1
|
Li X, Yuan SJ, Ren FF, Dong B, Xu ZX. A novelty strategy for AMD prevention by biogas slurry: Acetate acid inhibition effect on chalcopyrite biooxidation and leachate. ENVIRONMENTAL RESEARCH 2024; 261:119687. [PMID: 39068972 DOI: 10.1016/j.envres.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
With the widespread application of anaerobic digestion technology, biogas slurry become the main source of organic amendments in practice. Comprehensive studies into the inhibitory effects of low molecular weight (LMW) organic acids, essential components in biogas slurry, on the sulfide minerals biooxidation and its bioleaching (AMD) have been lacking. In this study, acetic acid (AA) served as a representative of LMW organic acids in biogas slurry to investigate its impact on the inhibition of chalcopyrite biooxidation by Acidithiobacillus ferrooxidans (A. ferrooxidans). It was shown that AA could slow down the chalcopyrite biooxidation and inhibit the jarosite formation on the mineral surface. Compared with the control group (0 ppm AA), the sulfate increment in the leachate of the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 36.4%, 66.8%, and 69.0%, respectively. AA treatment (≥50 ppm) could reduce the oxidation of ferrous ions in the leachate by one order of magnitude. At the same time, the bacterial concentration of the leachate in the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 70%, 93%, and 94%, respectively. These findings provide a scientific basis for new strategies to utilize biogas slurry for mine remediation and contribute to an enhanced comprehension of organic amendments to prevent AMD in situ in mining soil remediation.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Shi-Jie Yuan
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Fei-Fan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zu-Xin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
2
|
Liao R, Wang J, Yu S, Sun X, Liu S, Yang B, Qiu G. Insight into the effect of potassium amyl xanthate on copper pollution caused by chalcopyrite bio-dissolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123161. [PMID: 39488965 DOI: 10.1016/j.jenvman.2024.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Chalcopyrite has evolved into a crucial source of copper pollution, and xanthates inevitably coexisted with chalcopyrite in mine environments. However, the effect of xanthate on chalcopyrite bio-dissolution has not been illustrated yet. To fill this knowledge gap, the effect of potassium amyl xanthate (KAX) on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans was investigated. The results revealed that KAX promoted chalcopyrite bio-dissolution, indicating more copper ions were released into the environment under these circumstances. KAX treatment groups displayed a lag period in ferrous ion oxidation, thereby providing a more favorable redox potential for chalcopyrite bio-dissolution. Bacterial adsorption experiments indicated the number of free cells increased with the addition of KAX, hence the Fe3+ regeneration was accelerated. Elemental composition analyses indicated the addition of KAX was conducive to reducing the formation of passivation substance (Sn2-/S0). Additionally, the reduced surface tension of solution in KAX treatment groups was beneficial for the oxidant diffusing into the pores and cracks of chalcopyrite. This study provided a better comprehension of the effect of xanthate on copper pollution caused by chalcopyrite bio-dissolution, as well as a step toward better guidance in preventing copper pollution at source.
Collapse
Affiliation(s)
- Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xin Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shitong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
3
|
Xie Z, Mahmood Q, Zhang S. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34282-34294. [PMID: 38698096 DOI: 10.1007/s11356-024-33536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Waste printed circuit boards (WPCBs) can be bioleached for Cu recovery, but lack of substrate for the bioleaching culture. In this study, using pyrite as a bacterial substrate for bioleaching WPCBs and recovering Cu was explored. The results showed that the WPCBs bioleaching using pyrite as the bacterial substrate was feasible. Mechanical crushing was a suitable WPCBs pretreatment method. The optimal WPCBs and pyrite pulp densities were respectively found to be 1.25% (w/v) and 1.0% (w/v), and the suitable nitrogen source ratio ((NH4)2SO4: (NH4)2HPO4) was deemed as 2 g/L: 2 g/L, achieving a Cu2+ leaching efficiency of 95.60 ± 1.57% in 14 d. Copper in the bioleaching solution can be directly recovery via electrodeposition. The Cu recovery efficiency in 60 min was up to 92.19 ± 1.35% under the optimal condition that the initial Cu2+ concentration and pH were respectively set at 7.34 g/L and 2.75, and the current density was set at 200 A/m2. Copper was found as the dominant metal in the cathode deposits, existing in the form of Cu and Cu2O. This work provided a novel approach for bioleaching WPCBs and recovering Cu.