1
|
Li S, Lee BK. Incorporation of biomass-derived carbon dots and hydrochar into electrospun polylactic acid membranes: A sustainable zero-waste approach to highly efficient methylene blue, malachite green and neutral red dye removal. Int J Biol Macromol 2024; 282:137160. [PMID: 39488319 DOI: 10.1016/j.ijbiomac.2024.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Recently, biomass-derived carbon dots (CDs) and hydrochar have gained widespread attention for environmental remediation. However, hydrochar is commonly regarded as carbon waste (CW) generated in the manufacture of CDs, and only a few reports have focused on the simultaneous application of CW and CDs. Herein, we propose a sustainable zero-waste approach for efficient dye removal by incorporating CDs and CW into electrospun membranes. CDs and CW were obtained via the one-step solvothermal carbonization of apple peels. The prepared CDs with an average size of 7.36 nm were first added to the electrospinning solution to obtain electrospun polylactic acid (PLA)/CDs fibers, followed by CW-integration via ultrasonication. The optimized PLA/CDs/CW composite exhibited high dye adsorption capacities of 141.99, 130.52, and 110.83 mg/g for neutral red, methylene blue, and malachite green, respectively. These dye adsorption capacities are significantly higher than those of the CD-loaded (70.15 mg/g for MB) or CW-loaded (52.34 mg/g for MB) composites, and are attributable to the rational loading of CDs and CW. Furthermore, the optimized composite exhibited remarkable chemical stability, stable reusability, and the ability to adsorb multiple dyes concurrently. This work provides new perspectives on the development of biomass-derived carbonaceous materials for environmental preservation and remediation.
Collapse
Affiliation(s)
- Shichen Li
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Tong YL, Yang K, Wei W, Gao LT, Li PC, Zhao XY, Chen YM, Li J, Li H, Miyatake H, Ito Y. A novel red fluorescent and dynamic nanocomposite hydrogel based on chitosan and alginate doped with inclusion complex of carbon dots. Carbohydr Polym 2024; 342:122203. [PMID: 39048182 DOI: 10.1016/j.carbpol.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Abstract
Red fluorescent hydrogels possessing injectable and self-healing properties have widespread potential in biomedical field. It is still a challenge to achieve a biomacromolecules based dynamic hydrogels simultaneously combining with excellent red fluorescence, good mechanical properties, and biocompatibility. Here we first explore hydrophilic inclusion complex of (R-CDs@α-CD) derived from hydrophobic red fluorescent carbon dots (R-CDs) and α-cyclodextrin (α-CD), and then achieved a red fluorescent and dynamic polysaccharide R-CDs@α-CD/CEC-l-OSA hydrogel. The nanocomposite hydrogel can be fabricated through controlled doping of red fluorescent R-CDs@α-CD into dynamic polymer networks, taking reversibly crosslinked N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) as an example. The versatile red fluorescent hydrogel simultaneously combines the features of injection, biocompatibility, and augmented mechanical properties and self-healing behavior, especially in rapid self-recovery even after integration. The R-CDs@α-CD uniformly dispersed into dynamic hydrogel played the role of killing two birds with one stone, that is, endowing red emission of a hydrophilic fluorescent substance, and improving mechanical and self-healing properties as a dynamic nano-crosslinker, via forming hydrogen bonds as reversible crosslinkings. The novel red fluorescent and dynamic hydrogel based on polysaccharides is promising for using as biomaterials in biomedical field.
Collapse
Affiliation(s)
- Yu Lan Tong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi''an, Shaanxi 710068,China
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
3
|
Yu S, Hou R, Sun J, Deng C, Tan D, Shi H. In Situ Growth of Nitrogen-Doped Fluorescent Carbon Dots on Sisal Fibers: Investigating Their Selective and Enhanced Adsorption Capabilities for Methyl Blue Dye. J Fluoresc 2024:10.1007/s10895-024-03884-6. [PMID: 39180573 DOI: 10.1007/s10895-024-03884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Preparing a biomass adsorbent material with high-absorption performance but low cost plays a vital role in wastewater treatment. In this study, a novel nitrogen-doped sisal fiber-based carbon dots (SF-N-CDs) composite was prepared by directly growing carbon dots (CDs) on sisal fiber (SF) using a microwave method with polyethyleneimine (PEI) as a raw material. The prepared SF-N-CDs were characterized using FTIR, XRD, Contact angle(CA), TGA, XPS, and SEM. The results revealed that the CDs were successfully grown on SF. The adsorption properties of SF-N-CDs were significantly enhanced when they adsorbed methyl blue (MeB) dye. Specifically, the adsorption of MeB by SF-N-CDs was up to 619.7 mg/g, which was about 2.6 times higher than that of raw SF. This implied that the introduction of CDs increases the adsorption site, thus enhancing the adsorption capacity. Analysis on kinetics and thermodynamics of MeB adsorption by SF-N-CDs revealed that the adsorption process followed the Langmuir isotherm model and were consistent with both kinetic models. It signifies that the adsorption involves both physical and chemical adsorption processes. Further, the SF-N-CDs maintained a removal rate of 70.9% after six adsorption-regeneration cycles, demonstrating good regeneration performance. Moreover, the SF-N-CDs could selectively separate MeB from a mixture of rhodamine B and saffron T. Consequently, the findings of this study suggest that SF-N-CDs are promising adsorbents for anionic dyes.
