1
|
Xu H, Zheng Y, Shen Y, Mu C, Zhang Z, He Z, Wang Y, Xue J, Zhang L. An environmentally friendly chitosan-loaded BiOCOOH/BiYO 3 photocatalyst for efficient photocatalytic degradation of tetracycline. Int J Biol Macromol 2024; 286:138371. [PMID: 39645134 DOI: 10.1016/j.ijbiomac.2024.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
In this work, the photocatalyst BiOCOOH/BiYO3/Chitosan (CS) was prepared by using CS as the carrier and adsorbent. The performance of the material was studied through the photocatalytic degradation of tetracycline (TC) in water. Theoretical calculations and experiments demonstrate that the formation of BiOCOOH/BiYO3 heterojunctions improves the separation of photogenerated carriers and the absorption of visible light by the material. The introduction of CS improves the difficulties in material recovery, demonstrating exceptional degradation ability for TC under the action of adsorption and photocatalysis. Adsorption kinetics studies indicate that the adsorption of TC by BiOCOOH/BiYO3/CS fits the pseudo-second-order model better, while the adsorption at different concentrations of TC is more suitably described by the Freundlich isotherm model. The synthesis of BiOCOOH/BiYO3/CS was confirmed by the analysis of XRD, XPS, and FTIR. UV-vis DRS showed that the synthesis of BiOCOOH/BiYO3/CS broadened the range of light absorbed by the material. The testing results of PL and transient photocurrent density indicate that BiOCOOH/BiYO3 exhibits a higher efficiency in separating photogenerated charge carriers. After 5 cycles of reuse, the degradation efficiency can still reach 90 % of the initial efficiency, indicating that CS-based photocatalytic composite catalysts have practical application potential in the field of water pollution treatment.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Liang Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Xu Z, Nie J, Mao G, Guo J, Wu C. Engineering Dual Carbon and Nitrogen Vacancies in g-C 3N 4 for Enhanced Photodegradation of Tetracycline Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23051-23059. [PMID: 39413414 DOI: 10.1021/acs.langmuir.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Ultrathin g-C3N4 nanosheets with specific nitrogen vacancies and combined carbon and nitrogen dual vacancies were created by annealing g-C3N4 under different atmospheric conditions. The nanosheets with dual vacancies showed significant improvements in the photodegradation of tetracycline hydrochloride (TC-HCl) compared with both the pristine g-C3N4 and its nitrogen-deficient version. Various techniques, such as Raman spectroscopy, electron spin resonance (ESR), X-ray photoelectron spectroscopy, wavelength-dependent studies, electrochemical methods, and photoluminescence measurements, were used to identify vacancy defects, revealing that performance enhancement was particularly notable under visible light. Density functional theory calculations indicated that dual vacancies introduced a shallow defect state above the valence band, enhancing visible light absorption and reducing electron-hole pair recombination. Conversely, nitrogen vacancies alone formed a deep defect state, which extended light absorption but potentially trapped photoelectrons, limiting their contribution to photoreactions. Radical-scavenging experiments and ESR spin-trap spectra identified the superoxide radical (·O2-) as the primary reactive oxygen species responsible for TC-HCl degradation. A comprehensive degradation pathway for TC-HCl was proposed using liquid chromatography-mass spectrometry data. This research highlights a strategic approach to boost TC-HCl photodegradation by engineering the vacancies in g-C3N4.
Collapse
Affiliation(s)
- Zhuoling Xu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Junying Nie
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China
| | - Jianzhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunzheng Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Cai M, Javed J, Wu H, Zhou Y, Liyang H, Yang C, Tsui TH, Song B, Zhang Q. Valorizing waste activated sludge incineration ash to S-doped Fe 2+@Zeolite 4A catalyst for the treatment of emerging contaminants exemplified by sulfamethoxazole. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122382. [PMID: 39232326 DOI: 10.1016/j.jenvman.2024.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
The global attention towards waste management and valorization has led to significant interest in recovering valuable components from sludge incineration ash (SIA) for the synthesis of functional environmental materials. In this study, the SIA was converted to an S-doped Fe2+-zeolite type catalyst (FZA) for the treatment of emerging contaminants (ECs), exemplified by sulfamethoxazole (SMX). Results demonstrate that FZA effectively catalyzed the activation of peracetic acid (PAA), achieving a remarkable degradation of 99.8% under optimized conditions. Mechanistic investigations reveal that the FZA/PAA system can generate ·OH, 1O2, O2·-, and Fe(Ⅳ), with ·OH playing a dominant role in ECs degradation. Additionally, the doped S facilitated electrochemical performance, Fe2+ regeneration and fixation in FZA. Practical application elucidated that the FZA/PAA system can work in complex environments to degrade various ECs without generating high-toxicity ingredients. Overall, valorizing SIA to FZA provides dual achievement in waste management and ECs removal.
Collapse
Affiliation(s)
- Mengyu Cai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Jannat Javed
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China; Scion, Te Papa, Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand.
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hongmiao Liyang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX13PJ, Oxford, UK
| | - Bing Song
- Scion, Te Papa, Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand.
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
4
|
He L, Zhou J, Sun Y, Liu D, Liu X. Efficient removal of tetracycline hydrochloride by high entropy oxides in visible photo-Fenton catalytic process. ENVIRONMENTAL TECHNOLOGY 2024; 45:4656-4669. [PMID: 37947044 DOI: 10.1080/09593330.2023.2283054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/28/2023] [Indexed: 11/12/2023]
Abstract
A novel type of oxide material, high entropy oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 (MFO) composites with spinel structure were successfully synthesized by a simple solution combustion in this paper, and it was first applied to the degradation of antibiotic organic pollutants in water by photo-Fenton. SEM and BET characterization showed that the composite was porous and had a large specific surface area. XPS results showed that Fe, Mn, Cu, Co and Ni all participated in the redox reaction of the catalytic process. The redox pairs of Mn2+/Mn3+, Cu+/Cu2+, Co2+/Co3+, Ni2+/Ni3+ can accelerate the Fe2+/Fe3+ redox cycling in MFO to activate H2O2 and produce more reactive oxygen species. The catalytic performance of MFO composite was investigated using tetracycline hydrochloride (TC-HCl) as a model pollutant. The results displayed that the degradation rate of TC-HCl by MFO was 92.9% when the initial pH was 4, the dose of H2O2 was 50 mM, and the irradiation time was 60 min. The high entropy oxide MFO composites could build up an internal electric field, which restrains electron-hole recombination, improves the transfer of photogenerated charge carriers and maximize photocatalytic property. In addition, the free radical capture experiment determined that the main active species of the degradation reaction were e-, •O2- and •OH. The synergistic effect of the five components in the high entropy oxide strengthens lattice distortion and defects, increases oxygen vacancies, and thus has enhanced catalytic effect for TC-HCl degradation. This work shows that high entropy oxides have excellent catalytic performance for tetracycline organic pollutants, and it is speculated that high entropy oxides have good application prospects in the field of advanced oxidation technology for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Lin He
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yixi Sun
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Dan Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xianjie Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Yan X, Yao Y, Xiao C, Zhang H, Xie J, Zhang S, Qi J, Zhu Z, Sun X, Li J. Shaping Phenolic Resin-Coated ZIF-67 to Millimeter-Scale Co/N Carbon Beads for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:4059. [PMID: 39274907 PMCID: PMC11397324 DOI: 10.3390/molecules29174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Xia Z, Wang L, Tan W, Yuan L, He X, Wang J, Chen L, Zeng S, Lu S, Jiao Z. Visible-Light Photocatalytic Degradation Efficiency of Tetracycline and Rhodamine B Using a Double Z-Scheme Heterojunction Catalyst of UiO-66-NH 2/BiOCl/Bi 2S 3. Inorg Chem 2024; 63:14578-14590. [PMID: 39028930 DOI: 10.1021/acs.inorgchem.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BiOCl is a promising photocatalyst, but due to its weak visible light absorption capacity and low photogenerated electron-hole pair separation rate, its practical application is limited to a certain extent. In this study, a novel double Z-scheme heterojunction UiO-66-NH2/BiOCl/Bi2S3 catalyst was constructed to broaden the visible light response range and promote high photogenerated hole-electron separation of BiOCl. Its photocatalytic performance is evaluated by dissociating tetracycline (TC) and rhodamine B (RhB) in visible light. The optimal proportion of UiO-66-NH2/BiOCl/Bi2S3 hybrids exhibits the best degradation efficiency of visible light illumination (∼93% in 120 min for TC and ∼98% in 60 min for RhB). The synergistic effect of a large visible light response range and the Z-scheme charge transfer mechanism ensure the excellent visible photocatalytic activity of UiO-66-NH2/BiOCl/Bi2S3. It is proven that h+ and •O2- are the main active substances in the photocatalysis process by active substance capture experiments and electron spin resonance tests. The intermediates and degradation processes are analyzed by high-performance liquid chromatography-mass spectrometry. This study proves that the new UiO-66-NH2/BiOCl/Bi2S3 photocatalyst has great application potential in the field of water pollution degradation and will provide a new idea for the optimization of BiOCl.
