi Zhao
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
- Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
20
|
Oxidation Roasting of Fine-Grained Carbonaceous Gold Ore: The Effect of Aeration Rate. MINERALS 2021. [DOI: 10.3390/min11060558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oxidation roasting of carbon-bearing micro-fine gold can eliminate or weaken the robbing effect of carbonaceous materials and clay, and destroy the encapsulation of micro-fine gold. The micropores produced by gas escaping during the roasting process are conducive to the diffusion of leaching agents, thus enhancing the cyanide leaching of gold. In this paper, the influence of the aeration rate during roasting on the leaching rate of fine-grained carbonaceous gold ore and its mechanism were studied using thermodynamic calculations, crystal structure analysis, surface chemical groups and bonds analysis, microporous structure analysis, and surface morphology detection. Under suitable roasting conditions, the carbonaceous and pyrite in the ore are oxidized, while carbonate minerals such as dolomite and calcite as well as clay minerals are decomposed, and the gold-robbing materials lose their activity. The experimental results have theoretical and practical significance for the popularization and application of oxidation roasting technology of fine carbon-bearing gold ore.
Collapse
|
21
|
The Effect of Surface Charge on the Separation of Pyrite from Serpentine by Flotation. MINERALS 2019. [DOI: 10.3390/min9100629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Serpentine, a magnesium silicate mineral with positive surface charge in many sulfide ores around the world, usually deteriorates the flotation behavior by covering the target mineral surface. In this paper, the effect of surface potential regulation on serpentine flotation was revealed by flocculation experiments, zeta potential measurements, infrared spectrum analysis, and DLVO theoretical calculations. The experimental results of flocculation and sedimentation show that heterogeneous coagulation easily occurs between serpentine and pyrite particles, which reduces the floatability of pyrite. Reducing the surface potential of serpentine is an effective way to eliminate heterogeneous coagulation between minerals. The key to regulating the surface potential of serpentine is Mg2+ ion dissolution from the serpentine surface to the liquid phase. Phosphates, especially sodium hexametaphosphate, can enhance Mg2+ ion dissolution from the serpentine surface to the liquid phase and react with Mg2+ ions in the liquid phase to form stable soluble complexes.
Collapse
|
22
|
Long T, Xiao W, Yang W. The effect of molecular assembly between collectors and inhibitors on the flotation of pyrite and talc. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191133. [PMID: 31824721 PMCID: PMC6837178 DOI: 10.1098/rsos.191133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In the flotation process, the traditional dosing sequence is to add an inhibitor first, followed by a collector. However, in the sorting process of copper sulfide ore, this method of dosing does not effectively separate sulfide minerals and layered magnesium silicate minerals. In this study, the effect of adding a guar gum (as an inhibitor) and potassium amyl xanthate (as a collector, shortened as PAX) sequence to the flotation separation of pyrite and talc was investigated by micro-flotation tests, adsorption amount measurements, contact angle measurement and FT-IR analysis. The results show that the collector only adsorbs on the pyrite surface, while the inhibitor has a strong adsorption capacity on the pyrite and talc surface. Through the change of the order of the flotation reagent addition, PAX preferentially adsorbs on the pyrite surface, thereby preventing guar gum from adsorbing on the pyrite surface and achieving the selective inhibition of talc by guar gum. This study will help in understanding the molecular assembly between collectors and inhibitors to further treat complex copper sulfide nickel ore.
Collapse
Affiliation(s)
| | - Wei Xiao
- Author for correspondence: Wei Xiao e-mail:
| | | |
Collapse
|
23
|
Analysis of the Application Potential of Coffee Oil as an Ilmenite Flotation Collector. MINERALS 2019. [DOI: 10.3390/min9090505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coffee grounds are the most significant production waste in the coffee industry and contain about 15% coffee oil. Coffee oil is rich in fatty acids and polyphenols, which have great application potential in the flotation of oxidized minerals. In this study, coffee oil as a green flotation collector for ilmenite was investigated by micro-flotation, zeta potential measurement, and foam stability analysis. The results of zeta potential reveal that both coffee oil and MOH can be adsorbed on the ilmenite surface at pH 6.7, and the chemical adsorption mode is dominant. However, when the pH is 2.8, the adsorption capacity of coffee oil on the ilmenite surface is much larger than that of MOH. The pH value of the pulp has little effect on the foam properties in the coffee oil solution and has a great influence on the foaming performance and foam stability of the MOH solution. When coffee oil is used as a collector, the grade of TiO2 in ilmenite concentrate is increased from 21.68% to 46.83%, and the recovery is 90.22%, indicating that the potential of coffee oil in the application of ilmenite flotation is large.
Collapse
|