1
|
Zhang S, Wang L, Zhou B, Zhang D, Tang G, Guo L. Characteristics of humification, functional enzymes and bacterial community metabolism during manganese dioxide-added composting of municipal sludge. ENVIRONMENTAL RESEARCH 2024; 252:119151. [PMID: 38754608 DOI: 10.1016/j.envres.2024.119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Bingjie Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Dewei Zhang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Lina Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| |
Collapse
|
2
|
Martínez-Zamudio LY, González-González RB, Araújo RG, Rodríguez Hernández JA, Flores-Contreras EA, Melchor-Martínez EM, Parra-Saldívar R, Iqbal HM. Emerging pollutants removal from leachates and water bodies by nanozyme-based approaches. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 37:100522. [DOI: 10.1016/j.coesh.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
3
|
Liu LE, Xue L, Li Y, Ji J, Yuan X, Han H, Ding L, Wu Y, Yang R. MOFs-derived Co 3O 4@MnO 2@Carbon dots with enhanced nanozymes activity for photoelectrochemical detection of cancer cells in whole blood. Talanta 2024; 266:125095. [PMID: 37625292 DOI: 10.1016/j.talanta.2023.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nanozymes have attracted widespread attention, and rationally designing high-activity nanozymes to improve their application performance are a long-term objective. Herein, taking metal-organic frameworks-derived Co3O4 polyhedron with large surface area and high porosity as nanoconfinement carriers, Co3O4@MnO2@CDs polyhedron was successfully synthesized by the room-temperature reduction of MnO4- ions and physical load of carbon dots (CDs). Through cancer cells-triggered double antibody sandwich strategy, the Co3O4@MnO2@CDs polyhedron were introduced to the TiO2 nanoparticle (NPs) modified electrode, leading to the decreased photocurrent. The Co3O4@MnO2@CDs polyhedron can not only quench the photocurrent of TiO2 NPs, also act as nanozymes to catalyze precipitates. Moreover, the precipitates can not only reduce the photoelectrochemical (PEC) response, also increase the quenching capacity of the Co3O4@MnO2@CDs polyhedron. Additionally, the steric hindrance effect of the Co3O4@MnO2@CDs-Ab conjugates further weaken the photocurrent. Based on the multifunctional Co3O4@MnO2@CDs polyhedron, the proposed PEC biosensor for the detection of A549 cancer cells exhibits a wide linear range from 102 to 106 cells/mL and a low detection limit of 11 cells/mL. Furthermore, this strategy can differentiate between lung cancer patients and healthy individuals. The designed multifunctional Co3O4@MnO2@CDs nanozymes provide a new horizon for PEC detection of cancer cells, and may have great potential in early clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hangchen Han
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Sun Q, Chen J, Yang M, Ding X, Zhang H, Huang Z, Huang Q, Chen Q. Macrophage membrane-decorated MnO 2 nanozyme catalyzed the scavenging of estradiol for endometriosis treatment. Colloids Surf B Biointerfaces 2024; 233:113633. [PMID: 37995632 DOI: 10.1016/j.colsurfb.2023.113633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Endometriosis (EMs) is an inflammatory, estrogen-dependent disease characterized by the growth of endometrial-like tissue outside the uterus. Despite many efforts to develop effective treatment regimens, the overall response to halting EMs progression so far remains unsatisfactory. Herein, we explored and synthesized a biomimic macrophage membrane-decorated MnO2 nanosheet (MM-NS) as a nanozyme capable of scavenging estrogen for EMs treatment. This nanosystem exhibited good solubility and potent estradiol scavenging activities. As expected, MM-NS effectively inhibited cell proliferation and inflammation in an estradiol scavenging-dependent way. In vivo MM-NS targeted to ectopic lesions and effectively suppressed lesion growth in endometriosis mice model, which could be attributed to the inhibition of tissue proliferation and the lower levels of inflammatory factors in peritoneal fluid. Taken together, this study not only revealed a new application scenario for nanozyme but also developed a novel endometriosis treatment strategy by catalyzing the scavenging of estrogen.