Collapse
Affiliation(s)
- Zijie Xia
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenqi Tan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Linying Yuan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Xinhua He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Juan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shigang Lu
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, P. R. China
| |
Collapse
|
7
|
Song Y, Sun X, Nghiem LD, Duan J, Liu W, Liu Y, Cai Z. Insight into Fe-O-Bi electron migration channel in MIL-53(Fe)/Bi 4O 5I 2 Z-scheme heterojunction for efficient photocatalytic decontamination. J Colloid Interface Sci 2024; 667:321-337. [PMID: 38640652 DOI: 10.1016/j.jcis.2024.04.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Building a heterojunction is a fascinating option to guarantee sufficient carrier separation and transfer efficiency, but the mechanism of charge migration at the heterojunction interface has not been thoroughly studied. Herein, MIL-53(Fe)/Bi4O5I2 photocatalyst with a Z-scheme heterojunction structure is constructed, which achieves efficient photocatalytic decontamination under solar light. Driven by the newly-built internal electric field (IEF), the formation of Fe-O-Bi electron migration channel allows for rapid separation and transfer of charge carriers at the heterojunction interface, confirmed by the material characterization and density functional theory (DFT) calculation. The narrower band gap and improved visible light response also contribute to the enhanced photocatalytic activity of composite materials. With levofloxacin as the target pollutant, the optimal MIL-53(Fe)/Bi4O5I2 achieves complete removal of pollutant within 150 min, the photocatalysis rate of which is ca. 4.4 and 26.0 times that of pure Bi4O5I2 and MIL-53(Fe), respectively. Simultaneously, the optimal composite material exhibits satisfactory photodegradation of seven fluoroquinolones, and the photocatalysis rates are as follows: lomefloxacin > ciprofloxacin > enrofloxacin > norfloxacin > pefloxacin > levofloxacin > marbofloxacin. DFT calculations reveal a positive relationship between degradation rate and Fukui index (ƒ0) of main carbon atoms in seven fluoroquinolones. This study sheds light on the existence of electron migration channels at Z-scheme heterojunction interface to ensure sufficient photoinduced carrier transfer, and reveals the influence of pollutant structure on photolysis rate.
Collapse
Affiliation(s)
- Yanyu Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Xianbo Sun
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jun Duan
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhengqing Cai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200237, China.
| |
Collapse
|
8
|
Wu J, Liu L, Du W, Lu Y, Li R, Wang C, Xu D, Ku W, Li S, Hou W, Yu D, Zhao W. Modulating cell stiffness for improved vascularization: leveraging the MIL-53(fe) for improved interaction of titanium implant and endothelial cell. J Nanobiotechnology 2024; 22:422. [PMID: 39014416 PMCID: PMC11253409 DOI: 10.1186/s12951-024-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.
Collapse
Affiliation(s)
- Jie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Leyi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Weidong Du
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Yunyang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Chao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Duoling Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Weili Ku
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| |
Collapse
|
9
|
Chen X, Yao L, Xu S, He J, Li N, Li J, Liu B, Zhu Y, Chen X, Wang H, Zhu R. Electron transfer mediated photo-Fenton-like synergistic catalysis of Fe,Cu-doped MIL-101 coupled with Ag 3PO 4: Quantitative evaluation and DFT calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124083. [PMID: 38697244 DOI: 10.1016/j.envpol.2024.124083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.
Collapse
Affiliation(s)
- Xiaojuan Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Liang Yao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China; Xinjiang Institute of Technology, Xinjiang, 735400, China
| | - Song Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Juhua He
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Ning Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Jiaxin Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Bin Liu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Ge S, Cai Y, Deng L, Jin M, Qu X, Liu H, Wang H, Wang B. Constructing Heptazine-COF@TiO 2 Heterojunction Photocatalysts for Efficient Photodegradation of Acetaminophen under Visible Light. Chempluschem 2024; 89:e202400139. [PMID: 38470161 DOI: 10.1002/cplu.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/22/2024] [Indexed: 03/13/2024]
Abstract
Constructing heterojunction photocatalysts are widely applied to boost the photocatalytic activity of materials. Here, a novel covalent organic framework (COF) material with heptazine units was developed and hybridized with TiO2 nano particles (NPs) to fabricate the Heptazine-COF@TiO2 photocatalysts for acetaminophen (AAP) photodegradation. The successfully assembled heptazine unit endows the Heptazine-COF with outstanding semiconductor property (optical bandgap is 2.53 eV). The synthesized Heptazine-COF@TiO2 hybrids is proved to have the heterojunction structure with high visible light activity and fast charge-carrier mobility, and exhibits better performance in photodegradation of AAP under visible light. The excellent photodegradation efficiency (rate constant: 0.758 min-1) and high reusability (rate constant: 0.452 min-1 in the 6th cycles) of the optimized sample outperform the traditional inorganic photocatalysts and other heterojunction photocatalysts. In addition, these photocatalysts present universal degradation activity for other dyes and antibiotics.
Collapse
Affiliation(s)
- Shijie Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Yixiao Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Mengtian Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Biao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
| |
Collapse
|
11
|
Li M, Dong W, Tong Y, Gao P, Pan J, Wang J, Kong W, Gao P, Liu X. Ozone degradation of tetracycline hydrochloride enhanced by magnetic nanofluid composed of Fe 3O 4 nanoparticles. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38584437 DOI: 10.1080/09593330.2024.2334771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Magnetic Fe3O4 nanoparticles were added into the aqueous phase to form nanofluid systems, in which ozone was used for the oxidation of tetracycline hydrochloride (TC) in the solution. The nanomaterials were characterized using SEM, XRD, EDS, and FT-IR. The effects of nanoparticles size, addition ratio, and number of cycles on the process of ozone oxidation of TC were investigated. The results indicated that the addition ratio of nanoparticles have a certain impact on the performance of ozone oxidation. When the addition ratio increased from 0.02% to 0.4%, the removal rate of TC in the solution was improved significantly. Besides, the particle size of nanoparticles showed a greater impact on ozone oxidation. At the nanoscale, Fe3O4 nanoparticles exhibited significant strengthening properties, which is attributed to the construction of nanofluid systems. The removal rate of TC in solution decreased obviously with the increase of nanoparticles size. The Fe3O4 nanoparticles with particle size of 20 nm showed the most significant effect on TC degradation. The recycling experiment showed that magnetic Fe3O4 nanoparticles had stable regeneration performance. For three times of recycling treatment, with a Fe3O4 addition ratio of 0.4%, the removal rate of TC reached 98.7%, 97.21%, and 96%, respectively. Based on the characterization results, the strengthening mechanism was analyzed. The experimental results indicated that construction of nanofluids systems could improve the utilization rate of ozone, and Fe3O4 nanoparticles were reusable and easily recyclable.
