1
|
Quilumbaquin W, Castillo-Cabrera GX, Borrero-González LJ, Mora JR, Valle V, Debut A, Loor-Urgilés LD, Espinoza-Montero PJ. Photoelectrocatalytic degradation of high-density polyethylene microplastics on TiO 2-modified boron-doped diamond photoanode. iScience 2024; 27:109192. [PMID: 38433924 PMCID: PMC10906510 DOI: 10.1016/j.isci.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
Collapse
Affiliation(s)
- Wendy Quilumbaquin
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | | - Luis J. Borrero-González
- Laboratorio de Óptica Aplicada, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Vladimir Valle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Luis D. Loor-Urgilés
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | |
Collapse
|
2
|
Salari M, Alahabadi A, Rahmani-Sani A, Miri M, Yazdani-Aval M, Lotfi H, Saghi MH, Rastegar A, Sepehr MN, Darvishmotevalli M. A comparative study of response surface methodology and artificial neural network based algorithm genetic for modeling and optimization of EP/US/GAC oxidation process in dexamethasone degradation: Application for real wastewater, electrical energy consumption. CHEMOSPHERE 2024; 349:140832. [PMID: 38042425 DOI: 10.1016/j.chemosphere.2023.140832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Dexamethasone (DXM) is a broadly used drug, which is frequently identified in the water environments due to its improper disposal and incomplete removal in wastewater treatment plant. The inability of conventional treatment processes of wastewater causes that researchers pay a great attention to study and develop effective wastewater treatment systems. This work deals with the study of integrated electro-peroxone/granular activated carbon (EP/US/GAC) process in the degradation of dexamethasone (DXM) from a water environment and the remediation of real pharmaceutical wastewater. Two approaches of response surface methodology based on central composite design (RSM-CCD) and artificial neural network based on algorithm genetic (ANN-GA) were employed for modeling and optimization of the process. Both the models presented significant adequacy for modeling and prediction of the process according to statistical linear and nonlinear metrics (R2 = 0.9998 and 0.9996 and RMSE = 0.2128 and 0.1784 for ANN-GA and RSM-CCD, respectively). The optimization study provided the same outcomes for both ANN-GA and RSM-CCD approaches, where approximately complete DEX oxidation was achieved at pH = 9.3, operating time = 10 min, US power = 300 W/L, applied current = 470 mA, and electrolyte concentration = 0.05 M. A synergistic study signified that the EP/US/GAC process made an 82% synergy index as compared to the individual US and EP processes. The calculated energy consumption for the integrated process was achieved to be 2.79 kW h/gCOD. Quenching test by tert-butanol and p-benzoquinone revealed that HO• radical possessed the largest contribution in DEX degradation. The efficiency of EP/US/GAC process in the remediation of real pharmaceutical wastewater showed a significant decline in COD content (92% removal after 180 min), and the ratio of initial BOD/COD ratio of 0.27 was elevated up to 0.7 after 100 min treatment time. The performance stability of EP/US/GAC system showed no remarkable drop in removal efficiency, and leakage of lead ions from the anode surface was negligible and below WHO guideline for drinking water. Generally, this research work manifested that the integrated EP/US/GAC system elevated the degradation efficiency and can be proposed as a pretreatment step before biological treatment processes for the remediation of recalcitrant wastewaters.