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Fan L, Zhu T, Yang Y, Han T, Qiao Z, Huang X, Zhai W, Pan X, Zhang D. Iron colloidal transport mechanisms and sequestration of As, Ni, and Cu along AMD-induced environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165513. [PMID: 37451442 DOI: 10.1016/j.scitotenv.2023.165513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Colloids are common in mine waters and their chemistry and interactions are critical aspects of metal(loid)s cycling. Previous studies mostly focus on the colloidal transport of metal(loid)s in zones where rivers and soil profiles receive acid mine drainage (AMD). However, there is limited knowledge of the colloid and the associated toxic element behavior as the effluent flows through the coal waste dump, where a geochemical gradient is produced due to AMD reacting with waste rocks which have high acid-neutralization effects. Here, we investigated the geochemistry of Fe and co-occurring elements As, Ni, and Cu along the coal waste dump, in aqueous, colloidal, and precipitate phases, using micro/ultrafiltration combined with STEM, AFM-nanoIR, SEM-EDS, XRD, and FTIR analysis. The results demonstrated that a fast attenuation of H+, SO42-, and metal(loid)s happened as the effluent flowed through the waste-rock dump. The Fe, As, Ni, and Cu were distributed across all colloidal sizes and primarily transported in the nano-colloidal phase (3 kDa-0.1 μm). An increasing pH induced a higher percentage of large Fe colloid fractions (> 0.1 μm) associated with greater sequestration of trace metals, and the values for As from 39.5 % to 54.4 %, Ni from 40.8 % to 75.7 %, and Cu from 43.7 % to 56.0 %, respectively. The Fe-bearing colloids in AMD upstream (pH ≤ 3.0) were primarily composed of Fe-O-S and Fe-O-C with minor Al-Si-O and Ca-O-S, while in less acidic and alkaline sections (pH ≥ 4.1), they were composed of Fe-O with minor Ca-O-S. The iron colloid agglomerates associated with As, Ni, and Cu precipitated coupling the transformation of jarosite, and schwertmannite to ferrihydrite, goethite, and gypsum. These results demonstrate that the formation and transformation of Fe-bearing colloids response to this unique geochemical gradient help to understand the natural metal(loid)s attenuation along the coal waste dump.
Collapse
Affiliation(s)
- Lijun Fan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Tao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yixuan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Tiancheng Han
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhuang Qiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Xianxing Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Weiwei Zhai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China.
| |
Collapse
|
5
|
Li L, Zhou L, Jiang C, Liu Z, Meng D, Luo F, He Q, Yin H. AI-driven pan-proteome analyses reveal insights into the biohydrometallurgical properties of Acidithiobacillia. Front Microbiol 2023; 14:1243987. [PMID: 37744906 PMCID: PMC10512742 DOI: 10.3389/fmicb.2023.1243987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Microorganism-mediated biohydrometallurgy, a sustainable approach for metal recovery from ores, relies on the metabolic activity of acidophilic bacteria. Acidithiobacillia with sulfur/iron-oxidizing capacities are extensively studied and applied in biohydrometallurgy-related processes. However, only 14 distinct proteins from Acidithiobacillia have experimentally determined structures currently available. This significantly hampers in-depth investigations of Acidithiobacillia's structure-based biological mechanisms pertaining to its relevant biohydrometallurgical processes. To address this issue, we employed a state-of-the-art artificial intelligence (AI)-driven approach, with a median model confidence of 0.80, to perform high-quality full-chain structure predictions on the pan-proteome (10,458 proteins) of the type strain Acidithiobacillia. Additionally, we conducted various case studies on de novo protein structural prediction, including sulfate transporter and iron oxidase, to demonstrate how accurate structure predictions and gene co-occurrence networks can contribute to the development of mechanistic insights and hypotheses regarding sulfur and iron utilization proteins. Furthermore, for the unannotated proteins that constitute 35.8% of the Acidithiobacillia proteome, we employed the deep-learning algorithm DeepFRI to make structure-based functional predictions. As a result, we successfully obtained gene ontology (GO) terms for 93.6% of these previously unknown proteins. This study has a significant impact on improving protein structure and function predictions, as well as developing state-of-the-art techniques for high-throughput analysis of large proteomic data.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
6
|