Collapse
Affiliation(s)
- Mengzhao Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Wei Dong
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Yu Tong
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Penghao Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Jinkai Pan
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Junjie Wang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Wenle Kong
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Peiling Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
| | - Xinpeng Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAPc), Shanghai, People's Republic of China
| |
Collapse
|
12
|
Swathi AC, Sandhiya ST, B S, Chandran M. Precursor dependent - Visible light-driven g-C 3N 4 coated polyurethane foam for photocatalytic applications. CHEMOSPHERE 2024; 350:141013. [PMID: 38145847 DOI: 10.1016/j.chemosphere.2023.141013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Photocatalysis has emerged as a highly effective method for eliminating organic pollutants from wastewater. The immobilization of photocatalysts on a suitable solid surface is highly desired to achieve enhanced photocatalytic activity. In this work, graphitic carbon nitride (g-C3N4) is synthesized with three different precursors (melamine, thiourea, and urea) via a simple thermal exfoliation method and successfully immobilized on a polyurethane (PU) foam using the facile dip coating method. The photocatalytic activity of g-C3N4 bulk and g-C3N4 nanosheets-coated PU foams are compared using methyl orange dye and tetracycline hydrochloride as a test pollutant under visible light irradiation. Our results show that the type of precursors and surface area of the sample have a significant role in photocatalytic dye degradation. The urea-based g-C3N4 - PU foam shows better photocatalytic activity than the melamine or thiourea based g-C3N4 - PU foam. The scavenger test unveils that superoxide radical (O2●-) and holes (h+) are the main reactive oxidative species responsible for MO dye and TcH degradations. The cycling experiments are also carried out to confirm the reusability of the g-C3N4 floating catalyst for practical applications. Furthermore, a possible reaction mechanism has also been proposed.
Collapse
Affiliation(s)
- A C Swathi
- Department of Physics, National Institute of Technology Calicut, Kerala, 673601, India
| | - S T Sandhiya
- Department of Physics, National Institute of Technology Calicut, Kerala, 673601, India
| | - Sreelakshmi B
- Department of Physics, National Institute of Technology Calicut, Kerala, 673601, India
| | - Maneesh Chandran
- Department of Physics, National Institute of Technology Calicut, Kerala, 673601, India.
| |
Collapse
|
13
|
Jiang F, Wei C, Yu Z, Ji L, Liu M, Cao Q, Wu L, Li F. Fabrication of Iron-Containing Biochar by One-Step Ball Milling for Cr(VI) and Tetracycline Removal from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18958-18970. [PMID: 38095154 DOI: 10.1021/acs.langmuir.3c02885] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Simple ball milling technology can simultaneously improve the adsorption performance of adsorbents for heavy metals and organic pollutants and has attracted increasing attention. Iron-modified biochar (Fe@MBC) was prepared by one-step ball milling, and the characterization results proved that FeCl3 was successfully loaded on biochar. The removal rates of Cr(VI) and tetracycline hydrochloride (TC) by Fe@MBC were increased by 88.27% and 82.64% compared with BC. The average pore size, oxygen-containing functional groups and graphitization degree of Fe@MBC are higher than those of BC, which is more conducive to promoting adsorption. The adsorption isotherms show that the adsorption of Cr(VI) and TC on the Fe@MBC surface conforms to the Langmuir type of single-layer adsorption and the Freundlich model of multilayer adsorption, respectively. The maximum adsorption capacities of Cr(VI) and TC are 25.46 and 66.91 mg·g-1, respectively. Kinetic experiments show that the adsorption process is more consistent with the pseudo-second-order model of chemical adsorption. The adsorption process of Cr(VI) and TC on the Fe@MBC surface is a spontaneous endothermic process that becomes more obvious as the temperature increases. The increase in solution pH has a significant impact on the removal rate of Fe@MBC. When the pH value increased from 3 to 11, the adsorption rates decreased by 53.74% and 17.16%, respectively. The presence of PO43-, CO32-, K+, and Cu2+ significantly affects the adsorption of TC by Fe@MBC, and PO43- and CO32- also affect the adsorption of Cr(VI). Mechanistic studies show that ion exchange, electrostatic interaction, pore filling, and hydrogen bonding contribute to the removal of Cr(VI) and TC by Fe@MBC. The removal mechanism of Cr(VI) also involves complexation and redox reactions, and the removal mechanism of TC involves π-π bonds and van der Waals forces. The results show that Fe@MBC is a green and efficient adsorbent.
Collapse
Affiliation(s)
- Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chengcheng Wei
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhongpu Yu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Licheng Ji
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Min Liu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Qi Cao
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Lei Wu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Soil Remediation and Solid Waste Recycling, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
14
|
Zhou Z, Cheng H, Komarneni S, Ma J. MIL-101(Fe)/WS 2 composites activated Na 2S 2O 8 with visible light for removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122393-122404. [PMID: 37968488 DOI: 10.1007/s11356-023-30914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
MIL-101(Fe)/WS2 catalyst was composited using a solvothermal method. To study the physical and chemical properties of the composite material, a series of characterizations such as scanning electron microscope (SEM), X-ray diffraction (XRD), and catalytic experiments were carried out. The photocatalysis of the prepared catalyst in the degradation of tetracycline was investigated using persulfate (PS, Na2S2O8) as a cocatalyst under visible light illumination. The above system can remove about 80% of tetracycline within 40 min. After three cyclic experiments, the material showed good recycling. According to material characterization and various experimental results, the enhanced performance of the material was attributed to the reduction of the recombination efficiency of photogenerated e- and h+, and activated persulfate to produce a large number of free radicals such as O2•-, SO4•- and 1O2 produced by the active sites provided by the catalyst's high specific surface area.
Collapse
Affiliation(s)
- Zhongwei Zhou
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| |
Collapse
|
15
|
Zhao L, Cheng X, Wang Z, Zhang E, Liu Z, Zhou H, He L, Guan Q. Generating high-valent iron-oxo ≡Fe IV=O complexes by calcium sulfite activation in neutral microenvironments for enhanced degradation of CIP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122449. [PMID: 37633439 DOI: 10.1016/j.envpol.2023.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Although alkaline sulfite activation of ferrate (Fe(VI)) has advantages of fast response and high activity for degradation of organic contaminants, the specific production pathways of active species and the pH conditions still hinder its widespread application. Based on this, our study constructed a novel advanced oxidation process of calcium sulfite (CaSO3) could activated Fe(VI) continuously by Ca2+ buffering and investigated the mechanism under different pH values and CaSO3 dosages with ciprofloxacin as a target organic pollutant. The results showed that Ca2+ stabilized the process at a neutral/weakly alkaline microenvironment of pH 7-8, which could alleviate the hydrolysis of ≡FeIV=O by protons and iron hydroxyl groups. Besides, the removal of pollutants occurred efficiently when sulfate (SO32-) was excessive and had a 3:1 ratio of SO32- to Fe(VI), achieving more than 99% removal of electron-rich phenolic organic pollutants within 2 min. By adding different radical scavengers and combining electrochemical analysis methods and electron paramagnetic resonance spectroscopy techniques to revealed that the main active species in Fe(VI)/CaSO3 process were ≡FeIV=O/≡FeV=O. Furthermore, the reactivity of various sulfate species (such as SO32-, SO3•-, SO4•-, SO5•-) with Fe(VI) was calculated using density functional theory (DFT), and it was found that Fe(VI)-SO32- reaction has a much lower energy barrier (-36.08 kcal/mol), indicating that SO32- can readily activate Fe(VI) and generate ≡FeIV=O to attack the atoms with high Fukui index (f -) in organic pollutants. The above results confirm the feasibility of Fe(VI)/CaSO3 process. Thus, this study can theoretically and practically prove that the main active species is ≡FeIV=O, rather than SO4•- or •OH in Fe(VI)/CaSO3 process.
