1
|
Wang J, Guan Y, Guo M, Gao J, Yang M, Liu Y, Liu X, Wang W, Jin Y, Qu J. New insights into the remediation of chromium-contaminated industrial electroplating wastewater by an innovative nano-modified biochar derived from spent mushroom substrate: Mechanisms, batch study, stability and application. CHEMOSPHERE 2024; 367:143621. [PMID: 39490756 DOI: 10.1016/j.chemosphere.2024.143621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
To enhance the adsorption and detoxification capabilities of hexavalent chromium (Cr(VI)) using agricultural spent mushroom substrate (SMS), this study pioneered the preparation of biochar (NBC) from Lentinus edodes spent substrate. Subsequently, nano iron sulfide (FeS) particles were integrated onto NBC with carboxymethyl cellulose (CMC) as a stabilizer, resulting in a novel composite biosorption material, nFeS-BC. The adsorption and reduction potential of both NBC and nFeS-BC against Cr(VI) were evaluated through batch experiments, which identified pH as a critical factor influencing adsorption efficiency. Remarkably, nFeS-BC exhibited a superior maximum adsorption capacity (qmax) of 99.57 mg g-1 and a reduction efficiency of 68.65%, outperforming NBC by 277.73% and 211.76% under optimized conditions, respectively. Characterization techniques including Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), Fourier Transform Infrared Spectroscopy (FT-IR), and X-ray Photoelectron Spectroscopy (XPS) elucidated the removal mechanisms, predominantly attributed to ion exchange, electrostatic attraction, functional group interaction, and redox reaction. The carbon-oxygen functional groups and nano particles were crucial in the adsorption and reduction processes. Compared with NBC, the incorporation of FeS particles increased the specific surface area and pore volume of nFeS-BC by 130.86% and 183.77%, respectively. nFeS-BC owned a shelf-life of up to ∼3 months of use and exhibited excellent performance in the processing of actual electroplating wastewater with q of 16.71 mg g-1 under 0.1 g L-1 dosage. These findings underscore the potential of nFeS-BC as an efficient material for Cr(VI) removal, presenting a novel adsorbent for the sustainable detoxification of contaminated water resources and the potential for using agricultural waste materials in environmental remediation.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongduo Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Mingfeng Guo
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Junzhu Gao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Man Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yawen Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Xuesheng Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Jin
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Juanjuan Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Su T, Mao X, Wang Z, Pan Y, Xu B, Yang W, Xu H. Cellulose nanocrystal-infused polymer hydrogel imbued with ferric-manganese oxide nanoparticles for efficient antinomy removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135097. [PMID: 38970975 DOI: 10.1016/j.jhazmat.2024.135097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Antimony is a highly poisonous pollutant that needs to be removed from water to ensured safety. In this work, we have fabricated a novel adsorbent, the ferric-manganese oxide (FeMnOx) nanoparticles embedded cellulose nanocrystal-based polymer hydrogel (FeMnOx @CNC-g-PAA/qP4VP, denoted as FMO@CPqP), specifically engineered for the remediation of antimony-laden water. Comprehensive evaluations have been conducted to investigate the efficacy of the FMO@CPqP hydrogel in removal of antimony from water. The hydrogel exhibits superior affinity for antimony, with maximum adsorption capacities of 276.1 mg/g for Sb(III) and 286.8 mg/g for Sb(V). The adsorptive dynamics, governed by the kinetics and isotherm analyses, elucidate that the immobilization of both Sb(III) and Sb(V) is facilitated through a homogeneous and monolayer chemisorption mechanism. The hydrogel has a three-dimensional interconnected porous structure and exhibits good swelling behavior, which facilitates the rapid absorption of antimony ions by this high surface area hydrogel into the channels. Furthermore, various effects, including the oxidation and inner-sphere coordination mediated by FeMnOx NPs and the electrostatic attractions of the quaternized P4VP chains, promote the immobilization of antimony species. Owing to its high removal efficiency, stability and reusability, the FMO@CPqP hydrogel emerges as an exemplary candidate for the removal of antimony contaminants in water treatment processes.