Chen J, Liu Y, Mahadevan R. Genetic Engineering of Acidithiobacillus ferridurans Using CRISPR Systems To Mitigate Toxic Release in Biomining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12315-12324. [PMID: 37556825 DOI: 10.1021/acs.est.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Biomining processes utilize microorganisms, such as Acidithiobacillus, to extract valuable metals by producing sulfuric acid and ferric ions that dissolve sulfidic minerals. However, excessive production of these compounds can result in metal structure corrosion and groundwater contamination. Synthetic biology offers a promising solution to improve Acidithiobacillus strains for sustainable, eco-friendly, and cost-effective biomining, but genetic engineering of these slow-growing microorganisms is challenging with current inefficient and time-consuming methods. To address this, we established a CRISPR-dCas9 system for gene knockdown in A. ferridurans JAGS, successfully downregulating the transcriptional levels of two genes involved in sulfur oxidation. More importantly, we constructed an all-in-one CRISPR-Cas9 system for fast and efficient genome editing in A. ferridurans JAGS, achieving seamless gene deletion (HdrB3), promoter substitution (Prus to Ptac), and exogenous gene insertion (GFP). Additionally, we created a HdrB-Rus double-edited strain and performed biomining experiments to extract Ni from pyrrhotite tailings. The engineered strain demonstrated a similar Ni recovery rate to wild-type A. ferridurans JAGS but with significantly lower production of iron ions and sulfuric acid in leachate. These high-efficient CRISPR systems provide a powerful tool for studying gene functions and creating useful recombinants for synthetic biology-assisted biomining applications in the future.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
7
|
Wang J, Liu Y, Luo W, Wang X, Liao R, Yu S, Hong M, Zhao C, Yang B, Liu Y, Liu X, Qiu G. Inhibition of humic acid on copper pollution caused by chalcopyrite biooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158200. [PMID: 36049690 DOI: 10.1016/j.scitotenv.2022.158200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Humic acid has the advantages of wide source, easy availability and environmental friendliness, which may be a good choice for inhibiting chalcopyrite biooxidation and alleviating copper pollution. However, there are few researches on the inhibitory effect and mechanism of humic acid on the biooxidation of chalcopyrite. In order to fill this knowledge gap, this study proposed and validated a novel method for inhibiting chalcopyrite biooxidation by means of humic acid. The results showed that the biooxidation of chalcopyrite could be effectively inhibited by humic acid, which consequently decreased the release of copper ions. Humic acid with a concentration of 120 ppm had the best inhibitory effect, which reduced the biooxidation efficiency of chalcopyrite from 40.7 ± 0.5 % to 29.3 ± 0.8 %. This in turn suggested that humic acid could effectively suppress the pollution of copper under these conditions. The analysis results of solution parameters, mineral surface morphology, mineral phases and element composition showed that humic acid inhibited the growth of Acidithiobacillus ferrooxidans, promoted the formation of jarosite and intensified the passivation of chalcopyrite, which effectively hindered the biooxidation of chalcopyrite, and would help to alleviate the pollution of copper.
Collapse
Affiliation(s)
- Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Yuling Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wen Luo
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xingxing Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Maoxin Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Chunxiao Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
8
|
Zhang X, Zhang S, Huang T, Jin Z. Copper extraction from low-grade chalcopyrite in a bioleaching column assisted by bioelectrochemical system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35459-35470. [PMID: 35050470 DOI: 10.1007/s11356-021-18283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Low-grade ores, tailings, and solid wastes contain small amounts of valuable heavy metals. Improper disposal of these substances results in the waste of resources and contamination of soil or groundwater. Accordingly, the treatment and recycling of low-grade ores, tailings, and solid wastes attracted much attention recently. Bioelectrochemical system, an innovative technology for the removal and recovery of heavy metals, has been further developed and applied in recent years. In the current study, the low-grade chalcopyrite was bioleached with the assistance of microbial fuel cells. Copper extraction along with electricity generation from the low-grade chalcopyrite was achieved in the column bioleaching process assisted by MFCs. Results showed that after 197 days bioleaching of low-grade chalcopyrite, 423.9 mg copper was extracted from 200 g low-grade chalcopyrite and the average coulomb production reached 1.75 C/d. The introduction of MFCs into bioleaching processes promoted the copper extraction efficiency by 2.7 times (3.62% vs. 1.33%), mainly via promoting ferrous oxidation, reducing ORP, and stimulating bacterial growth. This work provides a feasible method for the treatment and recycling of low-grade ores, tailings, and solid wastes. But balancing energy consumption of aeration and circulation frequency and chemical consumption of acid to improve the copper extraction efficiency need further investigation.