Collapse
Affiliation(s)
- Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ahmad Alahabadi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rahmani-Sani
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohsen Yazdani-Aval
- Leishmaniasis Research Center, Department of Occupational Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Lotfi
- Department of Microbiology, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hossien Saghi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ayoob Rastegar
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Noori Sepehr
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Belaidi S, Sangare S, Remache W, Belattar S, Seraghni N, Sehili T. Enhanced degradation of 2,6-dimethylphenol by photocatalytic systems using TiO 2 assisted with H 2O 2 and Fe(III). ENVIRONMENTAL TECHNOLOGY 2023; 44:1464-1477. [PMID: 34779714 DOI: 10.1080/09593330.2021.2005686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, several photocatalytic degradation systems were investigated using 2,6-dimethylphenol (2,6-DMP) as a model compound. Highly reactive species are formed in four systems, Fe(III), TiO2, TiO2/H2O2 and TiO2/Fe(III) where complete degradation of 2,6-DMP was achieved under UV radiation. Photodegradation of the 2,6-DMP has been described by pseudo-first order kinetic model in the presence of TiO2. In UV/TiO2-H2O2 system, the addition of H2O2 in the TiO2 suspension improves the degradation rate of 2,6-DMP from 70% to 100% for a H2O2 concentration of 10-2 M in 3 h. In homogeneous system, HO• and Fe2+ can be generated by the irradiation of Fe(III) solution. The speciation of Fe(III) obtained from Visual MINTEQ soft showed the formation of several species and Fe(OH)2+ were the most predominant and active species in a pH range of 2.5-3.5. At a low concentration of TiO2 (30 mg L-1), an important positive effect due to the iron addition has been shown in TiO2/Fe(III) system, the entrance of metallic ions at different concentrations enhanced the photocatalytic activity of TiO2. A degradation percentage of 90% was achieved in the UV/TiO2-Fe(III) system under optimal conditions against 57% in UV/TiO2 system. Strong synergistic effect was observed in the UV/TiO2-H2O2 binary system. On the basis of literature, a pathway for 2,6-DMP degradation was proposed. The mechanism of degradation of the 2,6-DMP did not involve only HO• radicals, an interaction of Fe(III) in the excited state with 2,6-DMP occurred giving rise to the formation of 2,6-dimethylphenoxyl radical.
Collapse
Affiliation(s)
- S Belaidi
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| | - S Sangare
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| | - W Remache
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| | - S Belattar
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| | - N Seraghni
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| | - T Sehili
- Faculty of Exact Sciences, Laboratory of Sciences and Technology of Environment, University of Constantine 1, Constantine, Algeria
| |
Collapse
|
4
|
Wala M, Łubiarz D, Waloszczyk N, Simka W. Plasma Electrolytic Oxidation of Titanium in Ni and Cu Hydroxide Suspensions towards Preparation of Electrocatalysts for Urea Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2191. [PMID: 36984072 PMCID: PMC10051287 DOI: 10.3390/ma16062191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The increasing climate crisis requires an improvement in renewable energy technologies. One of them are fuel cells, devices that are capable of generating electricity directly from the chemical reaction that is taking place inside of them. Despite the advantages of these solutions, a lack of the appropriate materials is holding them back from commercialization. This research shows preliminary results from a simple way to prepare black TiO2 coatings, doped with Cu or Ni using the plasma electrolytic oxidation process, which can be used as anodes in urea-fueled fuel cells. They show activity toward urea oxidation, with a maximum current density of 130 μA cm-2 (@1 V vs. Hg|HgO) observed for Cu-enhanced TiO2 and low potential of only 0.742 V (Vs Hg|HgO) required for 50 μA cm-2 for Ni-enhanced TiO2. These results demonstrate how the PEO process can be used for the preparation of TiO2-based doped materials with electrocatalytic properties toward urea electrooxidation.
Collapse
|
5
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
6
|
Li T, Wang Q, Wang Z. Oxygen Vacancy Injection on (111) CeO 2 Nanocrystal Facets for Efficient H 2O 2 Detection. BIOSENSORS 2022; 12:bios12080592. [PMID: 36004988 PMCID: PMC9405991 DOI: 10.3390/bios12080592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 05/14/2023]
Abstract
Facet and defect engineering have achieved great success in improving the catalytic performance of CeO2, but the inconsistent reports on the synergistic effect of facet and oxygen vacancy and the lack of investigation on the heavily doped oxygen vacancy keeps it an attractive subject. Inspired by this, CeO2 nanocrystals with selectively exposed crystalline facets (octahedron, cube, sphere, rod) and abundant oxygen vacancies have been synthesized to investigate the synergistic effect of facet and heavily doped oxygen vacancy. The contrasting electrochemical behavior displayed by diverse reduced CeO2 nanocrystals verifies that oxygen vacancy acts distinctly on different facets. The thermodynamically most stable CeO2 octahedron enclosed by heavily doped (111) facets surprisingly exhibited the optimum non-enzymatic H2O2 sensing performance, with a high sensitivity (128.83 µA mM-1 cm-2), a broad linear range (20 µM~13.61 mM), and a low detection limit (1.63 µM). Meanwhile, the sensor presented satisfying selectivity, repeatability, stability, as well as its feasibility in medical disinfectants. Furthermore, the synergistic effect of facet and oxygen vacancy was clarified by the inclined distribution states of oxygen vacancy and the electronic transmission property. This work enlightens prospective research on the synergistic effect of alternative crystal surface engineering strategies.