Collapse
Affiliation(s)
- Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Xinyue Cheng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Zhaoxian Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Enzhe Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China.
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China; School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
16
|
Tu Y, Sun S, Ding H, Wang X, Wu Z. Self-polarized schorl optimizing TiO 2 for photocatalytic persulfate activation and organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132120. [PMID: 37487333 DOI: 10.1016/j.jhazmat.2023.132120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Photocatalytic activation of persulfate has exhibited tremendous potential in water purification because of its green and environmentally friendly process. However, this process often exhibits low activation efficiencies and difficult recovery of the photocatalyst. Herein, schorl-supported nano-TiO2 composite photocatalysts (S/TiO2) were prepared by a mechanical grinding method for efficient activation of potassium monopersulfate (PMS). The anatase TiO2 nanoparticles with particle size of approximately 30 nm was uniformly loaded on the surface of schorl via forming Si-O-Ti bonds. The S/TiO2 assisted with PMS (S/TiO2-PMS) exhibited remarkable degradation performance and stability. In this system (S/TiO2-PMS), the C/C0 value of phenol solution (10 ppm) were decreased to 0.070 and 0 after 30 min and 90 min of irradiation, where the degradation extent were 93.0% and 100% respectively. The rate of phenol degradation with S/TiO2-PMS was 12.6 times that seen with TiO2-PMS. The oxidation active species were holes and SO4•- in S/TiO2-PMS system subjected to simulated sunlight. It was demonstrated that the polarization electric field of the schorl enhanced the separation efficiency of the photoinduced electrons and holes for improving the performance of the S/TiO2-PMS. On the other hand, the transformations of Fe3+ and Fe2+ on the schorl surface further promotes the activation of PMS. This work provides a new choice for designing TiO2-based photocatalytic persulfate activation system targeting the field of advanced oxidation water treatment.
Collapse
Affiliation(s)
- Yu Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Sijia Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, school of Water Resources and Environment, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Xuan Wang
- School of Energy Resources, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Zewei Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| |
Collapse
|
17
|
Ma J, Jin X, Yang M, Zhao X, Ding S, Wang B, Li X. Fabrication of 2D/1D Bi 2WO 6/halloysite nanotubes photocatalyst towards water purification: a support effect on in situconstruction and electron-hole separation. NANOTECHNOLOGY 2023; 34:475701. [PMID: 37591213 DOI: 10.1088/1361-6528/acf139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
In this research work, a reusable and efficient 2D/1D heterogeneous structured photocatalyst based on amine-functionalized halloysite nanotubes (MHNTs) and Bi2WO6nanosheet (BWO) was prepared using a facile hydrothermal method for decomposing PPCPs under simulated sunlight. On the degradation of tetracycline hydrochloride (TCH), the effects of composite catalysts prepared under various conditions were discussed. The results showed that over BWO/MHNTs with a mass ratio was 3:1, the synthesizing temperature was 120 °C and the precursor pH value was 1, the TCH (10 mg l-1) degradation efficiency reached 100% after 1 h irradiation of simulated sunlight. Moreover, BWO/MHNTs composites kept good recovery and stable photocatalytic activity after 5 cycles. The excellent dispersion of Bi2WO6on the surface of clay minerals and the oxygen vacancy enhanced electron-hole separation may be responsible for the its high activity and stability. Futhermore, the radical capture test demonstrated that ·O-2was primarily responsible for the photodegradation of TCH. Thus, BWO/MHNTs composites exhibit a good application prospect in the field of sunlight-driven photocatalytic degradation towards PPCPs pollutants in water.
Collapse
Affiliation(s)
- Jiayu Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xu Jin
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Mengjuan Yang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Ximeng Zhao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Shanshan Ding
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Bin Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xiuyan Li
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
18
|
Geng FL, Chi HY, Zhao HC, Wan JQ, Sun J. Stability performance analysis of Fe based MOFs for peroxydisulfates activation to effectively degrade ciprofloxacin. Front Bioeng Biotechnol 2023; 11:1205911. [PMID: 37576985 PMCID: PMC10421748 DOI: 10.3389/fbioe.2023.1205911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.
Collapse
Affiliation(s)
- Fang-Lan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Hua-Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jian Sun
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Zheng H, Ji Y, Li S, Li W, Ma J, Niu J. Ecotoxicity and resistance genes induction changing of antibiotic tetracycline degradation products dominated by differential free radicals. ENVIRONMENTAL RESEARCH 2023; 227:115427. [PMID: 36796613 DOI: 10.1016/j.envres.2023.115427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 05/08/2023]
Abstract
Studying the ecological risks of antibiotics and their degradation products is of great importance to water environment security and advanced oxidation processes (AOPs) development. This work studied the changes and internal influencing mechanisms of ecotoxicity and the capacity for inducing antibiotic resistance genes (ARGs) shown by the tetracycline (TC) degradation products generated in AOPs with differential free radicals. Under the action of superoxide radicals and singlet oxygen in the ozone system, and sulfate and hydroxyl radicals in the thermally activated potassium persulfate system, TC exhibited differential degradation pathways and resulted in the differential growth inhibition trends on the determined strains. Microcosm experiments combined with metagenomics were also performed to analyze the remarkable changes in the TC resistance genes tetA (60), tetT, and otr(B) induced by the degradation products and ARG hosts in the natural water environment. Microcosm experiments exhibited that the microbial community in actual water have changed significantly with the addition of TC and degradation intermediates. Furthermore, the richness of genes related to oxidative stress was investigated to discuss the effect on reactive oxygen species production and SOS response caused by TC and its intermediates.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yitong Ji
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
20
|
Zhang T, Wu S, Li N, Chen G, Hou L. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130971. [PMID: 36805443 DOI: 10.1016/j.jhazmat.2023.130971] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vacancy defects in heterogeneous catalysts have received extensive attention for persulfate (PS) activation. Vacancy defects can tune the electronic structure of metal oxides and generate unsaturated coordination sites. Meanwhile, the adsorption energy of reactants on catalyst surface is optimized. Thereby, the reaction energy barrier between catalysts and PS decreases, which could promote catalytic activation and accelerate pollutants degradation. Nowadays, oxygen vacancy (OV), nitrogen vacancy (NV), sulfur vacancy (SV), selenium vacancy (SeV) and titanium vacancy (TiV) have been widely studied with great potential for water remediation. So far, no review was reported regarding the vacancy activated persulfate systems. This paper summarized the types, preparation, mechanism and applications of vacancy in PS systems systematically. In addition, we put forward possible development of vacancy engineering in PS activation systems. It is expected that this review will contribute to the controllable synthesis and applications of vacancies in catalysts for PS activation and contaminants removal.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; 96911 Unit, Beijing 100011, China.
| |
Collapse
|
21
|
Gao F, Fan D, Xiao M, Liu H, Liu Y, Zhang J, Fang M, Tan X, Kong M. Insights into the highly efficient SPR enhanced photodegradation of tetracycline by Bi/Bi 2MoO 6 composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66696-66704. [PMID: 37099094 DOI: 10.1007/s11356-023-27091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
A Bi/Bi2MoO6 nanocomposite is fabricated utilizing a simple one-pot solvothermal method, which shows great photodegradation ability to tetracycline (TC). The effect of Bi0 nanoparticles on the photodegradation of TC was investigated, and it is ascribed to the surface plasmonic resonance (SPR) effect. The light energy could be strongly absorbed by the Bi0 nanoparticles, and then transferred to the adjacent Bi2MoO6, to enhance the photocatalytic performance. The results of the sacrifice experiment and quantitative analysis of active radicals showed that the photoelectrons could react with soluble O2 and ·OH to form ·O2-, which finally dominates in the process of photocatalytic degradation of TC. This work proposed a way to construct a highly efficient photocatalyst based on SPR effect, which has great application potential in environmental treatment.