Collapse
Affiliation(s)
- Shujuan Yu
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China.
| | - Ruiliang Hou
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Jiaxiang Sun
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Cailong Deng
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Dengfeng Tan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Hongqi Shi
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| |
Collapse
|
4
|
Liang W, Zhang T, Zhu Y, Dong J, Nie Y, Shi W, Ai S. A novel 3D nitrogen-doped porous carbon supported Fe-Cu bimetallic nanoparticles composite derived from lignin: an efficient peroxymonosulfate activator for naphthalene degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44431-44444. [PMID: 38954339 DOI: 10.1007/s11356-024-34147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
A novel 3D nitrogen-doped porous carbon supported Fe-Cu bimetallic nanoparticles composite (Fe-Cu-N-PC) was prepared via direct pyrolysis by employing black liquor lignin as a main precursor, and it was utilized as a novel catalyst for PMS activation in degrading naphthalene. Under the optimum experimental conditions, the naphthalene degradation rate was up to 93.2% within 60 min in the Fe-Cu-N-PC/PMS system. The porous carbon framework of Fe-Cu-N-PC could facilitate the quick molecule diffusion of reactants towards the inner bimetallic nanoparticles and enriched naphthalene molecules from the solution by a specific adsorption, which increased the odds of contact between naphthalene and reactive oxygen species and improved the reaction efficiency. The quenching reaction proved that the non-free radical pathway dominated by 1O2 was the main way in naphthalene degradation, while the free radical pathway involving SO4·- and ·OH only played a secondary role. Moreover, owing to its high magnetization performance, Fe-Cu-N-PC could be magnetically recovered and maintained excellent naphthalene degradation rate after four degradation cycles. This research will offer a theoretical basis for the construction of facile, efficient, and green technologies to remediate persistent organic pollutants in the environment.
Collapse
Affiliation(s)
- Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Ting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| |
Collapse
|
5
|
Xu X, Kuang G, Jiang X, Wei S, Wang H, Zhang Z. Design of Environmental-Friendly Carbon-Based Catalysts for Efficient Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2750. [PMID: 38894013 PMCID: PMC11173702 DOI: 10.3390/ma17112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Advanced oxidation processes (AOPs) represent one of the most promising strategies to generate highly reactive species to deal with organic dye-contaminated water. However, developing green and cost-effective catalysts is still a long-term goal for the wide practical application of AOPs. Herein, we demonstrated doping cobalt in porous carbon to efficiently catalyze the oxidation of the typically persistent organic pollutant rhodamine B, via multiple reactive species through the activation of peroxymonosulfate (PMS). The catalysts were prepared by facile pyrolysis of nanocomposites with a core of cobalt-loaded silica and a shell of phenolic resin (Co-C/SiO2). It showed that the produced 1O2 could effectively attack the electron-rich functional groups in rhodamine B, promoting its molecular chain breakage and accelerating its oxidative degradation reaction with reactive oxygen-containing radicals. The optimized Co-C/SiO2 catalyst exhibits impressive catalytic performance, with a degradation rate of rhodamine B up to 96.7% in 14 min and a reaction rate constant (k) as high as 0.2271 min-1, which suggested promising potential for its practical application.
Collapse
Affiliation(s)
- Xinru Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Guochen Kuang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Xiao Jiang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Shuoming Wei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Haiyuan Wang
- National Demonstration Center for Chemistry and Chemical Engineering Education, Tianjin University, Tianjin 300350, China
| | - Zhen Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| |
Collapse
|
6
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
7
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
8
|
Pongchaikul P, Hajidariyor T, Khetlai N, Yu YS, Arjfuk P, Khemthong P, Wanmolee W, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. Int J Pharm X 2023; 6:100209. [PMID: 37711848 PMCID: PMC10498006 DOI: 10.1016/j.ijpx.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Regarding the convergence of the worldwide epidemic, the appearance of bacterial infection has occasioned in a melodramatic upsurge in bacterial pathogens with confrontation against one or numerous antibiotics. The implementation of engineered nanostructured particles as a delivery vehicle for antimicrobial agent is one promising approach that could theoretically battle the setbacks mentioned. Among all nanoparticles, silica nanoparticles have been found to provide functional features that are advantageous for combatting bacterial contagion. Apart from that, carbon dots, a zero-dimension nanomaterial, have recently exhibited their photo-responsive property to generate reactive oxygen species facilitating to enhance microorganism suppression and inactivation ability. In this study, potentials of core/shell mesoporous silica nanostructures (MSN) in conjugation with carbon dots (CDs) toward antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli have been investigated. Nitrogen and sulfur doped CDs (NS/CDs) conjugated with MSN which were cost effective nanoparticles exhibited much superior antimicrobial activity for 4 times as much as silver nanoparticles against all bacteria tested. Among all nanoparticles tested, 0.40 M NS/CDs@MSN showed the greatest minimal biofilm inhibitory at very low concentration (< 0.125 mg mL-1), followed by 0.20 M NS/CDs@MSN (0.5 mg mL-1), CD@MSN (25 mg mL-1), and MSN (50 mg mL-1), respectively. Immobilization of NS/CDs@MSN in polyvinyl alcohol (PVA) hydrogel was performed and its effect on antimicrobial activity, biofilm controlling efficiency, and cytotoxicity toward fibroblast (NIH/3 T3 and L-929) cells was additionally studied for further biomedical applications. The results demonstrated that 0.40 M NS/CDs-MSN@PVA hydrogel exhibited the highest inhibitory effect on S. aureus > P. aeruginosa > E. coli. In addition, MTT assay revealed some degree of toxicity of 0.40 M NS/CDs-MSN@PVA hydrogel against L-929 cells by a slight reduction of cell viability from 100% to 81.6% when incubated in the extract from 0.40 M NS/CDs-MSN@PVA hydrogel, while no toxicity of the same hydrogel extract was detected toward NIH/3 T3 cells.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Tasnim Hajidariyor
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navarat Khetlai
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