Collapse
Affiliation(s)
- Qinkun Sun
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Jiahao Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Mengjie Yang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Xinyu Ding
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Huaying Zhang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Zhixiong Huang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qionghua Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China.
| |
Collapse
|
5
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
6
|
Li S, Hong D, Sun K. Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:219-226. [PMID: 38435360 PMCID: PMC10902508 DOI: 10.1016/j.eehl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 03/05/2024]
Abstract
Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, i.e., scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Özcan S, Süngü Akdoğan ÇZ, Polat M, Kip Ç, Tuncel A. A new multimodal magnetic nanozyme and a reusable peroxymonosulfate oxidation catalyst: Manganese oxide coated-monodisperse-porous and magnetic core-shell microspheres. CHEMOSPHERE 2023; 341:140034. [PMID: 37659514 DOI: 10.1016/j.chemosphere.2023.140034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Monodisperse-porous, polydopamine and manganese oxide coated, core-shell type, magnetic SiO2 (MagSiO2@PDA@MnO2) microspheres 6.4 μm in size were synthesized for the first time, using magnetic, monodisperse-porous SiO2 (MagSiO2) microspheres 6.2 μm in size as the starting material. MagSiO2 microspheres were obtained by a recently developed method namely "staged shape templated hydrolysis and condensation protocol". In the synthesis, MagSiO2 microspheres were consecutively coated by polydopamine (PDA) and then by a MnO2 layer in the aqueous medium. The pore volume and the specific surface area of monodisperse-porous MagSiO2@PDA@MnO2 microspheres were measured as 0.59 cm3 g-1 and 154 m2 g-1, respectively. Their Mn and Fe contents were determined as 66 ± 1 mg g-1 and 165 ± 5 mg g-1 respectively. MagSiO2@PDA@MnO2 microspheres exhibited multimodal enzyme mimetic behavior with highly superior catalase-like, oxidase-like and peroxidase-like activities. The effective production of singlet oxygen (1O2) and superoxide anion (O2-*) radicals in MagSiO2@PDA@MnO2-peroxymonosulfate (PMS) system was demonstrated by ESR spectroscopy. By evaluating this property, MagSiO2@PDA@MnO2 microspheres were tried as a reusable catalyst for dye removal via peroxymonosulfate (PMS) activation in batch experiments for the first time. The degradation runs were made with, rhodamine B (Rh B), methyl orange (MO) and methylene blue (MB) as the pollutant. The core-shell type design allowing the deposition of porous MnO2 layer onto a large surface area provided very fast, instant removals with all dyes, via both physical adsorption and degradation via PMS activation. In the reusability experiments, the removal yields of MO and Rh B decreased 1.8% and 8.9% over five consecutive runs in batch fashion. MagSiO2@PDA@MnO2 microspheres exhibited very good functional and structural stability in consecutive dye degradations. No significant change was observed in Fe content of microspheres while Mn content exhibited a decrease of 7.4% w/w over 5 consecutive degradation runs.
Collapse
Affiliation(s)
- Sinem Özcan
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey
| | | | - Mustafa Polat
- Hacettepe University, Department of Physics Engineering, Ankara, 06800, Turkey
| | - Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Ankara, 06800, Turkey; Hacettepe University, Bioengineering Division, Ankara, 06800, Turkey.
| |
Collapse
|
8
|
Zhong C, Cao H, Huang Q, Xie Y, Zhao H. Degradation of Sulfamethoxazole by Manganese(IV) Oxide in the Presence of Humic Acid: Role of Stabilized Semiquinone Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13625-13634. [PMID: 37650769 DOI: 10.1021/acs.est.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chen Zhong
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongbing Xie
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Momeni S, Ramezani AM, Talebi S, Nabipour I. Synthesis of intrinsic fluorescent dopamine/quercetin copolymer nanoparticles and their application as a dual-mode assay for detection of quercetin. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Wei X, Tao H, Tan C, Xie J, Yuan F, Guo L, Cui B, Zou F, Gao W, Liu P, Lu L. Intermolecular interactions between starch and polyvinyl alcohol for improving mechanical properties of starch-based straws. Int J Biol Macromol 2023; 239:124211. [PMID: 37001779 DOI: 10.1016/j.ijbiomac.2023.124211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Starch/polyvinyl alcohol (PVA) degradable straws with different PVA contents were prepared by the twin-screw extrusion method. The results showed that the starch/PVA straws with 40 % PVA (PS4) had the highest dispersion uniformity of starch and PVA to achieve the best compatibility, and the compatibility size was below the micron level. Molecular interactions between starch and 40 % polyvinyl alcohol reached the highest due to the highest strength of hydrogen bonds, hence resulting in the highest texture densities. Consequently, the largest compatibility and molecular interactions significantly improved the mechanical properties and water resistance of PS4. Compared to the starch/PVA straw with 0 % PVA (PS0), swelling volume of PS4 decreased by 45.5 % (4 °C) and 65.2 % (70 °C), respectively. After soaking, the diameter strength increased by 540.1 % (4 °C, 1 h) and 638.7 % (70 °C, 15 min), respectively. Water absorption decreased by 45.3 % (4 °C, 30 min) and 27.6 % (70 °C, 30 min).