Collapse
Affiliation(s)
- Xueming Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China.
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430000, China.
| | - Tao Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| | - Zhixin Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430000, China
| |
Collapse
|
9
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
10
|
Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H. A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. CHEMOSPHERE 2022; 288:132490. [PMID: 34624347 DOI: 10.1016/j.chemosphere.2021.132490] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is of great significance to develop novel membranes with dual-function of simultaneously separating oil/water emulsion and degrading the contained water-miscible toxic organic components. To meet this requirement, a dual-functional Ni nanoparticles (NPs)@Ag/C-carbon nanotubes (CNTs) composite membrane was fabricated via electroless nickel plating strategy in this study. The as-prepared composite membrane possessed superhydrophilicity with water contact angle of 0° and splendid underwater oleophobic property with oil contact angle of 142°. When the membrane was applied for separation of surfactant stabilized oil-in-water emulsion, high permeate flux (about 97 L m-2·h-1 under gravity), oil rejection (about 98.8%) and antifouling property were achieved. Benefitting from the NiNPs@Ag/C-CNTs layer on membrane surface, the composite membrane exhibited high catalytic degradation activity for water-miscible toxic organic pollutant (4-nitrophenol) with addition of NaBH4 in a flow-through mode. Meanwhile, the NiNPs@Ag/C-CNTs composite membrane possessed excellent durability, which was verified by the good structural integrity even under ultrasonic treatment. The cost-efficiency, high separation and degradation performance of the prepared membrane suggested its great potential for treatment of oily wastewater.
Collapse
Affiliation(s)
- Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Zand L, Vakylabad AB, Masoumi ME. Homogeneous Catalytic Dissolution of Recalcitrant Chalcopyrite (CuFeS2). Top Catal 2022. [DOI: 10.1007/s11244-022-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Zhao C, Yang B, Liao R, Hong M, Yu S, Wang J, Qiu G. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Zhang K, Li N, Liao P, Jin Y, Li Q, Gan M, Chen Y, He P, Chen F, Peng M, Zhu J. Conductive property of secondary minerals triggered Cr(VI) bioreduction by dissimilatory iron reducing bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117227. [PMID: 33992904 DOI: 10.1016/j.envpol.2021.117227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Although secondary minerals have great potential for heavy metal removal, their impact on chromium biogeochemistry in subsurface environments associated with dissimilatory iron reducing bacteria (DIRB) remains poorly characterized. Here, we have investigated the mechanisms of biogenic secondary minerals on the rate of Cr(VI) bioreduction with shewanella oneidensis MR-1. Batch results showed that the biogenic secondary minerals, schwertmannite and jarosite, appreciably increased the Cr(VI) bioreduction rate. UV-vis diffuse reflection spectra showed that schwertmannite and jarosite are semiconductive minerals, which can be activated by MR-1, followed by transferred conduction electrons toward Cr(VI). Cyclic voltammetry and Tafel analysis suggested that the resistance of secondary minerals is a dominant factor controlling Cr(VI) bioreduction. In addition, Cr(VI) adsorption on secondary minerals through ligand exchange promoted Cr(VI) bioreduction by decreasing the electron transfer distance between MR-1 and chromate. Fe(III)/Fe(II) cycling in schwertmannite and jarosite also contributed to Cr(VI) bioreduction as reflected by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. Complementary characterizations further verified the contributions of Fe(III)/Fe(II) cycling, Cr(VI) adsorption, and conduction band electron transfer to enhanced Cr(VI) bioreduction. This study provides new insights on the understanding of Cr(VI) bioreduction by semiconductor minerals containing sulfate in subsurface environments.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Na Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lingcheng West Road, Guiyang, 550081, China
| | - Yuwen Jin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qiongyao Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yaozong Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Fang Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Mingxian Peng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
14
|
Liao R, Yang B, Huang X, Hong M, Yu S, Liu S, Wang J, Qiu G. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. CHEMOSPHERE 2021; 279:130516. [PMID: 33878694 DOI: 10.1016/j.chemosphere.2021.130516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Chalcopyrite is a crucial contributor causing acid mine drainage (AMD). Silver and pyrite are commonly co-existed with chalcopyrite, and can significantly affect the copper release from chalcopyrite bio-dissolution process. However, the combined effect of them on chalcopyrite bio-dissolution has not been illustrated up to now. To fill this knowledge gap, the combined effect of silver and pyrite on chalcopyrite dissolution with Acidithiobacillus ferrooxidans was investigated in this study. The copper extraction reached the maximum value (62.3 ± 0.1%) with the presence of silver and pyrite, which was 43.8 ± 0.1% higher than the control group (without addition). This suggested more copper ions and acids were released under this circumstance. According to bio-dissolution results, SEM, XRD and XPS analyses, the promotion effect of silver and pyrite on chalcopyrite bio-dissolution was mainly attributed to the increase of ferric ions in solution and the reduction of passivation layer (Sn2-/S0) on chalcopyrite surface. The investigation into the bio-dissolution of chalcopyrite is important for controlling the generation of copper ions and acids. Silver or pyrite bearing chalcopyrite should be carefully treated to avoid the pollution of heavy metal copper and acid in the mining environment.