Collapse
Affiliation(s)
- Feixue Gao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Dezhe Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Muliang Xiao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Hangxi Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Yuxin Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Jing Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Mingguang Kong
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
22
|
Zeng Q, Wang Y, Zhang Q, Hu J, Wen Y, Wang J, Wang R, Zhao S. Activity and mechanism of vanadium sulfide for organic contaminants oxidation with peroxymonosulfate. J Colloid Interface Sci 2023; 635:358-369. [PMID: 36599235 DOI: 10.1016/j.jcis.2022.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Transition metal sulfides have been demonstrated to be effective for peroxymonosulfate (PMS) activation towards wastewater treatment. However, the activity of vanadium sulfide (VS4) and the role of the chemical state of V have not been revealed. Here, three types of VS4 with various morphologies and chemical states of V were synthesized by using methanol (M-VS4, nanosphere composed of nanosheets), ethanol (E-VS4, sea urchin like nanosphere) and ultrapure water (U-VS4, compact nanosphere) as hydrothermal solvent, respectively, and used as heterogeneous catalysts to activate PMS for the degradation of refractory organic pollutants. The effects of PMS concentration, temperature, pH, inorganic ions, and humic acid (HA) on the degradation efficiency of VS4/PMS system were investigated systematically. The results indicated that the highest specific surface area and lowest ratio of V5+ enable E-VS4/PMS system possessed the highest performance in degrading tetracycline hydrochloride (TCH), in which 100% TCH was removed after operating 10 min (0.805 min-1) under a relatively low concentration of PMS (1 mM) and catalyst (100 mg/L). It also revealed that the system exhibited a typical radical process in TCH degradation, which could be attributed to the redox cycles between V5+, V4+ and V3+ in the presence of PMS to generate various radicals. This radical process enabled the E-VS4/PMS system with a high activity in wide reaction conditions and high mineralization ratios in degrading various refractory organic pollutants within 10 min. In addition, the E-VS4/PMS system exhibited favorable reusability and stability with very less V and S ions leaching, and showed excellent performance in real water purification.
Collapse
Affiliation(s)
- Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Yumei Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jiayu Hu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Shuaifei Zhao
- Deakin University, Geelong, Institute for Frontier Materials (IFM), VIC 3216, Australia
| |
Collapse
|
23
|
Liu Z, Ren X, Duan X, Sarmah AK, Zhao X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160818. [PMID: 36502984 DOI: 10.1016/j.scitotenv.2022.160818] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Over the past few years, persistent organic pollutants (POPs) exhibiting high ecotoxicity have been widely detected in the environment. Persulfate-oxidation hybrid system is one of the most widely used novel advanced oxidation techniques and is based on the persulfate generation of SO4-∙ and ∙OH from persulfate to degrade POPs. The overarching aim of this work is to provide a critical review of the variety of methods of peroxide activation (e.g., light activated persulfate, heat-activated persulfate, ultrasound-activated persulfate, electrochemically-activated persulfate, base-activated persulfate, transition metal activated persulfate, as well as Carbon based material activated persulfate). Specifically, through this article we make an attempt to provide the important characteristics and uses of main activated PS methods, as well as the prevailing mechanisms of activated PS to degrade organic pollutants in water. Finally, the advantages and disadvantages of each activation method are analyzed. This work clearly illustrates the benefits of different persulfate activation technologies, and explores persulfate activation in terms of Sustainable Development Goals, technical feasibility, toxicity assessment, and economics to facilitate the large-scale application of persulfate technologies. It also discusses how to choose the most suitable activation method to degrade different types of POPs, filling the research gap in this area and providing better guidance for future research and engineering applications of persulfates.
Collapse
Affiliation(s)
- Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Xin Ren
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Xiaoyue Duan
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Ajit K Sarmah
- The Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xuesong Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China.
| |
Collapse
|
24
|
Zou H, Liu Y, Ni L, Luo S, Moskovskikh D, Oleszczuk P, Czech B, Lu J, Li T, Wang H. Enhanced Degradation of Tetracycline via Visible-light-assisted Peroxymonosulfate Activation Over Oxygen vacancy Rich Fe2O3-CoFe2O4 Heterostructures. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
25
|
Zhang Y, Zhang S. The potential application of an efficient MOF-derived visible light-responsive photocatalyst based on Au/C/ZnO for tetracycline antibiotic photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33587-33597. [PMID: 36481858 DOI: 10.1007/s11356-022-24474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A series of porous photocatalysts, Au-carbon-doped ZnO (Au/C/ZnO), were synthesized successfully via calcination using MOF-5 as template, with the matrix impregnated with Au nanorods through the seed-mediated method. The catalytic performance was investigated by the photodegradation of tetracycline hydrochloride (TC-HCl). Ninety percent of TC was degraded by Au/C/ZnO sample within 360 min under visible light, showing an efficient photocatalytic activity. The enhanced activity was mainly ascribed to the effect of oxygen vacancies produced by C doping during calcination process of MOF-5 and Au nanorods. The density functional theory (DFT) calculation shows that due to the intermediate energy level, the electron-hole pairs generated by photoelectricity transition were transitioned from valence band (VB) to the intermediate energy level, and further to the conduction band (CB) under irradiation. Thus, the separation efficiency of photogenerated carrier was improved in this process. Meanwhile, the surface plasmon resonance (SPR) and electromagnetic field effect of Au nanorods which were loaded on the C/ZnO promoted the separation efficiency of change carriers, and this process also provided more hot electrons for free radicals generation. This work provides an efficient method for the design and synthesis of noble metal- and non-metal-doped oxide photocatalysts and provides an effective photocatalytic technique for the antibiotic degradation under visible light, which possesses the huge application potential in the environmental purification.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China
- School of Medicine, Xiangyang Polytechnic, Xiangyang, 441050, China
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Shici Zhang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
26
|
Pazhand H, Sabbagh Alvani AA, Sameie H, Salimi R, Poelman D. The Exact Morphology of Metal Organic Framework MIL‐53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hooman Pazhand
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
- Standard Research Institute Alborz 3174734563 Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Reza Salimi
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Dirk Poelman
- Department of Solid State Sciences Lumilab Ghent University Krijgslaan 281-S1 9000 Ghent Belgium
| |
Collapse
|
27
|
Zhu L, Chen Y, Liu X, Si Y, Tang Y, Wang X. MoS 2-modified MIL-53(Fe) for synergistic adsorption-photocatalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23086-23095. [PMID: 36316553 DOI: 10.1007/s11356-022-23859-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this paper, MoS2@MIL-53(Fe) (noted as MSMF) metal-organic backbone adsorption photocatalysts were successfully prepared by a solvothermal method. For the degradation performance of MSMF catalysts on tetracycline pollutants, the effects of MoS2 doping ratio, reaction mode, and contaminant concentration on the degradation performance were investigated. And the materials were characterized by XRD, XPS, SEM, BET, PL, and ESR to investigate the reaction mechanism. The results showed that the optimal synthesis mass ratio of MoS2:MIL-53 (Fe) prepared by holding at 150 °C for 10 h was 0.20:1 (20%MSMF). In the adsorption-photocatalytic synergy experiment, 87.62% of tetracycline (30 mg/L) could be removed with 0.20 g/L of 20%MSMF after 40 min of UV irradiation, while the removal of tetracycline by MoS2 and MIL-53 (Fe) was only 35.99% and 65.40%. The characterization showed that the specific surface area and total pore volume of 20%MSMF were 1.12 and 3.12 times higher than those of MIL-53 (Fe), respectively. And the separation and transfer efficiency of electron-hole pairs were improved for 20%MSMF compared to the constituent components. These results suggest that the doping of MoS2 enhances the adsorption and photocatalytic ability of MIL-53 (Fe) that can be used for the efficient treatment of tetracycline.