| | - Pariyapat Arjfuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- National Health Research Institute, Zhunan: 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
9
|
Das G, Nayak S, Kotness DK, Das P. A biomass-derived dual crosslinked DNA-nanoparticle hydrogel for visible light-induced photodynamic bacterial inactivation. SOFT MATTER 2023; 19:9511-9519. [PMID: 38047904 DOI: 10.1039/d3sm01400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sustainability in developing novel nanomaterials (NPs) from biomass sources is a challenging proposition mainly due to the difficulty of infusing or retaining desired chemical functionalities in the biomass substrate. In this study, we demonstrate the synthesis of DNA-nanoparticles (DNA-NP) from onion genomic DNA as a plant biomass source through controlled hydrothermal pyrolysis to retain functional groups in the NPs for predictable downstream chemical transformations. A dual crosslinking scheme was introduced that involves the DNA-NP to form a hydrogel. Chemical crosslinking was achieved through the formation of a Schiff base between the -CHO groups of glutaraldehyde and the amine functionality present on the DNA-NP surface as well as in the nucleobases of the dangling DNA strands of DNA-NP. Simultaneous physical entanglement was attained through hybridization-mediated self-assembly of the dangling DNA strands of the DNA-NP with untransformed onion genomic DNA. As a corollary of the dual crosslinking, the resulting hydrogel not only displayed remarkable mechanical strength but also showed self-healing properties. The ability of the DNA-NP to generate reactive oxygen species (ROS) with visible light irradiation is translated to the hydrogel, making the system potent for biofilm destruction. The high loading efficiency of the model drug ampicillin sodium (Amp) in the hydrogel was achieved which was released in four days. This hints towards the application of the hydrogel through combination antibiotic-antibacterial photodynamic treatment (APDT) as demonstrated here with both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Gourab Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Dinesh Kumar Kotness
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| |
Collapse
|
10
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
11
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Yu S, Lu S, Zheng G. Reusable flexible poly(vinyl alcohol)/chitosan-based polymer carbon dots composite film for acid blue 93 dye adsorption. LUMINESCENCE 2023; 38:1552-1561. [PMID: 37328411 DOI: 10.1002/bio.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The design and synthesis of water-insoluble chitosan-based polymer carbon dots [P(CS-g-CA)CDs] are described. A polyvinyl alcohol/chitosan-based polymer carbon dot [PVA/P(CS-g-CA)CDs] composite film was prepared using a simple casting method to be used in dye adsorption. The composite film was characterized using FT-IR, XPS, transparency, contact angle, and mechanical properties tests, which showed the successful incorporation of P(CS-g-CA)CDs into the film and also revealed that hydrogen bonding improved the mechanical properties of the PVA film. Furthermore, the composite film displayed substantially enhanced hydrophobicity, making it suitable for use in aqueous environments. In addition, the composite film exhibited stable adsorption of acid blue 93 (AB93) at pH 2-9, with an enhanced adsorption capacity of 433.24 mg/g. The adsorption obeyed Langmuir law with an efficiency of more than 89% even after five cycles. Therefore, the PVA/P(CS-g-CA)CDs film is a promising material for the treatment of organic dye-polluted wastewater.
Collapse
Affiliation(s)
- Shujuan Yu
- Department of Materials Science and Engineering, Suqian University, Suqian, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shiyan Lu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Guangjian Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
13
|
Mattelin V, Verfaille L, Kundu K, De Wildeman S, Boon N. A New Colorimetric Test for Accurate Determination of Plastic Biodegradation. Polymers (Basel) 2023; 15:polym15102311. [PMID: 37242886 DOI: 10.3390/polym15102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
As plastic waste is accumulating in both controlled waste management settings and natural settings, much research is devoted to search for solutions, also in the field of biodegradation. However, determining the biodegradability of plastics in natural environments remains a big challenge due to the often very low biodegradation rates. Many standardised test methods for biodegradation in natural environments exist. These are often based on mineralisation rates in controlled conditions and are thus indirect measurements of biodegradation. It is of interest for both researchers and companies to have tests that are more rapid, easier, and more reliable to screen different ecosystems and/or niches for their plastic biodegradation potential. In this study, the goal is to validate a colorimetric test, based on carbon nanodots, to screen biodegradation of different types of plastics in natural environments. After introducing carbon nanodots into the matrix of the target plastic, a fluorescent signal is released upon plastic biodegradation. The in-house-made carbon nanodots were first confirmed regarding their biocompatibility and chemical and photostability. Subsequently, the effectivity of the developed method was evaluated positively by an enzymatic degradation test with polycaprolactone with Candida antarctica lipase B. Finally, validation experiments were performed with enriched microorganisms and real environmental samples (freshwater and seawater), of which the results were compared with parallel, frequently used biodegradation measures such as O2 and CO2, dissolved organic carbon, growth and pH, to assess the reliability of the test. Our results indicate that this colorimetric test is a good alternative to other methods, but a combination of different methods gives the most information. In conclusion, this colorimetric test is a good fit to screen, in high throughput, the depolymerisation of plastics in natural environments and under different conditions in the lab.
Collapse
Affiliation(s)
- Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Lennert Verfaille
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Kankana Kundu
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | | | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| |
Collapse
|
14
|
Shen J, Gu H, He Z, Lin W. Wattle-Bark-Tannin-Derived Carbon Quantum Dots as Multi-Functional Nanomaterials for Intelligent Detection of Cr 6+ Ions, Bio-Imaging, and Fluorescent Ink Applications. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jialu Shen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Zhen He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Wei Lin
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Salimi Shahraki H, Qurtulen, Ahmad A. Synthesis, characterization of Carbon Dots from Onion peel and their application as absorbent and anticancer activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.