Collapse
Affiliation(s)
- Xinyang Wei
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jixun Xie
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
11
|
Yang L, Su W, He Y, Yan B, Luo L, Luan T. Dark transformation from 17β-estradiol to estrone initiated by hydroxyl radical in dissolved organic matter. WATER RESEARCH 2023; 230:119570. [PMID: 36621273 DOI: 10.1016/j.watres.2023.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The occurrence and fate of 17β-estradiol (E2) in natural water have gained extensive attention owing to its high ecotoxic risk to wildlife. Dissolved organic matter (DOM) is a ubiquitous water constituent and contributes significantly to E2 removal, although the reaction mechanism is rarely clarified. The present study aims to investigate E2 transformation in water containing fresh or aged DOM surrogates at environmentally relevant concentrations in the dark. Experiments along with radical probes of benzene and furfuryl alcohol reveal that reactive radicals, particularly hydroxyl radical (·OH), formed non-photochemically at higher concentrations in aged DOM than in fresh DOM. The contribution of ·OH in E2 removal is indicated by the decreases in the removal of radical probes in the presence of E2; moreover, E2 removal is inhibited in the presence of radical scavengers. The dose-dependent inhibitive effect of substrate concentrations, including E2 and coexistent propylparaben, shows that the radical concentration is a limiting factor for E2 removal, which could be enhanced by increasing DOM concentration, dissolved oxygen, and light supply. As the main byproduct, estrone (E1) is persistent in the current DOM water in the dark, but it can be easily photodegraded when exposed to light. Theoretical analysis reveals that the initial step is ·OH-initiated H- abstraction on the hydroxyl group in the cyclopentane ring of E2. The formed singlet excited state of E2 undergoes further intramolecular rearrangement and oxidative dehydrogenation to generate E1 and the hydroperoxy radical (·HO2). Considering the universal occurrence of E2 in DOM-rich aquatic matrices, the present findings have special implications for the biogeochemical cycle and risk assessment of this pollutant in natural aquatic environments, particularly those beyond the photic zone.
Collapse
Affiliation(s)
- Lihua Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weiqi Su
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingyao He
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Binhua Yan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158771. [PMID: 36108853 DOI: 10.1016/j.scitotenv.2022.158771] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, 252059, Shandong, China
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Gaurang Patel
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Chayan Patra
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India.
| |
Collapse
|
13
|
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13445-13463. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the concept of sustainable agriculture receiving increasing attention from humankind, nanozymes, nanomaterials with enzyme-like activity but higher environmental endurance and longer-term stability than natural enzymes, have enabled agricultural technologies to be reformative, economic, and portable. Benefiting from their multiple catalytic activities and renewable nanocharacteristics, nanozymes can shine in agricultural scenarios using enzyme engineering and nanoscience, acting as sustainable toolboxes to improve agricultural production and reduce the risk to agricultural systems. Herein, we comprehensively discuss the classifications of nanozymes applied in current agriculture, including peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, and laccase-like nanozymes, as well as their biocatalytic mechanisms. Especially, different applications of nanozymes in agriculture are deeply reviewed, covering crop protection and nutrition, agroenvironmental remediation and monitoring, and agroproduct quality monitoring. Finally, the challenges faced by nanozymes in agricultural applications are proposed, and we expect that our review can further enhance agricultural sustainability through nanozymology.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xiao Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
14
|
Cao X, Liu M, Lu J, Lv H, Han J, He S, Ye Y, Chen X, Wei Z, Zheng H. An ultrasensitive biosensor for virulence ompA gene of Cronobacter sakazakii based on boron doped carbon quantum dots-AuNPs nanozyme and exonuclease III-assisted target-recycling strategy. Food Chem 2022; 391:133268. [DOI: 10.1016/j.foodchem.2022.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
|
15
|
Liu J, Zhang C, Zhao S, Wang Z, Zhang X, Zhu K, Liu Z, Dai Y, Jia H. Coexistence of MnO2 impedes the degradation of BPA in iron oxide/ascorbic acid systems: Disclosing the molecular mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Buffer species-dependent catalytic activity of Cu-Adenine as a laccase mimic for constructing sensor array to identify multiple phenols. Anal Chim Acta 2022; 1204:339725. [DOI: 10.1016/j.aca.2022.339725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 01/15/2023]