Collapse
|
7
|
Controllable high-efficiency transformation of H2O2 to reactive oxygen species via electroactivation of Ti-peroxo complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
9
|
Lin R, Li Y, Yong T, Cao W, Wu J, Shen Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114460. [PMID: 35026715 DOI: 10.1016/j.jenvman.2022.114460] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fenton process is the most popular for wastewater treatment among all available advanced oxidation processes (AOPs). Numerous endeavors have been devoted to improving the oxidation efficiency of Fenton reaction in terms of promoting ·OH generation, accelerating iron redox cycle and extending applicable pH range. However, in addition to oxidation, coagulation and adsorption also simultaneously occur in the Fenton process, which play important role in the removal of pollutants. Rapid progress has revealed the synergistic effects of oxidation, coagulation and adsorption in the Fenton process, providing new ideas for the treatment of complex and refractory wastewater. Based on available studies, this review is the first to systematically summarize the research progress regarding the synergistic effects of oxidation, coagulation and adsorption in the integrated Fenton-based processes for wastewater treatment. The involved mechanism of the synergistic effects in different Fenton processes (homogeneous Fenton, heterogeneous Fenton and physical field-assistant Fenton coupling process) are critically reviewed. Furthermore, special attention has been paid to the representative applications of the synergistic effects in wastewater treatment (such as industrial organic wastewater, landfill leachate and heavy metal-organic complexes, etc.), particularly focusing on the operation parameters and removal performance. Finally, a conclusion of the review and subsequently, perspectives are given for possible research directions. We believe this review can provide useful information for researchers and end-users involved in the development and application of the Fenton process in wastewater treatment.
Collapse
Affiliation(s)
- Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Wenxing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yafei Shen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| |
Collapse
|
10
|
Zou R, Tang K, Hambly AC, Wünsch UJ, Andersen HR, Angelidaki I, Zhang Y. When microbial electrochemistry meets UV: The applicability to high-strength real pharmaceutical industry wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127151. [PMID: 34536845 DOI: 10.1016/j.jhazmat.2021.127151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Wastewater from pharmaceutical and related industries contains many residual pharmaceutical components rich in color and high COD contents, which cannot be removed through the traditional wastewater treatment processes. Recently, microbial electrolysis ultraviolet cell (MEUC) process has shown its promising potential to remove recalcitrant organics because of its merits of wide pH range, iron-free, and without complications of iron sludge production. However, its application to the real pharmaceutical-rich industrial wastewater is still unknown. In this study, the MEUC process was validated with real ciprofloxacin-rich (6863.79 ± 2.21 µg L-1) industrial wastewater (6840 ± 110 mg L-1 of COD). The MEUC process achieved 100% removal of ciprofloxacin, 100% decolorization, and 99.1% removal of COD within 12, 60 and 30 h, respectively, when it was operated at pH-controlled at 7.8, applied voltage of 0.6 V, UV intensity of 10 mW cm-2, and cathodic aeration velocity of 0.005 mL min-1 mL-1. Moreover, fluorescence analysis showed that protein- and humic-like substances in such wastewater were effectively removed, providing further evidence of its high treatment efficiency. Furthermore, eco-toxicity testing with luminescent bacteria Vibro Feschri confirmed that the treated effluent was utterly non-toxic. The results demonstrated the broad application potential of MEUC technology for treating industrial wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Urban J Wünsch
- National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Kemitorvet, Building 201, 2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
11
|
Synthesis of La2Ti2O7/Bi5O7I photocatalysts with improved photocatalytic activity for degradation of CIP under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Abstract