Collapse
|
17
|
Modified β-Cyclodextrin hydrogel for selective adsorption and desorption for cationic dyes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Kumar JV, Kavitha G, Albasher G, Sajjad M, Arulmozhi R, Komal M, Nivetha MS, Abirami N. Multiplex heteroatoms doped carbon nano dots with enhanced catalytic reduction of ionic dyes and QR code security label for anti-spurious applications. CHEMOSPHERE 2022; 307:136003. [PMID: 35987265 DOI: 10.1016/j.chemosphere.2022.136003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, a simple hydrothermal approach was used to make multiplex heteroatoms doped carbon dots from Tinospora cordifolia miers plant extract. Their ability to the catalytic activity of dyes and anti-spurious applications was evaluated. The formation of NBCNDs and source of (T. cordifolia miers) study the optical properties, and functional groups are investigated using UV-Visible spectroscopy and FT-IR techniques. The synthesized NBCNDs structure and elemental compositions were examined via HR-TEM, XRD, and XPS, respectively. According to the HRTEM images, the average particle size of the NBCNDs was around 4.3± 1 nm, with d-spacing of 0.19 nm. The obtained NBCNDs were exposed under 395 nm UV light to emit bluish-green tuneable fluorescence with QY (quantum yield) of 23.7%. The prepared NBCNDs as a potential catalyst for the AYR and CV dye reduction process using freshly prepared NaBH4, with determined rate constant values at 0.1220 and 0.1521 min-1, respectively. Lastly, we constructed a quick response (QR) code security label for anti-spurious applications using stencil techniques. The "confidential info" was encrypted using a QR code digital system, and the decryption was read using a smartphone under 365 nm light irradiation.
Collapse
Affiliation(s)
- J Vinoth Kumar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - G Kavitha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - R Arulmozhi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - M Komal
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - M Sherlin Nivetha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - N Abirami
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
19
|
Lyu B, Ren J, Kang B, Lang Q, Tu J, Bu J, Yang X, Wang H, Gao D, Ma J. Excellent compression performance gelatin/polyacrylamide/vinyl modified SiO2 composite DN hydrogels with shape memory. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Mou C, Wang X, Teng J, Xie Z, Zheng M. Injectable self-healing hydrogel fabricated from antibacterial carbon dots and ɛ-polylysine for promoting bacteria-infected wound healing. J Nanobiotechnology 2022; 20:368. [PMID: 35953858 PMCID: PMC9367091 DOI: 10.1186/s12951-022-01572-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Developing highly efficient pharmaceuticals to eradicate pathogens and facilitate wound healing is of great concern. Despite some cationic carbon dots (CDs) have been used for sterilization, hardly any anionic CDs with antimicrobial activity have appeared. In the present work, we engineered a string of anionic CDs (especially CD31) as valid broad-spectrum bactericides to kill bacteria. Furthermore, CD31 conjugated with ɛ-polylysine (Plys) to construct injectable, and self-healing hydrogel (CD-Plys) that possess the advantages of remarkable broad spectrum antibacterial activity, excellent wound healing ability and satisfied biocompatibility. CD-Plys could dramatically accelerate wound healing with epithelization and enhanced angiogenesis. Taken together, this work provides a two-pronged strategy to explore CDs-based antimicrobial agents for disease therapy and tissue engineering.
Collapse
Affiliation(s)
- Chengjian Mou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, Jilin, People's Republic of China
| | - Xinyuan Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, Jilin, People's Republic of China
| | - Jiahui Teng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, Jilin, People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, People's Republic of China.
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, Jilin, People's Republic of China.
| |
Collapse
|
21
|
Pan T, Chen H, Gao X, Wu Z, Ye Y, Shen Y. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128996. [PMID: 35487006 DOI: 10.1016/j.jhazmat.2022.128996] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 05/15/2023]
Abstract
Bacterial biofilms have evoked worldwide attention owing to their serious threats to public health, but how to effectively eliminate bacterial biofilms still remains great challenges. Here, we rationally designed a novel and vigorous chitosan grafted Fe-doped-carbon dots (CS@Fe/CDs) as an efficient artificial nanozyme to combat rigid bacterial biofilms through the selective activation of Fenton-like reaction-triggered peroxidase-like catalytic activity and the synergistic antibacterial activity of CS. On the one hand, the peroxidase-like catalytic activity made CS@Fe/CDs catalyze H2O2 for producing hydroxyl radicals (•OH), resulting in efficient cleavage of extracellular DNA (eDNA). On the other hand, CS was capable of binding with the negatively charged cell membrane through electrostatic interaction, changing the cell membrane permeability and causing cell death within bacterial biofilms. Based on their synergistic effects, the fragments of bacterial biofilm and exposed bacteria were persistently eradicated. Remarkably, CS@Fe/CDs-based nanozyme not only enabled the effective destroying of gram-positive Staphylococcus aureus (S. aureus) biofilms, but also completely eliminated gram-negative Pseudomonas aeruginosa (P. aeruginosa) biofilms, showing great potential as a promising anti-biofilm agent against bacteria biofilms. This proposed synergistic strategy for bacterial biofilm eradication might offer a powerful modality to manage of bacterial biofilm fouling in food safety and environmental protection.