|
17
|
Lin Y, Wang F, Yu J, Zhang X, Lu GP. Iron single-atom anchored N-doped carbon as a 'laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127763. [PMID: 34801307 DOI: 10.1016/j.jhazmat.2021.127763] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
To solve the inherent defects of laccase, the first iron single-atom anchored N-doped carbon material (Fe1@CN-20) as a laccase mimic was disclosed. The FeN4 structure of this material can well mimic the catalytic activity of laccase. Although Fe1@CN-20 has a lower metal content (2.9 wt%) than any previously reported laccase mimics, it exhibits kinetic constants comparable to those of laccase, as its Km (Michaelis constant) and Vmax (maximum rate) are 0.070 mM and 2.25 µM/min respectively, which are similar to those of laccase (0.078 mM, 2.49 µM/min). This catalyst displays excellent stability even under extreme pH (2-9), high temperature (100 °C), strong ionic strength (500 mM of NaCl), high ethanol concentration (volume ratio 40%) and long storage time (2 months). Additionally, it can be reused for at least 7 times with only a slight loss in activity. Therefore, this material has a much lower price and better stability and recyclability than laccase, which has been applied in the detection and degradation of a series of phenolic compounds. In the detection of adrenaline, Fe1@CN-20 achieved a detection limit of 1.3 µM, indicating it is more sensitive than laccase (3.9 µM).
Collapse
Affiliation(s)
- Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jie Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
18
|
Recent Advances in Endocrine Disrupting Compounds Degradation through Metal Oxide-Based Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12030289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endocrine Disrupting Compounds (EDCs) comprise a class of natural or synthetic molecules and groups of substances which are considered as emerging contaminants due to their toxicity and danger for the ecosystems, including human health. Nowadays, the presence of EDCs in water and wastewater has become a global problem, which is challenging the scientific community to address the development and application of effective strategies for their removal from the environment. Particularly, catalytic and photocatalytic degradation processes employing nanostructured materials based on metal oxides, mainly acting through the generation of reactive oxygen species, are widely explored to eradicate EDCs from water. In this review, we report the recent advances described by the major publications in recent years and focused on the degradation processes of several classes of EDCs, such as plastic components and additives, agricultural chemicals, pharmaceuticals, and personal care products, which were realized by using novel metal oxide-based nanomaterials. A variety of doped, hybrid, composite and heterostructured semiconductors were reported, whose performances are influenced by their chemical, structural as well as morphological features. Along with photocatalysis, alternative heterogeneous advanced oxidation processes are in development, and their combination may be a promising way toward industrial scale application.
Collapse
|
19
|
Chen Q, Liu Y, Lu Y, Hou Y, Zhang X, Shi W, Huang Y. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126929. [PMID: 34523499 DOI: 10.1016/j.jhazmat.2021.126929] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 05/15/2023]
Abstract
Constructing single-atom nanozymes (SAzymes) with densely exposed and dispersed double metal-Nx catalytic sites for pollution remediation remains rare and challenging. Herein, we report a novel Fe-Bi bimetallic MOF-derived carbon supported Fe-N4 and Bi-N4 dual-site FeBi-NC SAzyme for cascade catalysis and peroxymonosulfate activation to degrade dye pollutants, which is synthesized from the Fe-doped Bi-MOF as a precursor. The formation of both Fe-N4 and Bi-N4 sites is demonstrated by XANES and EXAFS. The FeBi-NC SAzyme has high single atoms loadings of Fe (2.61 wt%) and Bi (8.01 wt%), and displays 5.9- and 9.8-fold oxidase mimicking activity enhancement relative to the Fe-NC and Bi-NC SAzymes, respectively. When integrated acetylcholinesterase (AChE) and FeBi-NC SAzyme, a cascade enzyme-nanozyme system is developed for selective and sensitive screening of AChE activity with a low detection limit of 1 × 10-4 mU mL-1. Both Fe-N4 and Bi-N4 in FeBi-NC display a strong binding energy and electron donating capability to promote peroxymonosulfate activation to generate highly active intermediates for rhodamine B degradation. 100% rhodamine B removal occurs within 5 min via FeBi-NC mediated activation of peroxymonosulfate. The DFT calculations reveal that high activity of FeBi-NC is due to the isolated Fe-N4 and Bi-N4 sites and their synergy.