Winery wastewater represents the largest waste stream in the wine industry. This deals with the mineralization of the organic matter present in winery wastewater using anodic oxidation and two types of anodes—namely, a boron-doped diamond electrode (BDD) and two mixed metal oxides (MMO), one with the nominal composition Ti/Ru0.3Ti0.7O2 and the other with Ti/Ir0.45Ta0.55O2. To conduct the study, the variability of different quality parameters for winery wastewater from the Chilean industry was measured during eight months. A composite sample was treated using anodic oxidation without the addition of supporting electrolyte, and the experiments were conducted at the natural pH of the industrial wastewater. The results show that this effluent has a high content of organic matter (up to 3025 ± 19 mg/L of total organic carbon (TOC)), which depends on the time of the year and the level of wine production. With MMO electrodes, TOC decreased by 2.52% on average after 540 min, which may be attributed to the presence of intermediate species that could not be mineralized. However, when using a BDD electrode, 85% mineralization was achieved due to the higher generation of hydroxyl radicals. The electrolyzed sample contained oxamic, acetic, and propionic acid as well as different ions such as sulfate, chloride, nitrate, and phosphate. These ions can contribute to the formation of different species such as active species of chlorine, persulfate, and perphosphate, which can improve the oxidative power of the system.
Collapse
|
13
|
Han Z, Li Z, Li Y, Shang D, Xie L, Lv Y, Zhan S, Hu W. Enhanced electron transfer and hydrogen peroxide activation capacity with N, P-codoped carbon encapsulated CeO 2 in heterogeneous electro-Fenton process. CHEMOSPHERE 2022; 287:132154. [PMID: 34826897 DOI: 10.1016/j.chemosphere.2021.132154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Designing catalysts that can effectively activate oxygen and hydrogen peroxide is a huge challenge in electro-Fenton (EF) process. Considering the superior ability of electrons transport and activation of H2O2, ceria encapsulated with N, P-codoped carbon material was a promising catalyst for EF reaction. Herein, CeO2-NPCTX (where T and X represented the calcination temperature and the initial mass of CeO2, respectively) materials were synthesized via pyrolysis process and used as catalysts to degrade ciprofloxacin (CIP) in EF process. The results indicated that CeO2-NPC1000100 catalyst had good degradation performance under the optimal conditions. Compared with CeO2 and CeO2-NC1000100 catalysts, CeO2-NPC1000100 catalyst had more content of graphite N and more oxygen vacancies, which were beneficial to activation of oxygen and hydrogen peroxide. Scavenging experiments and electron paramagnetic resonance analysis confirmed ·O2- and ·OH were the main reactive oxygen species in the CIP degradation process. And three logical degradation routes of CIP were given. In addition, CeO2-NPC1000100 catalyst still had good stability after three times of continuous operation, and presented good universality for the treatment of a variety of antibiotic wastewaters. Finally, a convincing mechanism in the EF system with CeO2-NPC1000100 for CIP degradation was proposed.
Collapse
Affiliation(s)
- Zhipeng Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhuang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yueqin Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
14
|
Collivignarelli MC, Abbà A, Carnevale Miino M, Bertanza G, Sorlini S, Damiani S, Arab H, Bestetti M, Franz S. Photoelectrocatalysis on TiO 2 meshes: different applications in the integrated urban water management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59452-59461. [PMID: 33570731 PMCID: PMC8541951 DOI: 10.1007/s11356-021-12606-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Recently, among AOPs, photoelectrocatalysis (PEC) on TiO2 is gaining interest. In this study, five different real waters sampled in four different points of the integrated urban water management (IUWM) system were tested with PEC and UV alone, for comparison. This work aims to verify the effect of the PEC suggesting the optimal position in IUWM system where the PEC should be located to obtain the best performance. In groundwaters (GWs), PEC effectively removed atrazine-based compounds (> 99%), trichloroethylene, and perchloroethylene (96%), after 15 min of reaction time. However, given the low concentrations of emerging compounds, the synergistic effect of UV radiation with the catalyst and with the polarization of the mesh was not visible, with very few differences compared with the results obtained with UV alone. Pharmaceutical industrial wastewater (IWW) showed a significant increase in biodegradability after 2 h, both if subjected to PEC or UV (200%), despite the absence of COD removal. The PEC applied on IWW from a sewage sludge treatment plant allowed to effectively remove the COD (39.6%) and increase the biodegradability (300%). Good results in terms of COD removal (33.9%) and biodegradability increase (+900%) were also achieved testing PEC on wastewater treatment plant effluent. Except for GWs, PEC allowed significant EEO savings respect to UV alone (76.2-99.1%).