Collapse
Affiliation(s)
- Ting Pan
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zeyu Wu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
22
|
Laddha H, Yadav P, Agarwal M, Gupta R. Quick and hassle-free smartphone's RGB-based color to photocatalytic degradation rate assessment of malachite green dye in water by fluorescent Zr-N-S co-doped carbon dots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56684-56695. [PMID: 35347616 DOI: 10.1007/s11356-022-19808-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Sunlight active blue emissive zirconium, nitrogen, and sulfur co-doped carbon dots (Zr-N-S-CDs) have been synthesized by microwave-induced pyrolysis for achieving efficient photocatalytic degradation of pollutant malachite green dye (MG) in water. Surface morphology studies using high-resolution transmission electron microscopy confirmed the formation of spherical-shaped CDs with an absorbance peak at 350 nm and emission peak at 437 nm in UV-vis and fluorescence spectroscopy, respectively. Surface functional groups, elemental composition, and metal/non-metal co-doping were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To understand the photocatalytic performance of Zr-N-S-CDs, various parameters, such as the source of energy, concentration of dye, catalyst dosage, and change in pH, were investigated. MG dye (20 ppm) at a pH 7 with 0.5 mg/mL of Zr-N-S-CDs could be photodegraded efficiently in 90 min under sunlight (99%) compared to dark and artificial light conditions. Moreover, real-time analysis of degradation rate could be conveniently calculated by integrating the colorimetric responses of MG dye with RGB values obtained by the "Color Picker" app of a smartphone. The degradation rate obtained using a smartphone (97.89%) was found to be in agreement with the UV-vis spectroscopy (99%), thus, providing a new, handy, and instrument-free route for speedy and quantitative estimation of the degradation of hazardous MG dye by Zr-N-S-CDs.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Priya Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
23
|
Han B, Yan Q, Liu Q, Li D, Chen Y, He G. Bright green emission non-conjugated polymer dots: pH trigged hydrogel for specific adsorption of anionic dyes and visual detection of tert-butylhydroquinone. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Guan X, Zhang B, Li D, He M, Han Q, Chang J. Remediation and resource utilization of chromium(III)-containing tannery effluent based on chitosan-sodium alginate hydrogel. Carbohydr Polym 2022; 284:119179. [DOI: 10.1016/j.carbpol.2022.119179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
|
25
|
Jung H, Sapner VS, Adhikari A, Sathe BR, Patel R. Recent Progress on Carbon Quantum Dots Based Photocatalysis. Front Chem 2022; 10:881495. [PMID: 35548671 PMCID: PMC9081694 DOI: 10.3389/fchem.2022.881495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
As a novel carbon allotrope, carbon quantum dots (CQDs) have been investigated in various fields, including photocatalysis, bioimaging, optoelectronics, energy and photovoltaic devices, biosensing, and drug delivery owing to their unique optical and electronic properties. In particular, CQDs' excellent sunlight harvesting ability, tunable photoluminescence (PL), up-conversion photoluminescence (UCPL), and efficient photo-excited electron transfer have enabled their applications in photocatalysis. This work focuses on the recent progress on CQDs-related materials' synthesis, properties, and applications in photocatalysis.
Collapse
Affiliation(s)
- Hwapyung Jung
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Vijay S. Sapner
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad, Seoul, South Korea
| | | | - Bhaskar R. Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad, Seoul, South Korea,*Correspondence: Bhaskar R. Sathe, ; Rajkumar Patel,
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea,*Correspondence: Bhaskar R. Sathe, ; Rajkumar Patel,
| |
Collapse
|
26
|
Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Ma Q, Yan C, Lv W, Mei Y, Peng H, Du J, Zheng B, Guo Y. Coexisting Chloride Ion for Boosting the Photoelectrocatalytic Degradation Efficiency of Organic Dyes. Catal Letters 2022. [DOI: 10.1007/s10562-022-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Krystyjan M, Khachatryan G, Khachatryan K, Krzan M, Ciesielski W, Żarska S, Szczepankowska J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers (Basel) 2022; 14:948. [PMID: 35267771 PMCID: PMC8912318 DOI: 10.3390/polym14050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; in medical and biological sciences; cosmetology; and many other areas of our lives. In this article, a particular attention is focused on carbon nanomaterials, especially graphene, as well as carbon nanotubes and carbon quantum dots that have been successfully used in biotechnology, biomedicine and broadly defined environmental applications. Some properties of carbon nanomaterials prevent their direct use. One example is the difficulty in synthesizing graphene-based materials resulting from the tendency of graphene to aggregate. This results in a limitation of their use in certain fields. Therefore, in order to achieve a wider use and better availability of nanoparticles, they are introduced into matrices, most often polysaccharides with a high hydrophilicity. Such composites can compete with synthetic polymers. For this purpose, the carbon-based nanoparticles in polysaccharides matrices were characterized. The paper presents the progress of ground-breaking research in the field of designing innovative carbon-based nanomaterials, and applications of nanotechnology in diverse fields that are currently being developed is of high interest and shows great innovative potential.
Collapse
Affiliation(s)
- Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Wojciech Ciesielski
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Sandra Żarska
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
29
|
Cailotto S, Massari D, Gigli M, Campalani C, Bonini M, You S, Vomiero A, Selva M, Perosa A, Crestini C. N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS OMEGA 2022; 7:4052-4061. [PMID: 35155899 PMCID: PMC8829871 DOI: 10.1021/acsomega.1c05403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 05/09/2023]
Abstract
The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
Collapse
Affiliation(s)
- Simone Cailotto
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Daniele Massari
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Matteo Gigli
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Carlotta Campalani
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Massimo Bonini
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Shujie You
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Alberto Vomiero
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maurizio Selva
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Alvise Perosa
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Claudia Crestini
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
30
|
In situ grown bacterial cellulose/MoS 2 composites for multi-contaminant wastewater treatment and bacteria inactivation. Carbohydr Polym 2022; 277:118853. [PMID: 34893262 DOI: 10.1016/j.carbpol.2021.118853] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023]
Abstract
For the purpose of developing multifunctional water purification materials capable of degrading organic pollutants while simultaneously inactivating microorganisms from contaminated wastewater streams, we report here a facile and eco-friendly method to immobilize molybdenum disulfide into bacterial cellulose via a one-step in-situ biosynthetic method. The resultant nanocomposite, termed BC/MoS2, was shown to possess a photocatalytic activity capable of generating •OH from H2O2, while also exhibiting photodynamic/photothermal mechanisms, the combination of which exhibits synergistic activity for the degradation of pollutants as well as for bacterial inactivation. In the presence of H2O2, the BC/MoS2 nanocomposite exhibited excellent antibacterial efficacy upwards of 99.9999% (6 log units) for the photoinactivation of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus upon infrared (IR) lamp illumination (100 W, 760 nm ≤ λ ≤ 5000 nm, 15 cm vertical distance; 5 min). Mechanistic studies revealed synergistic pathogen inactivation resulting from the combination of photocatalytically generated •OH and hyperthermia induced by the photothermal conversion of the near-IR light. In addition, the BC/MoS2 nanocomposite also showed excellent photodegradation activity for common aqueous contaminants in the presence of H2O2, including malachite green (a textile dye), catechol violet (a phenol) and formaldehyde. Taken together, our findings demonstrate that sustainable materials such as BC/MoS2 have potential applications in wastewater treatment and microorganism disinfection.