Collapse
Affiliation(s)
- Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Yu Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Yanyao Si
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
28
|
Ma X, Yuan H, Qiao Q, Zhang S, Tao H. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Chen K, Huang Y, Huang M, Zhu Y, Tang M, Bi R, Zhu M. Crystal facet and Na-doping dual engineering ultrathin BiOCl nanosheets with efficient oxygen activation for enhanced photocatalytic performance. RSC Adv 2023; 13:4729-4745. [PMID: 36760302 PMCID: PMC9900602 DOI: 10.1039/d2ra08003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Photocatalytic oxidation (PCO) based on semiconductors offers a sustainable and promising way for environmental remediation. However, the photocatalytic performance currently suffers from weak light-harvesting ability, rapid charge combination and a lack of accessible reactive sites. Ultrathin two-dimensional (2D) materials are ideal candidates to overcome these problems and become hotpots in the research fields. Herein, we demonstrate an ultrathin (<4 nm thick) Na-doped BiOCl nanosheets with {001} facets (Na-BOC-001) fabricated via a facile bottom-up approach. Because of the synergistic effect of highly exposed active facets and optimal Na doping on the electronic and crystal structure, the Na-BOC-001 showed an upshifted conduction band (CB) with stronger reduction potential for O2 activation, more defective surface for enhanced O2 adsorption, as well as the highest visible-light driven charge separation and transfer ability. Compared with the bulk counterparts (BOC-010 and BOC-001), the largest amount of active species and the best photocatalytic performance for the tetracycline hydrochloride (TC) degradation were achieved for the Na-BOC-001 under visible-light irradiation, even though it had slightly weaker visible-light absorption ability. Moreover, the effect of the Na doping and crystal facet on the possible pathways for TC degradation was investigated. This work offers a feasible and economic strategy for the construction of highly efficient ultrathin 2D materials.
Collapse
Affiliation(s)
- Kunyu Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Yiwei Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Meina Huang
- College of Materials and New Energy, South China Normal UniversityShanwei 516625P. R. China
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China .,College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter EX4 4QF UK
| | - Ming Tang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Renjie Bi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Meiping Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China .,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University Nanning 530004 P. R. China
| |
Collapse
|
30
|
Tripathy SP, Subudhi S, Ray A, Behera P, Panda J, Dash S, Parida K. Hydrolytically stable mixed ditopic linker based zirconium metal organic framework as a robust photocatalyst towards Tetracycline Hydrochloride degradation and hydrogen evolution. J Colloid Interface Sci 2023; 629:705-718. [PMID: 36183649 DOI: 10.1016/j.jcis.2022.09.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
In the existing eco-crisis, designing and engineering an efficient as well as water stable photocatalyst for energy conversion and pollutant abatement remains crucial. In this regard, a mixed linker type zirconium metal organic framework (Zr-MOF) with terepthalic acid based ditopic linkers were utilized to design a single component photocatalyst through single step solvothermal method to utilize photons from visible light illumination towards hydrogen energy (H2) production and Tetracycline Hydrochloride (TCH) degradation. The one pot synthesized mixed linker based Zr-MOF displays visible light absorption through band gap tuning, superior exciton segregation and oxygen vacancy that cumulatively supports the enhancement in the photocatalytic output with respect to their pristine counterparts. Additionally, the X-ray photoelectron spectroscopy, optical and electrochemical studies strongly reinforces the above claims. The prepared mixed linker Zr-MOF showed superior photocatalytic H2 evolution performance of 247.88 µmol h-1 (apparent conversion efficiency; ACE = 1.9%) that is twice than its pristine Zr-MOFs. Moreover, in TCH degradation, the mixed linker MOF displays an enhanced efficacy of 91.8 % and adopts pseudo-first order type kinetics with a rate constant value of 0.032. Typically, the active species participating for the TCH photo-degradation follows the order of hydroxyl (OH.) < superoxide (O2.-) radicals. Consequently, the mixed linker Zr-MOF could be effectively used as a robust photocatalyst exhibiting boosted TCH degradation and H2 production.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| |
Collapse
|
31
|
Shi Y, Shen M, Wang Z, Liu C, Bi J, Wu L. Visible-light-driven benzyl alcohol oxidation over Pt/Mn-Bi4Ti3O12 nanosheets: Structure-function relationship of multicomponent photocatalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Rodríguez Mejía Y, Romero Romero F, Basavanag Unnamatla MV, Ballesteros Rivas MF, Varela Guerrero V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Collapse
Affiliation(s)
- Yetzin Rodríguez Mejía
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
| | - Fernando Romero Romero
- Universidad Autónoma del Estado de México, Facultad de Química , Carretera Toluca-Ixtlahuaca Km. 15, Unidad el Cerrillo , Toluca , Estado de México , 50200 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Murali Venkata Basavanag Unnamatla
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Maria Fernanda Ballesteros Rivas
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Victor Varela Guerrero
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| |
Collapse
|
33
|
Geçgel C, Görmez Ö, Gözmen B, Turabik M, Kalderis D. A dual purpose aluminum-based metal organic framework for the removal of chloramphenicol from wastewater. CHEMOSPHERE 2022; 308:136411. [PMID: 36115473 DOI: 10.1016/j.chemosphere.2022.136411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics in the aquatic environment can cause significant environmental and human health problems even at trace concentrations. Conventional treatment systems alone are ineffective in removing these resistant antibiotics. To address this problem, oxidation and adsorption techniques were used to explore the removal of recalcitrant antibiotic chloramphenicol (CAP). An aluminum-based metal-organic framework (Al-MIL) with high surface area and extended porosity, was prepared and used both as adsorbent and catalyst for the oxidation of CAP. Characterization of the Al-MIL revealed a large surface area of 1137 m2 g-1, a homogeneous microporous structure, good crystallinity, and particle size in the range of 200-400 nm. Adsorption of CAP on Al-MIL achieved equilibrium after 1 h, reaching a maximum adsorption capacity of 96.1 mg g-1 at the optimum pH value of 5.3. The combination of adsorption and oxidation did not improve the % TOC reduction considerably, indicating an antagonistic rather than synergistic effect between the two processes. Oxidation alone in the presence of persulfate, achieved a % TOC reduction of 71% after 2 h, compared to 56% achieved by adsorption alone at the same duration. The optimum persulfate concentration was determined as 2.5 mM. The Al-MIL structure did not demonstrate any substantial deterioriation after six repeated runs, according to the reusability experiments.
Collapse
Affiliation(s)
- Cihan Geçgel
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Advanced Technology Education Research and Application Center, Mersin University, 33343, Mersin, Turkey
| | - Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Belgin Gözmen
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Meral Turabik
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Chemical Program, Technical Science Vocational School, 33343, Mersin, Turkey
| | - Dimitrios Kalderis
- Department of Electronics Engineering, Hellenic Mediterranean University, 73100, Chania, Crete, Greece.