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alessandro Abbà
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Silvestro Damiani
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Hamed Arab
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Massimiliano Bestetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Silvia Franz
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
15
|
Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Berkün Olgun Ö, Palas B, Atalay S, Ersöz G. Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Lai W, Chen Z, Ye S, Xu Y, Xie G, Kuang C, Li Y, Zheng L, Wei L. BiVO 4 prepared by the sol-gel doped on graphite felt cathode for ciprofloxacin degradation and mechanism in solar-photo-electro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124621. [PMID: 33383458 DOI: 10.1016/j.jhazmat.2020.124621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this research, bismuth vanadate-doped graphite felt (GF-BiVO4) was successfully prepared by sol-gel method, in which BiVO4 owned superior electro-Fenton (EF) and solar-photo-electro-Fenton (SPEF) performance. Combined with the analysis by X-ray diffractometer (XRD), field emission transmission electron microscopy (FE-TEM), nitrogen adsorption-desorption isotherms and cyclic voltammetry (CV), the changes of electrodes were reflected in structure and physicochemical properties. The doping of monoclinic BiVO4 endued GF with a higher surface area and more electro-active sites and better electrode activity in comparison to Raw-GF. Then, the GFs were used as cathodes to detect •OH concentration with coumarin (COU) as probe molecule and to evaluate photoelectric performance with ciprofloxacin (CIP) in photocatalysis, EF and SPEF processes. The results demonstrated that the concentration of •OH followed an order of SPEF> EF> photocatalysis, which was consistent with the removal rate of CIP (99.8%, 99.4% and 21.2%, respectively) on GF-BiVO4 at 5 min. Further, five degradation pathways of CIP in SPEF system were proposed including the attack on piperazine ring, oxidation on cyclopropyl group, decarboxylation and hydroxyl radical addition, oxidation on benzene group and defluorination. The study provides insights into the enhancement of EF and SPEF performance and the degradation pathway of CIP in SPEF.
Collapse
Affiliation(s)
- Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longmeng Wei
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Liu C, Zhang C, Yin G, Zhang T, Wang W, Ou G, Jin H, Chen Z. A Three-Dimensional Branched TiO 2 Photoanode with an Ultrathin Al 2O 3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13301-13310. [PMID: 33723983 DOI: 10.1021/acsami.1c00948] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoelectrochemical (PEC) water splitting provides an alternative strategy for clean and renewable hydrogen production; however, the practical application is severely limited by the low solar conversion. Herein, a novel and simple strategy has been developed to construct a 3D branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and NiOOH cocatalyst. The structure and properties of the as-obtained photoanodes are explored by X-ray diffraction, Mott-Schottky, electrochemical impedance spectroscopy, and open circuit voltage measurements. The as-obtained B-TiO2/Al2O3/NiOOH ternary heterojunction with a high-quality contact interface exhibits improved light absorption ability, an enhanced photocurrent density of 1.42 mA/cm2 at 1.23 VRHE, high conversion efficiency (0.44% at 0.80 VRHE), and excellent stability compared to pristine TiO2 and alone-Al2O3 or NiOOH decorated TiO2 photoanodes. Therefore, this work could offer a new approach to designing and fabricating high-quality contact interfaces between photoelectrodes and various cocatalysts.