Collapse
|
31
|
Investigation of fouling mechanism in membrane distillation using in-situ optical coherence tomography with green regeneration of fouled membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
j VK, Velusamy A, Arulmozhi R, Abirami N. Boron doped Fluorescent Carbon Nano Dots for reduction of ionic dyes and as Encryption and decryption QR code labels. NEW J CHEM 2022. [DOI: 10.1039/d2nj00786j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work discusses the synthesis of fluorescent undoped and boron-doped carbon nanodots (BDCNDs) by a simple hydrothermal approach using Tribulus terretris as carbon precursor and boric acid as boron source....
Collapse
|
33
|
Hamd-Ghadareh S, Salimi A, Parsa S, Mowla SJ. Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer's disease biomarker. Biosens Bioelectron 2021; 199:113895. [PMID: 34968953 DOI: 10.1016/j.bios.2021.113895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's is a neurodegenerative disease with high morbidity and mortality in the elderly, so, detection of its biomarker for definite diagnosis of Alzheimer's in the early stage of disease is a challenge. Amyloid beta peptide (Aβ) chosen as an Alzheimer's biomarker. Here, we developed novel, semi-solid, three-dimensional hydrogel matrices for ratiometric fluorescence detection of Aβ. This assay's great performance stems from the employment of a hybrid conjugate composed of Rhodamine B (RB), Carbon dots (CDs), and an Aβ probe entrapped in Polyvinyl alcohol (PVA), and then detection of fluorescence resonance energy transfer (FRET) that occurs in the presence of AuNP/target-Aβ, as a result of hybridization. The RB-CDs' fluorescence (at 582 nm and 675 nm under 430 nm excitation) is quenched in the presence of AuNPs, while the ratio of fluorescence (I582/I675) is increased by the addition of Aβ target, and shows a linear relationship in the range of 75 pM-250 nM, with a detection limit of 0.5 pM. Furthermore, the assay possesses strong selectivity for Aβ compared to other proteins, and different quantities of a human serum sample successfully analyzed with excellent sensitivity, satisfactory precision, and reliability. Due to distribution of Aβ in SH-SY5 human neuroblastoma cells, extending this UV-Vis-NIR full-range responsive CDs bio-probe to imaging of Aβ in cells. In both fixed and living SH-SY5 cells, the nanoprobe delivers a clear signal to the Aβ target. Because of its high sensitivity, selectivity, biocompatibility and affordability, this nanoprobe is a good option for early Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Sara Parsa
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
34
|
Fe 3+-citric acid/sodium alginate hydrogel: A photo-responsive platform for rapid water purification. Carbohydr Polym 2021; 269:118269. [PMID: 34294301 DOI: 10.1016/j.carbpol.2021.118269] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
As water pollution in human society becomes more and more serious, the demand for materials that can be used for wastewater treatment is increasing. Here, we reported a sodium alginate-based hydrogel (Fe3+-CA/SA hydrogel) that can efficiently photocatalyze the degradation of malachite green. The Fe3+-CA/SA hydrogel is composed of sodium alginate, citric acid, and Fe3+. The hydrogel has multi-leveled pore structure and photochromic ability. Benefiting from the unique microstructure and positive feedback chemical reaction process, the hydrogel has high photocatalytic efficiency. Under 365 nm UV light irradiation, the hydrogel can degrade around 95% of malachite green (20 mg/L) in about 4 min, and there is no need to add H2O2 in the degradation process. The work helps to expand the application of sodium alginate-based hydrogels in the field of water treatment. It also has exploratory significance for the principle of photocatalytic degradation of malachite green.
Collapse
|
35
|
Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Guo Y, Dundas CM, Zhou X, Johnston KP, Yu G. Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102994. [PMID: 34292641 DOI: 10.1002/adma.202102994] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Consumption of unsafe water is a major cause of morbidity and mortality in developing regions. Pasteurizing or boiling water to remove pathogens is energy-intensive and often impractical to off-grid communities. Therefore, low capital cost, rapid and energy-efficient water disinfection methods are urgently required to address global challenges of safe water access. Here, anti-bacterial hydrogels (ABHs) with catechol-enabled molecular-level hydrogen peroxide generators and quinone-anchored activated carbon particles are designed for effective water treatment. The bactericidal effect is attributed to the synergy of hydrogen peroxide and quinone groups to attack essential cell components and disturb bacterial metabolism. ABHs can be directly used as tablets to achieve >99.999% water disinfection efficiency within 60 min without energy input. No harmful byproducts are formed during the treatment process, after which the ABH tablets can be easily removed without residues. Taking advantage of their excellent photothermal and biofouling-resistant properties, ABHs can also be applied as solar evaporators to achieve stable water purification under sunlight (≤1 kW m-2 ) after months of storage and operation in bacteria-containing river water. The ABH platform offers reduced energy and chemical demands for point-of-use water treatment technologies in remote areas and emergency rescue applications.