Collapse
Affiliation(s)
- Qiumeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan Liu
- Wuxi Branch of Jiangsu Province Special Equipment Safety Supervision and Inspection Institute, Wuxi 214174, China
| | - Yuwan Lu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuejie Hou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wenbing Shi
- The Key Laboratory of Chongqing Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Li S, Hong D, Chen W, Wang J, Sun K. Extracellular laccase-activated humification of phenolic pollutants and its application in plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:150005. [PMID: 34525729 DOI: 10.1016/j.scitotenv.2021.150005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Humification processes of phenolic pollutants may play a profound role in environment purification and plant growth. However, little literature is performed to explore exoenzyme-driven humification to polymerize 17β-estradiol (E2) and humic constituents (HCs), and the effects of their polymeric precipitates on plant growth are usually overlooked. Herein, E2 conversion and radish (Raphanus sativus L.) growth were systematically investigated under humification mediated by extracellular laccase (EL) of Trametes versicolor. Results disclosed that EL-assisted humification achieved a wonderful E2 conversion efficiency (>99%) within 2-h, but the presence of HCs such as humic acid (HA), vanillic acid (VA), and ferulic acid (FA) impeded E2 elimination significantly. Compared with HC-free, the kinetics constants declined by 2.84-, 5.72-, and 5.22-fold with HA, VA, and FA present, respectively. Intriguingly, three close-knit self/cross-linked precipitates (i.e., E2-HA, E2-VA, and E2-FA hybrid precipitates) in dark gray, dark brown, and deep yellow were created after a continuous humification by phenolic radical-initiated polymerization mechanisms. The formation of these humified precipitates was extremely effective on circumventing phytotoxicity caused by monomeric E2, VA, or FA. Furthermore, they acted as humic-like organic fertilizers, accelerating seed germination, root elongation, and enhancing NaCl-tolerance of radish through the combination of oxygen-contained functional components and auxin structural analogues with unstable and stubborn carbon skeletons. This is the first study reporting the pollution purification and plant growth promotion in EL-activated humification. Our findings frame valuable perspectives regarding the natural detoxification and carbon sequestration of phenolic pollutants and the application of their polymeric precipitates in global crop production.
Collapse
Affiliation(s)
- Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Jiulong Road 111, Hefei 230039, Anhui, China
| | - Dan Hong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Wenjun Chen
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Jun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Kai Sun
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| |
Collapse
|
21
|
Zhokh A, Trypolskyi A, Gritsenko V, Strizhak P. Effect of H-ZSM-5 zeolite content on the intrinsic kinetics of methanol dehydration to dimethyl ether over H-ZSM-5/Al 2O 3 molded catalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The catalyst composition affects the activation energy and methanol absorption heat, whereas the mechanism of methanol absorption (associative or dissociative) and pre-exponential factor exhibit no sensitivity to catalyst composition.
Collapse
Affiliation(s)
- Alexey Zhokh
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Andrey Trypolskyi
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Valentina Gritsenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Peter Strizhak
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| |
Collapse
|
22
|
Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, Rodas-Zuluaga LI, González-González RB, Parra-Arroyo L, Sosa-Hernández JE, Melchor-Martínez EM, Martínez-Ruiz M, Barceló D, Pastrana LM, Iqbal HMN, Parra-Saldívar R. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 1:680-704. [DOI: 10.1039/d2va00179a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems.