Collapse
Affiliation(s)
- Changhai Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chao Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ge Yin
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenchang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guofu Ou
- Institute of Flow-Induced Corrosion and Intelligent Prevention, Changzhou University, Changzhou 213164, China
| | - Haozhe Jin
- The Flow Induced Corrosion Institution, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
19
|
Efficiency and Energy Demand in Polishing Treatment of Wastewater Treatment Plants Effluents: Photoelectrocatalysis vs. Photocatalysis and Photolysis. WATER 2021. [DOI: 10.3390/w13060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoelectrocatalysis (PEC), photolysis (PL), and photocatalysis (PC) were applied to increase the biodegradability of wastewaters effluents sampled from a plant collecting both municipal wastewaters and aqueous waste. In PEC, the catalyst was a porous TiO2 photoanode obtained by plasma electrolytic oxidation and electrically polarized during operation. In PC a dispersion of TiO2 powders was used. The same irradiation shielding, and similar catalyst surface areas were set for PC and PEC, allowing a straightforward evaluation of the catalytic effect of the electrical polarization of TiO2 during operation. Results showed that the chemical oxygen demand (COD) and color removal rates follow the order: PEC > PL and PEC > PC. The specific biodegradability rate (SBR) increased following the same order, the PEC process allowing SBR values more than twice higher than PL and PC. The operating costs were calculated based on the electrical energy per order of COD, color, and SBR values, demonstrating that at the laboratory scale the energy demand of PEC is significantly lower than the other two tested processes.
Collapse
|
20
|
Syafiuddin A, Fulazzaky MA. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. ACTA ACUST UNITED AC 2020; 29:e00573. [PMID: 33364184 PMCID: PMC7753926 DOI: 10.1016/j.btre.2020.e00573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
The release of synthetic dye into the environment causing abnormal growth of phytoplankton may lead to a decline in the photosynthetic performance of aquatic ecosystem. Scientific knowledge of Remazol Brilliant Blue R (RBBR) decolorization is essential for designing the engineered bioremediation systems of employing fungal mycelium. The biodegradation of RBBR dye mediated by an appropriate fungus was analyzed using the modified mass transfer factor models to get better understanding on the decolorization kinetics and mechanisms of external and internal mass transfer. The results showed that the limited capacities of the kinetic and isotherm models are still not able to comprehensively explain many important phenomena of RBBR decolorization mediated by the T. citrinoviride, T. koningiopsis and Pestalotiopsis sp. strains. The rate-limiting step of RBBR decolorization depends on the EMT resistance and the vegetative growth rates of T. citrinoviride, T. koningiopsis and Pestalotiopsis sp. strains can be described by second-order polynomial equation. The analysis of decolorization performance may provide a new insight on the role of fungus in the degradation of RBBR dye.
Collapse
Affiliation(s)
- Achmad Syafiuddin
- Department of Public Health, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Jalan Raya Jemursari No.57, Jemur Wonosari, Surabaya 60237, Indonesia
| | - Mohamad Ali Fulazzaky
- Environmental Engineering and Management Research Group, Ton Duc Thang University, No.19, Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, No.19, Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam
| |
Collapse
|
21
|
Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010077. [PMID: 33374200 PMCID: PMC7795268 DOI: 10.3390/ijerph18010077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Among the critical issues that prevent the reuse of wastewater treatment plants (WWTPs) effluents in a circular economy perspective, the microbiological component plays a key role causing infections and diseases. To date, the use of conventional chemical oxidants (e.g., chlorine) represent the main applied process for wastewater (WW) disinfection following a series of operational advantages. However, toxicity linked to the production of highly dangerous disinfection by-products (DBPs) has been widely demonstrated. Therefore, in recent years, there is an increasing attention to implement sustainable processes, which can simultaneously guarantee the microbiological quality of the WWs treated and the protection of both humans and the environment. This review focuses on treatments based on ultraviolet radiation (UV) alone or in combination with other processes (sonophotolysis, photocatalysis and photoelectrocatalysis with both natural and artificial light) without the dosage of chemical oxidants. The strengths of these technologies and the most significant critical issues are reported. To date, the use of synthetic waters in laboratory tests despite real waters, the capital and operative costs and the limited, or absent, experience of full-scale plant management (especially for UV-based combined processes) represent the main limits to their application on a larger scale. Although further in-depth studies are required to ensure full applicability of UV-based combined processes in WWTPs for reuse of their purified effluents, excellent prospects are presented thanks to an absent environmental impact in terms of DBPs formation and excellent disinfection yields of microorganisms (in most cases higher than 3-log reduction).