| |
Collapse
|
34
|
Zheng L, Gu Y, Hua B, Fu J, Li F. Hierarchical porous melamine sponge@MIL-101-Fe-NH 2 composite as Fenton-like catalyst for efficient and rapid tetracycline hydrochloride removal. CHEMOSPHERE 2022; 307:135728. [PMID: 35850219 DOI: 10.1016/j.chemosphere.2022.135728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks have been investigated in Fenton-like catalysis for tetracycline hydrochloride degradation, a widely used antibiotic which threatens the growth and health of creatures. However, powder phase and absence of large pores limit the materials' degradation performance and application. In this work, a hierarchical macro-meso-microporous composite melamine sponge@MIL-101-Fe-NH2 was firstly designed and constructed. While the micropores provided plenty of active sites to generate reactive oxygen species, the macropores and mesopores accelerated mass transfer. Besides, MIL-101-Fe-NH2 particles dispersed on melamine sponge individually, exposing more catalytic sites and avoiding inactivation caused by aggregation compared to powder catalysts. Its catalysis performance for tetracycline hydrochloride degradation was evaluated through changing various influence factors like H2O2 concentration, catalyst amount, pH and coexisting ions. Different from the preference of homogenous Fenton catalysts for pH 2-4, the composite displayed the most effective degradation at a subacid environment closer to nature with 77.24% in 30 min. Owing to the synergistic effect of hierarchical porous structure and monodispersed nanoparticles, the composite exhibited faster reaction rate and longer persistence compared to powder MIL-101-Fe-NH2. Easy recycling and less ion leaching made it advantages for practical application. •OH, •O2- and 1O2 active species contributed together to the degradation and two main possible degradation pathways were put forward based on 35 detected intermediates.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yifan Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Baolv Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiarui Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Fengting Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
35
|
Peroxydisulfate activation by 2D MOF-derived Ni/Fe3O4 nanoparticles decorated in 3D graphene oxide network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Liu Z, Hadi MA, Aljuboory DS, Ali FA, Jawad MA, Al-Alwany A, Hadrawi SK, Mundher T, Riadi Y, Amer RF, Fakhri A. High efficiency of Ag 0 decorated Cu 2MoO 4 nanoparticles for heterogeneous photocatalytic activation, bactericidal system, and detection of glucose from blood sample. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112571. [PMID: 36215792 DOI: 10.1016/j.jphotobiol.2022.112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The novel Ag0/Cu2MoO4 nanoparticles was simply synthesized via chemical method. Ag/Cu2MoO4 nanoparticles was characterized by FESEM image, XRD curve, UV-vis spectroscopy, BET analysis, and XPS spectrum. XRD pattern depicts that the cubic crystalline phase of particles. The band gap of Ag/Cu2MoO4 nanoparticles was achieved to 2.04 eV, which that depicted the best activity under visible light irradiation. Ag/Cu2MoO4 nanoparticles exhibits 99.74% degradation under light and persulfate ion which was higher response than Cu2MoO4 nanoparticles (83.56%) under this condition. The scavenging test indicates the important reactive species in removal process were •OH, and •SO4-. The Ag/Cu2MoO4 nanoparticles was indicated highly photo-stability for the MG degradation after 5th cycle. Ag/Cu2MoO4 exhibits substantial antibacterial properties against P. aeruginosa and S. pneumoniae. Moreover, Ag/Cu2MoO4 nanoparticles was experimented to peroxidase-like performance for the colorimetric detection of glucose with the Limit of Detection about 52.23 nM.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Stomatology, RENMIN Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | | | - Dhuha Salman Aljuboory
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Fattma A Ali
- Medical Microbiology Department, Hawler Medical University, College of Health Sciences
| | | | | | - Salema K Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq; Computer Engineering Department, Imam Reza University, Mashhad, Iran
| | - Tabark Mundher
- Medical laboratory technology, Ashur University College, Baghdad, Iraq
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| |
Collapse
|
37
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
38
|
Wu Y, Zhao X, Tian J, Liu S, Liu W, Wang T. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Fan X, Lin Q, Zheng J, Fu H, Xu K, Liu Y, Ma Y, He J. Peroxydisulfate activation by nano zero-valent iron graphitized carbon materials for ciprofloxacin removal: Effects and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129392. [PMID: 35732109 DOI: 10.1016/j.jhazmat.2022.129392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the potential hazards of ciprofloxacin (CIP) to the ecosystem and human health, there has been an urgent need to develop effective technologies to solve the severe issue. In this work, the nanozero-valent iron graphitized carbon matrix (xFe@CS-Tm) were prepared via a hydrothermal method to activate peroxydisulfate (PDS) for degradation of CIP. Specifically, 0.5Fe@CS-T7 exhibited the excellent catalytic performance for PDS activation to degrade CIP. Moreover, the catalyst exhibited vigorous interference resistance at various pH values, in the presence of various inorganic anions and under humic acid conditions. The characterization results demonstrated that Fe was successfully embedded on the carbon matrix and became the active sites to promote ROS production. It is demonstrated that O2•- was the main active species rather than •OH and SO4•-, based on quench trapping, EPR experiments and steady state concentrations calculations. The possible pathways of CIP degradation were proposed using LC-MS results and density functional theory. The outcomes of the toxicity estimation software tool found that the toxicity of CIP was reduced. This study not only investigated a novel methodology for the degradation of antibiotic wastewater but also provides a feasible pathway for carbon-neutral wastewater treatment.
Collapse
Affiliation(s)
- Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hengyi Fu
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
40
|
Liu M, Xing Z, Zhao H, Song S, Wang Y, Li Z, Zhou W. An efficient photo Fenton system for in-situ evolution of H 2O 2via defective iron-based metal organic framework@ZnIn 2S 4 core-shell Z-scheme heterojunction nanoreactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129436. [PMID: 35897176 DOI: 10.1016/j.jhazmat.2022.129436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of an efficient photoFenton system without the addition of H2O2 is still a challenge and is cost-effective and favorable for practical applications. In this work, a core@shell Z-scheme heterojunction nanoreactor was successfully fabricated, in which hierarchical two-dimensional (2D) ZnIn2S4 nanosheets are coated on defective iron-based metal-organic frameworks (MOFs) (NH2-MIL-88B(Fe)), realizing efficient in-situ evolution of H2O2 and constructing an optimal heterogeneous Fenton platform. The degradation rates of defective NH2-MIL-88B(Fe)@ZnIn2S4 (0.4 g L-1) for bisphenol A and ofloxacin under visible light irradiation within 180 min reached 99.4% and 98.5%, respectively, and the photocatalytic hydrogen production efficiency was approximately 502 μmol h-1 g-1. The excellent photoFenton performance was attributed to the introduction of ligand defects into the MOF, which can adjust the band structure to enhance the light absorption capacity, and the in-situ generation of H2O2 accelerating the Fe3+/Fe2+ conversion. In addition, the formation of the core@shell nanoreactor Z-scheme heterojunction structure promoted spatial charge separation. This strategy offers new ideas for constructing efficient photocatalysis and photoFenton systems.
Collapse
Affiliation(s)
- Meijie Liu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Huanan Zhao
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Sijia Song
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yichao Wang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China; Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
41
|
Zawadzki P. Visible Light-Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:374. [PMID: 36090740 PMCID: PMC9440748 DOI: 10.1007/s11270-022-05831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton's reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light-driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light-driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.
Collapse
Affiliation(s)
- Piotr Zawadzki
- Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
42
|
Han M, Zhu W, Hossain MSA, You J, Kim J. Recent progress of functional metal-organic framework materials for water treatment using sulfate radicals. ENVIRONMENTAL RESEARCH 2022; 211:112956. [PMID: 35218711 DOI: 10.1016/j.envres.2022.112956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Human health is being threatened by the ever-increasing water pollution. Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) are rapidly being developed and gaining considerable attention due to their high oxidation potential and selectivity as a way to purify water by degrading organic contaminants in it. Among the catalytic materials that can activate the precursor to generate SO4•-, metal-organic frameworks (MOFs) are the most promising heterogeneous catalytic material in SR-AOPs because of their various structure possibilities, large surface area, ordered porous structure, and regular activation sites. Herein, an in-depth overview of MOFs and their derivatives for water purification with SR-AOPs is provided. The latest studies on pristine MOFs, MOF composites, and MOF derivatives (metal oxides, metal-carbon hybrids, and carbon materials) are summarized. The mechanisms of decomposition of pollutants in water via radical and non-radical pathways are also discussed. This review suggests future research directions for water purification through MOF-based SR-AOP.