Collapse
Affiliation(s)
- Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xiaotao Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Maoxing Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shitong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
15
|
Su G, Deng X, Zhong H, Hu L, Li S, Praburaman L, He Z, Sun W. Ag + significantly promoted the biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite surface. CHEMOSPHERE 2021; 276:130208. [PMID: 33744647 DOI: 10.1016/j.chemosphere.2021.130208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Silver ion (Ag+) is an important catalyst to improve chalcopyrite bio-dissolution, but its effects on initial adhesion behaviors and biofilm formation of acidophiles onto metal sulfide were still unknown. In this study, initial attachment behavior and adhesion force in the presence of Ag+ (0, 1, 2, 5, 10 and 20 mg/L) were comparatively analyzed for Acidianus manzaensis YN-25. Biofilm was observed by fluorescent images in the presence of 0, 1 and 2 mg/L Ag+. X-ray photoelectron spectroscopy (XPS) corroborated the catalytic mechanisms of Ag+ to biofilm formation. Results showed that Ag+ could significantly promote the attachment of cells on chalcopyrite, and the optimum concentration of Ag+ was 2 mg/L with the biggest percentage of attached cells (74%), followed by 5 mg/L (71%), whereas that for the control (0 mg/L) was only 61%. Ag+ significantly increased the interaction force between A. manzaensis YN-25 and chalcopyrite. Compared with the control, larger coverage of biofilm (up to 40% versus 32%) and more corrosion pits were observed on chalcopyrite in the presence of 2 mg/L Ag+. Moreover, Ag+ catalyzed chalcopyrite corrosion and accelerated biofilm formation by producing a loose porous Ag2S layer and Ag0 to decrease the resistivity. The live/dead ratio was small with a range of 0.31-1.38, suggesting that dead cells were a great slice during the whole life-cycle of biofilm on chalcopyrite. This report offers a profound insight into the promotion mechanism of Ag+ on adhesion behaviors and biofilm formation by thermoacidophilic archaeon under extremely acidic conditions.
Collapse
Affiliation(s)
- Guirong Su
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaotao Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Loganathan Praburaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Yin S, Chen W, Wang Y. Effect of mixed bacteria on cemented tailings backfill: Economic potential to reduce binder consumption. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125114. [PMID: 33858094 DOI: 10.1016/j.jhazmat.2021.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Tailings used as backfilling material in the presence of mixed bacteria are discussed, and the relationship between mixed bacteria and compressive strength, size variation, water-holding capacity is analyzed in this study. The results illustrate a strong improving response of mixed bacteria with enhanced compressive strength, small size variation and low water-holding capacity of cemented tailings backfill (CTB) specimens. The binder dosage and mixed bacteria proportion have great influence on CTB specimens, which indicate that with the increase of mixed bacteria proportion and binder dosage, compressive strength increased obviously. The maximum compressive strength (4.01 MPa) is obtained in the presence of 100.00% mixed bacteria in contrast to only 2.79 MPa in its absence. Samples added high mixed bacteria proportion yield low water-holding capacity and small size variation. 16S rDNA analysis illustrates that bacteria community is influenced significantly during experiment. Further, possible reaction mechanism is proposed suggesting the possible role of mixed bacteria as promoter to form precipitation (KFe3(SO4)2(OH)6, (NH4)Fe3(SO4)2(OH)6 and (KH3O)4Fe3(SO4)2(OH)6), which reduces tiny cracks in CTB specimens. The technique of using mixed bacteria to reduce binder consumption in this study shows economic benefits to some extent.