Collapse
|
22
|
Sorlini S, Collivignarelli C, Carnevale Miino M, Caccamo FM, Collivignarelli MC. Kinetics of Microcystin-LR Removal in a Real Lake Water by UV/H 2O 2 Treatment and Analysis of Specific Energy Consumption. Toxins (Basel) 2020; 12:toxins12120810. [PMID: 33371280 PMCID: PMC7766062 DOI: 10.3390/toxins12120810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/27/2023] Open
Abstract
The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L−1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0–0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L−1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm−2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950–1400 mJ cm−2 and higher than 1400 mJ cm−2, respectively.
Collapse
Affiliation(s)
- Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
- Correspondence:
| | - Carlo Collivignarelli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
- Interdepartmental Centre for Water Research, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman SM. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8339. [PMID: 33187288 PMCID: PMC7698012 DOI: 10.3390/ijerph17228339] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| | - Mohd Izuan Effendi Bin Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Mohd Yusoff Bin Abd Samad
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia;
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| |
Collapse
|
24
|
Liu H, Wang C, Wang G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem Asian J 2020; 15:3239-3253. [PMID: 32860468 DOI: 10.1002/asia.202000895] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Nowadays, an ever-increasing variety of organic contaminants in water has caused hazards to the ecological environment and human health. Many of them are persistent and non-biodegradable. Various techniques have been studied for sewage treatment, including biological, physical and chemical methods. Photocatalytic advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rates and strong oxidation capability, low cost compared with the non-photolytic AOPs. This review is dedicated to summarizing up-to-date research progress in photocatalytic AOPs, such as Fenton or Fenton-like reaction, ozonation and sulfate radical-based advanced oxidation processes. Mechanisms and activation processes are discussed. Then, the paper summarizes photocatalytic materials and modification strategies, including defect chemistry, morphology control, heterostructure design, noble metal deposition. The future perspectives and challenges are also discussed.
Collapse
Affiliation(s)
- Hang Liu
- The College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, P. R. China
| | - Chengyin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, P. R. China
| | - Guoxiu Wang
- School of Mathematical and Physical Sciences, University of Technology Sydney City Campus, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
25
|
Collivignarelli MC, Carnevale Miino M, Caccamo FM, Baldi M. Evaluation of foaming potential for water treatment: limits and developments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27952-27960. [PMID: 32405936 DOI: 10.1007/s11356-020-09143-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The critical issue generated by foaming in wastewater treatment plants (WWTPs) is a problem that is currently very common and shared, but which to date is treated mainly only at the management level. In this work, an experimental study with foam tests on real and synthetic waters was conducted using a laboratory scale plant and foaming power indices were calculated. To date, the estimation of foaming potential is mainly based on these indices which give information only on height/volume of foams but not on the type of foams, in terms of consistency and therefore stability. Tests showed that foaming power indices were highly variable with the same water: it was not possible to identify a single foaming potential value for each water. Two models were proposed to estimate the percentage increase in height of chemical foams produced following the introduction of air below the surface of a liquid. In terms of determination coefficient, the results obtained from the complex model were better: R2 was 0.82 for the simple linear model and 0.90 for the complex one. This approach has allowed to underline some critical aspects of foaming potential as it is determined today and the possible improvements applicable for a more objective evaluation.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Marco Baldi
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| |
Collapse
|
26
|
Abstract
Fluorides represent a significant problem in low- and middle-income countries (LMICs). In fact, this ion is essential for human health but, if taken in excess, it can cause dental and skeletal fluorosis. In LMICs, the pollution of groundwater from fluorides is of natural origin. Therefore, if providing alternative sources for drinking water (DW) supply is not possible, the use of specific processes for the removal of fluorides becomes essential. The adsorption on alternative materials, such as agro-food residues, can be a valid treatment for the removal of fluorides in the LMIC considering: (i) their optimal removal yields, (ii) the high availability, and (iii) the low cost. In recent years, the interest on the use of palm residues (PRs) becomes significant. Optimal pH, temperature, adsorbent dosage, and possible combination with metals to increase adsorption performances were deeply investigated. The activated PRs also present two other advantages: (i) very high surface area, and (ii) very low reduction in uptake capacity when regenerated. However, all tests were conducted with synthetic waters in laboratory-scale reactors while application on real-scale are absent. This makes other studies on this type of alternative adsorbent material still necessary.