Collapse
Affiliation(s)
- Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Wenkai Zhu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Md Shahriar A Hossain
- School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
43
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
44
|
Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
With increasingly serious environmental pollution and the production of various wastewater, water pollutants have posed a serious threat to human health and the ecological environment. The advanced oxidation process (AOP), represented by the persulfate (PS) oxidation process, has attracted increasing attention because of its economic, practical, safety and stability characteristics, opening up new ideas in the fields of wastewater treatment and environmental protection. However, PS does not easily react with organic pollutants and usually needs to be activated to produce oxidizing active substances such as sulfate radicals (SO4-) and hydroxyl radicals (OH) to degrade them. This paper summarizes the research progress of PS activation methods in the field of wastewater treatment, such as physical activation (e.g., thermal, ultrasonic, hydrodynamic cavitation, electromagnetic radiation activation and discharge plasma), chemical activation (e.g., alkaline, electrochemistry and catalyst) and the combination of the different methods, putting forward the advantages, disadvantages and influencing factors of various activation methods, discussing the possible activation mechanisms, and pointing out future development directions.
Collapse
Affiliation(s)
- Baowei Wang
- School of Chemical Engineering and Technology, Tianjin University, China.
| | - Yu Wang
- School of Chemical Engineering and Technology, Tianjin University, China
| |
Collapse
|
45
|
Benkun W, Huijun X, Zhihao Y, Baoliang L, Boxiang M, Jun F, Qingyang D. Preparation and Photocatalytic Activity of (Fe2.5Ti0.5)1.04O4/Ti4O7 Nanocomposites. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Enhanced Photogenerated Hole Oxidation Capability of Li2SnO3 by Sb Incorporation in Photocatalysis Through Band Structure Modification. Catal Letters 2022. [DOI: 10.1007/s10562-022-04046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photocatalysis plays a prominent role in the protection of the environment from recalcitrant pollutants by reducing hazardous wastes. Among the different methods of choice, photocatalysis mediated through nanomaterials is the most widely used and economical method for removing pollutants from wastewater. Recently, worldwide researchers focused their research on eco-friendly and sustainable environmental aspects. Wastewater contamination is one of the major threats coming from industrial processes, compared to other environmental issues. Much research is concerned with the advanced development of technology for treating wastewater discharged from various industries. Water treatment using photocatalysis is prominent because of its degradation capacity to convert pollutants into non-toxic biodegradable products. Photocatalysts are cheap, and are now emerging slowly in the research field. This review paper elaborates in detail on the metal oxides used as a nano photocatalysts in the various type of pollutant degradation. The progress of research into metal oxide nanoparticles, and their application as photocatalysts in organic pollutant degradation, were highlighted. As a final consideration, the challenges and future perspectives of photocatalysts were analyzed. The application of nano-based materials can be a new horizon in the use of photocatalysts in the near future for organic pollutant degradation.
Collapse
|
48
|
Liu J, He H, Shen Z, Wang HH, Li W. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128398. [PMID: 35236025 DOI: 10.1016/j.jhazmat.2022.128398] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
A single-atomic-site Cu catalyst (SAS-Cu) supported on carbon nitride (CN) material was synthesized by a pyrolyzing coordinated polymer (PCP) strategy. The introduction of a single-atomic Cu site improved the charge transfer and separation efficiency. The reaction rate constant of SAS-Cu1.0 is 4.5 times higher than that of CN. Under the condition of only 0.1 mM sodium persulfate (PS) and 0.1 g/L catalyst, the removal rate of tetracycline (TC) reached 82.5% after 30 min of LED illumination, which greatly improved the utilization of oxidant. Mechanistic analysis shows that there are free radical (•O2-, SO4•-, •OH) and nonradical pathways (1O2 and direct electron transfer) in the system, and they have synergistic effect. Density functional theory (DFT) calculations show that SAS-Cu1.0 can optimize the adsorption and activation of PS. This work illustrates the application value of SAC combined with activated persulfate and the low energy consumption of the LED light in the field of environment, which provides a new strategy for reducing the salinity and treatment cost of treated water.
Collapse
Affiliation(s)
- Junjian Liu
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - He He
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhurui Shen
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hudson Haocheng Wang
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weizun Li
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
49
|
Ma X, Cui X, Zhang H, Liu X, Lin C, He M, Ouyang W. Efficient catalyst prepared from water treatment residuals and industrial glucose using hydrothermal treatment: Preparation, characterization and its catalytic performance for activating peroxymonosulfate to degrade imidacloprid. CHEMOSPHERE 2022; 290:133326. [PMID: 34921851 DOI: 10.1016/j.chemosphere.2021.133326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Water treatment residuals (WTRs), as by-products of drinking water treatment plant, were used as catalyst for persulfate activation to degrade organic pollutants. In this study, G-HWTRs were successfully prepared by hydrothermal treatment, which combined WTRs and a hydrothermal reducing agent (industrial glucose) in different ratios. These materials manifested upgraded performance compared with raw WTRs and HWTRs (prepared only with WTRs under hydrothermal condition) in imidacloprid (IMD) degradation. The elemental composition, structure, morphological and magnetic properties of the G-HWTRs were investigated. And the influences of peroxymonosulfate (PMS) concentration, G-HWTRs dosage, initial pH, water matrix on IMD degradation were determined. The results demonstrated that G-HWTRs-3 had the best catalytic performance, 10 μM IMD was almost completely degraded in the system of G-HWTRs (0.2 g L-1) and PMS (0.1 mM) within 2 h without pH adjustment. Based on the results of the electron spin-resonance spectroscopy (ESR) tests and radicals scavenging experiments, all of SO4-, OH, 1O2 and O2- were the reactive oxygen species driving the IMD degradation, and OH was regarded as the main role of IMD degradation. The possible degradation pathways of IMD were further proposed based on the degradation intermediates that identified by LC-MS. Besides, further experiments indicated G-HWTRs has degradation potential for various pollutants, the degradation rate of atrazine (ATZ), acetochlor (ACE) and simazine (SMX) within 2 h achieved 92.54%, 83.88% and 90.25%, respectively. These results confirmed G-HWTRs has good catalytic performance and activation potential on PMS, providing an effective method for remediating organic polluted wastewater.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaoling Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
50
|
Liu Y, Liu Y, Xu Y, He Q, Yin R, Sun P, Dong X. Phenanthroline bridging graphitic carbon nitride framework and Fe (II) ions to promote transfer of photogenerated electrons for selective photocatalytic reduction of Nitrophenols. J Colloid Interface Sci 2022; 608:2088-2099. [PMID: 34763289 DOI: 10.1016/j.jcis.2021.10.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Nitrophenols (NPs) are widely used in industries and highly toxic to ecological environment and human health. Because aminophenols (APs) are important chemicals, catalytic reduction of NPs via efficient and environment-friendly strategies is of great importance. Herein, we developed a green photocatalysis route to efficiently convert NPs to APs using a Fe (II) modified graphitic carbon nitride (g-C3N4) photocatalyst, where phenanthroline units were employed to bridge Fe (II) and carbon nitride framework. The optimized sample P-CN-8-Fe presented significantly improved absorption of visible light, separation of photogenerated charges and carrier transportation in comparison with the pristine g-C3N4 and the modified samples of CN-Fe and P-CN-8. Accordingly, the P-CN-8-Fe showed a high conversion (97%) of p-nitrophenol (p-NP) to p-aminophenol (p-AP) under 2 h visible light irradiation, and meanwhile possessed high photocatalytic durability. Its high activity was also demonstrated through photocatalytic reduction of other NPs and nitrobenzene compounds. Finally, a possible mechanism was proposed for the photocatalytic reduction of p-NP by P-CN-8-Fe. This work provides an effective approach to prepare Fe (II) modified g-C3N4 through the bridging effect of phenanthroline group, which is a potential visible light driven photocatalyst for reduction of nitrobenzene derivatives.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingying Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingshen He
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rongyang Yin
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaoping Dong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|