Collapse
Affiliation(s)
- Shenghua Yin
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Chen
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yatian Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Feng S, Yin Y, Yin Z, Zhang H, Zhu D, Tong Y, Yang H. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. ENVIRONMENTAL RESEARCH 2021; 194:110702. [PMID: 33400950 DOI: 10.1016/j.envres.2020.110702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
In chalcocite (Cu2S) bioleaching, the lack of iron metabolism is a key restricting factor. As the most common sulfide mineral, pyrite (FeS2) can release Fe(Ⅱ) and compensate for the iron metabolism deficiency in chalcocite bioleaching. The bioleaching of chalcocite in an imitated industrial system was improved by enhancing the iron-sulfur metabolism simultaneously using pyrite and sulfur oxidizers based on the joint utilization of waste resources, while the bioleaching performance and community structure in the leachate were systematically investigated. Due to the active sulfur/iron metabolism, the pH reached 1.2, and Fe3+ was increased by 77.78%, while the biomass of planktonic cells was improved to 2.19 × 107 cells/mL. Fourier transform infrared reflection (FTIR) and X-ray diffraction (XRD) analysis results showed that more iron-sulfur crystals were produced due to more active iron-sulfur metabolism. Scanning electron microscopy (SEM) revealed that many derivative particles and corrosion marks appeared on the surface of the ore, implying that the mineral-microbe interaction was strengthened. Confocal laser scanning microscopy (CLSM) showed the accumulation of cells and extracellular polymeric substances (EPS) on the ore surface, indicating a stronger contact leaching mechanism. Furthermore, the community structure and canonical correspondence analysis (CCA) demonstrated that the introduction of sulfur-oxidizing bacteria and pyrite could maintain the diversity of dominant leaching microorganisms at a high level. Sulfobacillus (27.75%) and Leptospirllillum (20.26%) were the dominant sulfur-oxidizing and iron-oxidizing bacteria during the bioleaching process. With the accumulation of multiple positive effects, the copper ion leaching rate was improved by 44.8%. In general, this new type of multiple intervention strategy can provide an important guide for the bioleaching of low-grade ores.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yijun Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zongwei Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanjun Tong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, China.
| |
Collapse
|
18
|
Zhang Y, Zhao H, Meng X, Ou P, Lv X, Zhang L, Liu L, Chen F, Qiu G. Mineralogical phase transformation of Fe containing sphalerite at acidic environments in the presence of Cu 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124058. [PMID: 33265061 DOI: 10.1016/j.jhazmat.2020.124058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Dissolution of the exposed sphalerite (marmatite) in abandoned mining sites and tailings may exacerbate acid and metalliferous drainage (AMD) hazards. Cupric ions are inevitable ions in AMD systems but its action mechanism on the dissolution of sphalerite is still unclear. In this work, the possible phase transition from sphalerite to chalcopyrite is firstly discovered in acidic cupric ions solution according to the results of Raman and (synchrotron radiation-based) X-ray (micro-) diffractometer spectra, which should be an important reason that mediates the dissolution of sphalerite. Results of DFT calculations reveal the underlying mechanism that Cu2+ can selectively replace zinc in marmatite lattices and further diffuse into the matrix. Additionally, a strong correlation between the cupric ion consumption with the pH value variation is discussed and the effects of the formed new phase on the dissolution kinetics of marmatite were researched. According to this work, the action mechanism of cupric ions on sphalerite dissolution in acidic environments is furtherly clarified.
Collapse
Affiliation(s)
- Yisheng Zhang
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Xiaoyu Meng
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Xin Lv
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Luyuan Zhang
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Lixin Liu
- Jiangxi Sanhe Gold Co., Ltd., Jiangxi Province Engineering Research Center for Comprehensive Utilization of Refractory Gold Resources, China
| | - Fashang Chen
- Jiangxi Sanhe Gold Co., Ltd., Jiangxi Province Engineering Research Center for Comprehensive Utilization of Refractory Gold Resources, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|