Collapse
Affiliation(s)
- Youhong Guo
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xingyi Zhou
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
37
|
Nayak S, Das P. Covalent Conjugation of Carbon Dots with Plasmid and DNA Condensation Thereafter: Realistic Insights into the Condensate Morphology, Energetics, and Photophysics. ACS OMEGA 2021; 6:21425-21435. [PMID: 34471745 PMCID: PMC8387987 DOI: 10.1021/acsomega.1c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The use of carbon quantum dots (CDs) as trackable nanocarriers for plasmid and gene as hybrid DNA condensates has gained momentum, as evident from the significant recent research efforts. However, the in-depth morphology of the condensates, the energetics of the condensation process, and the photophysical aspects of the CD are not well understood and often disregarded. Herein, for the first time, we covalently attached linearized pUC19 with citric acid and cysteamine-derived CD through the reaction of the surface amine groups of CDs with the 5'-phospho-methyl imidazolide derivative of the plasmid to obtain a 1:1 CD-pUC19 covalent conjugate. The CD-pUC19 conjugates were further transformed into DNA condensates with spermine that displayed a toroidal morphology with a diameter of ∼200 nm involving ∼2-5 CD-pUC19 conjugates in a single condensate. While the interaction of pristine CD to spermine was exothermic, the binding of the CD-pUC19 conjugate with spermine was endothermic and primarily entropy-driven. The condensed plasmid displayed severe conformational stress and deviation from the B-form due to the compact packing of the DNA but better transfection ability than the pristine CD. The CDs in the condensates tend to come close to each other at the core that results in their shielding from excitation. However, this does not prevent them from emanating reactive oxygen species on visible light exposure that compromises the decondensation process and cell viability at higher exposure times, calling for utmost caution in establishing them as nonviral transfecting agents universally.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| |
Collapse
|
38
|
Physicochemical and pharmacological investigations of polyvinylpyrrolidone - tetrahydroxyborate hydrogel containing the local anesthetic lidocaine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
40
|
Lu S, Yuan G, Zhu Y, Yu S. Carbon dots crosslinked chitosan/cellulose sponge capture of methyl blue by an adsorption process. LUMINESCENCE 2021; 36:1459-1468. [PMID: 34008287 DOI: 10.1002/bio.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
For environmental protection, organic dyes and solvents of industrial wastewater must be eliminated. Here, a citric acid-based carbon dots (CA-CDs) crosslinked chitosan/microcrystalline cellulose (CS/MCC/CA-CDs) sponge was synthesized to study its adsorption performance for methyl blue (MB) dye. The morphology of the sponge was a tangled fibre with a bundle formed by hydrogen bonds between CA-CDs and the CS/MCC composite matrix. The abundant amount of tangled fibre bundle units can offer plentiful active adsorption sites to collect the dye molecules. The adsorption capacity of the CS/MCC/CA-CDs sponge toward MB was 306.8 mg/g at pH 10 and a temperature of 298 K. In addition, the pseudo-second-order kinetic model was matched with the adsorption kinetic experimental data, and the adsorption isotherm data can be described by the Langmuir models. This study proposed that the CS/MCC/CA-CDs sponge adsorbent creates tremendous potential application value in wastewater treatment due to its fast kinetics, high adsorption capacity, simple preparation, and eco-friendly properties.
Collapse
Affiliation(s)
- Shiyan Lu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Guangzhi Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Yongfei Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shujuan Yu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
41
|
Li Y, Pan X, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y. Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124534. [PMID: 33221073 DOI: 10.1016/j.jhazmat.2020.124534] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 05/21/2023]
Abstract
Carbon dots (CDs) with gradient-changed quantum yield (QY) were prepared by regulating the graphitic N and hydroxyl group contents. Then, the QY effect of CDs on plant photosynthesis was studied using chloroplasts and rice plants. After incubation for 2 h in the dark, CDs entered into the chloroplasts and converted ultraviolet radiation to photosynthetically active radiation. By this mechanism, CD1:0.2 (300 μg·mL-1) with a moderate QY of 46.42% significantly increased the photosynthetic activity of chloroplast (200 μg·mL-1) to reduce DCPIP and ferricyanide by 43.77% and 25.45%, respectively. After spraying on rice seedlings, CD1:0.2 (300 μg·mL-1) was evenly distributed in the leaves and resulted in maximum increases in the electron transport rate and photosynthetic efficiency of photosystem II by 29.81% and 29.88%, respectively. Furthermore, CD1:0.2 significantly increased the chlorophyll content and RuBisCO carboxylase activity of rice by 64.53% and 23.39%, respectively. Consequently, significant increases were observed in the growth of CD1:0.2-treated rice, including 18.99%, 64.31%, and 61.79% increases in shoot length, dry weights of shoot and root. These findings contribute to the exploitation of solar energy and agricultural production using CDs in the future.
Collapse
Affiliation(s)
- Yadong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Ying Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| |
Collapse
|
42
|
Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World J Microbiol Biotechnol 2021; 37:101. [PMID: 33983510 DOI: 10.1007/s11274-021-03067-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The effluent from the textile industry is a complex mixture of recalcitrant molecules that can harm the environment and human health. Biological treatments are usually applied for this wastewater, particularly activated sludge, due to its high efficiency, and low implementation and operation costs. However, the activated sludge microbiome is rarely well-known. In general, activated sludges are composed of Acidobacteria, Bacillus, Clostridium, Pseudomonas, Proteobacteria, and Streptococcus, in which Bacillus and Pseudomonas are highlighted for bacterial dye degradation. Consequently, the process is not carried out under optimum conditions (treatment yield). Therefore, this review aims to contextualize the potential environmental impacts of azo dye-containing wastewater from the textile industry, including toxicity, activated sludge microbiome identification, in particular using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a novel, rapid and accurate strategy for the identification of activated sludge microbiome (potential to enhance treatment yield).
Collapse
|
43
|
Gao X, Li H, Niu X, Zhang D, Wang Y, Fan H, Wang K. Carbon quantum dots modified Ag 2S/CS nanocomposite as effective antibacterial agents. J Inorg Biochem 2021; 220:111456. [PMID: 33857698 DOI: 10.1016/j.jinorgbio.2021.111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
The present study attempted to synthesize carbon quantum dots (CQDs) through Aldol polymerization reaction, wherein acetone was used as the carbon source. A nano composite CQDs/Ag2S/CS was developed by loading as prepared CQDs and Ag2S nanoparticles on a chitosan substrate (CS). An in-situation growth of nanocomposites was adopted to study their antibacterial properties. Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and methicillin-resistant Staphylococcus aureus were selected as the model bacteria. The CQDs/Ag2S/CS nanocomposites exhibited excellent inhibition not only against common pathogenic bacteria, but also those well-known drug-resistant bacteria. Moreover, compared to traditional antibiotics, the as prepared nanocomposites in the present work do not likely cause bacterial drug resistance, which make them a potential candidate for a new type of clinically applicable antibiotics.