Collapse
Affiliation(s)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| |
Collapse
|
23
|
Cai J, Zhu Y, Xie S, Niu B, Zhang YN, Li L, Li D, Zhao G. Accurate Removal of Trace 17β-Estradiol and Estrogenic Activity in Blended Systems under a Photoelectrocatalytic Circulating Flow. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12585-12595. [PMID: 34291909 DOI: 10.1021/acs.est.1c02630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trace 17β-estradiol (E2) is persistent against advanced treatment when blended with higher concentrations of low-toxicity organics, thus wasting energy. A circulating-flow selective photoelectrocatalysis (CF-SPEC) system is established with a selective E2-TiO2-NR photoanode, accurately reducing 1 μg L-1 E2 to less than 0.1 ng L-1 along with eliminating estrogenic activity even when blended with natural organic matter (NOM) at a thousand times higher concentration. Such high efficiency is derived from the augmented selectivity and activity of E2-TiO2-NRs toward E2 during CF-SPEC. Under a flow, the difference in adsorption capacity between NOM and E2 is further amplified 5.6-fold. Furthermore, the higher initial •OH concentration and faster mass transfer jointly endow CF-SPEC with a stronger oxidation capacity. As a result, the removal of E2 increases by 58.7%, and the elimination of estrogenic activity increases 5.8-fold. In addition, deeper mineralization and less homo- and heterocoupling under CF-SPEC are observed, leading to more thorough estrogenic activity removal. Although additional energy is needed to maintain the flow, there is a 55% decrease in energy consumption due to the accurate removal capacity. This work suggests a combination of flow degradation and surface engineering that can be expanded for the selective removal of toxic trace pollutants in blended systems.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yingjie Zhu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Shanshan Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 200120, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Wang Y, Wang Y, Wang F, Chi H, Zhao G, Zhang Y, Li T, Wei Q. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J Colloid Interface Sci 2021; 606:510-517. [PMID: 34403860 DOI: 10.1016/j.jcis.2021.08.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Gold modified thiol graphene (Au@HS-rGO) was prepared and applied as sensing platform for constructing the electrochemical aptasensor. While gold-palladium modified zirconium metal-organic frameworks (AuPd@UiO-67) nanozyme was employed as signal enhancer for detecting mercury ions (Hg2+) sensitively. Herein, gold nanoparticles (Au NPs) were modified on HS-rGO to form the thin Au@HS-rGO layer. Then the substrate strand (Apt1) was modified on the platform through Au-S bond. The signal strand (Apt2) was further decorated on the platform in the presence of Hg2+. Herein, the Apt2 was labeled with AuPd@UiO-67 nanozyme, which exhibited catalase-like properties to catalyze H2O2, thereby generating the electrical signal. With the concentration of Hg2+ increased, the amount of modified Apt2-AuPd@UiO-67 increased, leading to the rise of current response. Since the current responses were linear with concentration of Hg2+, the detection of Hg2+ can be achieved. Under the optimum conditions, the prepared electrochemical aptasensor exhibited wide linear range from 1.0 nmol/L to 1.0 mmol/L, along with a low detection limit of 0.16 nmol/L. Moreover, the electrochemical aptasensor showed excellent selectivity, reproducibility and stability, together with superior performance in actual water sample analysis. Therefore, this proposed electrochemical aptasensor may have promising applications and provide references for environmental monitoring and management.
Collapse
Affiliation(s)
- Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Fangzheng Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China.
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
25
|
Liu Q, Liu J, Hong D, Sun K, Li S, Latif A, Si X, Si Y. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125197. [PMID: 33540263 DOI: 10.1016/j.jhazmat.2021.125197] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Naturally-occurring phenolic acids (PAs) act as humic precursors that participate in the conversion behaviors and coupling pathways of steroidal estrogens (SEs) during laccase-triggered humification processes (L-THPs). Herein, the influences and mechanisms of PAs on Trametes versicolor laccase-evoked 17β-estradiol (E2) conversion kinetics and humification routes were explored. Fungal laccase was fleet in converting > 99% of E2, and the calculated pseudo-first-order velocity constant and half-time values were respectively 0.039 min-1 and 17.906 min. PAs containing an O-dihydroxy moiety such as gallic acid and caffeic acid evidently hampered E2 humification owning to the yielded highly reactive O-quinones reversed E2 radicals by hydrogen transfer mechanism, implying that the inhibition effect was enormously dependent upon the number and position of the phenolic -OH present in humic precursors. Oligomers and polymers with carbon-carbon/oxygen links were tentatively found as E2 main humified species resulting from laccase-evoked successive oxidative-coupling. Note that PAs participating in the humification also encountered oxydehydrogenation, self-polymerization, and cross-binding to E2. Interestingly, the -COOH and -OCH3 groups of PAs could be deprived in radical-caused self/co-polymerization. The generation of humified products not only circumvented the environmental risks of parent compounds but accelerated global carbon sequestration. To our knowledge, this is the first in-depth revelation of the humification pathways and related mechanisms of SEs with humic precursors in aquatic ecosystems by L-THPs.
Collapse
Affiliation(s)
- Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Jie Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Xiongyuan Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| |
Collapse
|