Collapse
|
27
|
Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes. SURFACES 2020. [DOI: 10.3390/surfaces3020013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porous crystalline Ni-doped TiO2 films were produced using DC plasma electrolytic oxidation in refrigerated H2SO4 aqueous solutions containing NiSO4. The crystalline phase structure consisted of a mixture of anatase and rutile, ranging from ~30 to ~80 wt % rutile. The oxide films obtained at low NiSO4 concentration showed the highest photocurrent values under monochromatic irradiation in the UV-vis range, outperforming pure TiO2. By increasing NiSO4 concentration above a threshold value, the photoelectrochemical activity of the films decreased below that of undoped TiO2. Similar results were obtained using cyclic voltammetry upon polychromatic UV-vis irradiation. Glow discharge optical emission spectrometry (GD-OES) analysis evidenced a sulfur signal peaking at the TiO2/Ti interface. XPS spectra revealed that oxidized Ni2+, S4+ and S6+ ions were included in the oxide films. In agreement with photocurrent measurements, photoluminescence (PL) spectra confirmed that less intense PL emission, i.e., a lower electron-hole recombination rate, was observed for Ni-doped samples, though overdoping was detrimental.
Collapse
|
28
|
Foams in Wastewater Treatment Plants: From Causes to Control Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082716] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation of persistent foams can be a critical problem in wastewater treatment plants (WWTPs) as it could lead to a series of operational problems, especially the reduction of the overall system performance. To date, the effects of foaming in the WWTPs are a problem that is currently very common and shared, but which to date is treated mainly only at the management level and still too little studied through a globally shared scientific method: the complexity of the phenomenon and the systems have led to numerous partially contradictory descriptions and hypotheses over the years. The goal must be to suggest future research directions and indicate promising strategies to prevent or control the formation of foams in WWTPs. This study examines and investigates the problem of foams by a methodological approach of research through a review on the state of the art: the factors influencing the formation of foams are described first (such as surfactants and/or extracellular polymeric substances (EPSs)), then the known methods for the evaluation of foaming, both direct and indirect, are presented, with the aim of identifying the correct and best (from the management point of view) control and/or prevention strategies to be applied in the future in WWTPs.
Collapse
|
29
|
Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072317. [PMID: 32235508 PMCID: PMC7177285 DOI: 10.3390/ijerph17072317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.
Collapse
|
30
|
Abstract
In this study, we report an investigation of the photoelectrochemical activity of TiO2 films formed by DC plasma electrolytic oxidation (PEO) at a variable potential in a sulfuric acid electrolyte at 0 and 25 °C. The surface morphology was mainly determined by the oxide-forming potential. X-Ray Diffraction and Raman analyses showed that the relative amount of the anatase and rutile phases varied from 100% anatase at low potential (110–130 V) to 100% rutile at high potential (180–200 V), while mixed-phase oxide films formed at intermediate potential. Correspondingly, the band gap of the TiO2 films decreased from about 3.20 eV (pure anatase) to 2.94 eV (pure rutile) and was red-shifted about 0.1 eV by reducing the electrolyte temperature from 25 °C to 0 °C. Glow-Discharge Optical Emission Spectroscopy (GD-OES) and X-ray Photoelectron Spectroscopy (XPS) analyses evidenced S-containing species located preferentially close to the TiO2/Ti interface. The photoelectrochemical activity was assessed by measuring the incident photon-to-current efficiency (IPCE) under Ultraviolet C (UV-C) irradiation, which showed a non-gaussian normal trend as a function of the PEO cell potential, with maximum values exceeding 80%. Photoelectrocatalytic activity was assessed by decolorization of model solutions containing methylene blue. Photoanodes having higher IPCE values showed faster decolorization kinetics.
Collapse
|