Collapse
Affiliation(s)
- Xiang Gao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yi Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
44
|
|
45
|
Bagheri N, Mansour Lakouraj M, Hasantabar V, Mohseni M. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123631. [PMID: 33264858 DOI: 10.1016/j.jhazmat.2020.123631] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
Certainly water pollution control will play a key role in environmental health. Therefore, researchers are attempting to reduce the ecological effects of water pollution by creating restrictions in the use of chemicals or water reuse. Among all the available techniques, adsorption method attracted much attention due to the higher efficiency, cost-effectiveness and simplicity. So, in this work, novel biodegradable hydrogel based on carboxymethyl cellulose (CMC) and polyaniline (PANI) was introduced to remove toxic dyes from wastewater. The synthesis process was accomplished in two steps: free radical polymerization of acrylic acid (AA) on the CMC (0.25 g) in the presence of ammonium per sulfate (APS) as radical initiator (0.2 g) and N,N-methylene-bis-acrylamide (MBA) as crosslinker (0.1 g) at 70 °C, and after 30 min, growing PANI chains on the synthesized CMC-PAA hydrogel by radical polymerization of aniline (1.0 mL) in acidic condition (20 mL of hydrochloric acid 1.0 M) to form macro-porous conductive hydrogel (CMC-PAA-PANI). The resulted hydrogel showed high antibacterial activity and excellent biodegradability by natural soil microorganisms with decomposition to 91.7 %. Also, the final hydrogel exhibited reasonable conductivity and pH sensitivity properties.
Collapse
Affiliation(s)
- Nazanin Bagheri
- Polymer chemistry laboratory, Department of Organic-Polymer chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416, Iran
| | - Moslem Mansour Lakouraj
- Polymer chemistry laboratory, Department of Organic-Polymer chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416, Iran.
| | - Vahid Hasantabar
- Polymer chemistry laboratory, Department of Organic-Polymer chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416, Iran
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Basic Science, University of Mazandaran, Babolsar, 47416, Iran
| |
Collapse
|
46
|
Nayak S, Prasad SR, Mandal D, Das P. Hybrid DNA-Carbon Dot-Poly(vinylpyrrolidone) Hydrogel with Self-Healing and Shape Memory Properties for Simultaneous Trackable Drug Delivery and Visible-Light-Induced Antimicrobial Photodynamic Inactivation. ACS APPLIED BIO MATERIALS 2020; 3:7865-7875. [PMID: 35019527 DOI: 10.1021/acsabm.0c01022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A two-step methodology for simultaneous conjugation of DNA and poly(vinylpyrrolidone) (PVP) polymer to a single carbon quantum dot (CD) is demonstrated for the first time to fabricate a pH-responsive DNA-CD-PVP hybrid hydrogel. Cross-linking in the hydrogel was achieved using CD as the common nucleus through the formation of DNA I-motif conformation at neutral to acidic pH and noncovalent interaction of PVP that infuse self-healing and shape memory properties in the hydrogel. The hydrogel is capable of loading and sustained delivery of drugs for more than 2 weeks as demonstrated using a model drug, Hemin. The quenching of fluorescence of CD by Hemin was trackable even through simple visual monitoring, which showed that Hemin can diffuse from the loaded part to the unloaded part of the hydrogel during the self-healing process. Most significantly, the chosen CD generates reactive oxygen species (ROS) upon visible light irradiation, armoring the hydrogel with worthy antimicrobial activity. Biocompatibility of the DNA-CD-PVP hydrogel was established on human fibroblast cells, indicating their potential use in biomedical area pertaining to wound healing.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| |
Collapse
|
47
|
Wei Y, Cheng X, Ding A, Xu J. Magnesium Silicate Polymer as a Coagulant for Reactive Dye Removal from Wastewater: Considering the Intrinsic pH in Magnesium Silicate Polymer and Coagulation Behavior. ACS OMEGA 2020; 5:26094-26100. [PMID: 33073136 PMCID: PMC7558040 DOI: 10.1021/acsomega.0c03625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 05/30/2023]
Abstract
A magnesium silicate polymeric coagulant (MgSiPC), which is an inorganic polymer for dye removal from wastewater, was prepared with different pH by copolymerization. The acidity was a key factor in the preparation of the MgSiPC. In the present research, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to analyze the characterization of optimum coagulants. Additionally, the response surface method (RSM) was applied to optimize the process of coagulation-flocculation. The results of FT-IR and XRD implied that the main components of the MgSiPC with pH 1.50-2.50 were almost the same. SEM images showed that MgSiPCs with pH 1.50-2.50 exhibited different structures including cluster and lamellar shape structure, compact rod-like and network structure, and a kind of irregular geometry shape structure. In the process of coagulation-flocculation, MgSiPCs with pH 1.50-2.50 showed highly efficient coagulation performance. The removal rate of reactive yellow 2(RY2) could reach above 90% at a dosage of 50-70 mg/L and initial pH 12.00, while the removal rate of reactive blue 2 (RB2) could attain above 93% at a dosage of 50-80 mg/L and initial pH 12.00. Moreover, MgSiPCs with pH 2.00 had the highest efficiency. The results of RSM showed that the optimum combination of the MgSiPC's dosage and initial pH was 62 mg/L and 12.08 for RY2 and 78 mg/L and 12.00 for RB2, respectively. Under optimum experimental conditions, the predicted data from this model were 96% for RY2 and 100% for RB2, which was consistent with the actual experimental data. Therefore, a pH of 2.00 is considered to be the optimal acidity for preparing MgSiPCs.
Collapse
|