Collapse
Affiliation(s)
- Ting Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuefeng Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiru Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Wenzhong Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Xu X, Zhang Z, Weng X, Chen Z. What are the different biomolecules involved in the selective recovery of REEs from mining wastewater using FeNPs synthesized from two plant extracts? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174571. [PMID: 38977102 DOI: 10.1016/j.scitotenv.2024.174571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Extracting rare earth elements (REEs) from wastewater is crucial for saving the environment, sustainable use of natural resources and economic growth. Reported here is a simple, low cost and one-step synthesis of Fe nanoparticles (FeNPs) based on two plant extracts having the ability to recover REEs. The synthesis of FeNPs using Excoecaria cochinchinensis leaves extract (Ec-FeNPs) exhibited high selectivity for heavy rare earth due to unique biomolecules, achieving separation coefficients (Kd) of 3.16 × 103-4.04 × 106 mL/g and recovery efficiencies ranging from 71.7 to 100 %. Conversely, the synthesis of FeNPs using Pinus massoniana lamb extract (PML-FeNPs) revealed poorer REE recovery efficiencies of 7.2-86.7 %. To understand the differences between Ec-FeNPs and PML-FeNPs in terms of selectivity and efficiency, LC-QTOF-MS served to analyze the biomolecules differences of two plant extracts. In addition, various types of characterization were carried out to identify the different functional groups encapsulated on the surface of FeNPs. These results reveal the source of the difference in the selectivity of Ec-FeNPs and PML-FeNPs for REEs. Furthermore, during DFT calculations, it was found that biomolecules with varying affinities for the surface of FeNPs interact with each other, leading to the formation of structures that exhibit high reactivity towards REEs. Finally, incorporating Spearman correlation analysis demonstrates that the selective removal efficiency of REEs was closely linked to surface complexation, ion exchange, and electrostatic adsorption. Consequently, this work strongly highlights the potential for the practical application of novel adsorbents in this field.
Collapse
Affiliation(s)
- Xinmiao Xu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Zhenjun Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Zuliang Chen
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
4
|
Li D, Sun L, Yang L, Liu J, Shi L, Zhuo L, Ye T, Wang S. Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133308. [PMID: 38134687 DOI: 10.1016/j.jhazmat.2023.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Herein, a novel biosorbent was successfully fabricated through a two-step process employing Pinus massoniana pollen as raw material. The efficacy of this biosorbent in eliminating methylene blue (MB), a typical organic cationic dye, from highly concentrated industrial wastewater was investigated. The results demonstrated that by adjusting the wettability of pollen microcarriers, it is possible to significantly increase their adsorption capacity for cationic dyes, resulting in a remarkable 25-fold improvement. The modified Pinus massoniana pollen microcarriers (MPPMC) exhibited an optimal adsorption capacity (585 mg/g) under specific conditions and a rapid equilibrium (97.6% in 5 min, uptake 487.8 mg/g) even at room temperature, showing excellent performance in removing MB efficiently and quickly. It is worth noting that the modified microcarriers could be regenerated via a simple pH-controlled adsorption-desorption cycle, maintaining their superior efficiency (> 99%) even after undergoing five cycles, indicating their excellent reproducibility. The MB adsorption process on MPPMC obeyed the pseudo-second-order kinetic model and followed the Langmuir model. Through the introduced modifications, the substantial deprotonation of carboxyl groups notably augmented electrostatic and hydrogen bonding interactions between MPPMC and MB. Overall, this study offers a sustainable, eco-friendly biological adsorbent, and the MPPMC exhibit the considerable potential for efficient and rapid removal of organic cationic dyes in wastewater.
Collapse
Affiliation(s)
- Dan Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Shenyang Junhong Medical Technology Co., Ltd., 59 Changjiang Street, Shenyang 110030, China
| | - Liwen Sun
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Li Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jun Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lingjuan Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Le Zhuo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiantian Ye
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Shujun Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
5
|
Popoola LT. Parameter Influence, Characterization and Adsorption Mechanism Studies of Alkaline-Hydrolyzed Garcinia kola Hull Particles for Cr(VI) Sequestration. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302231215667. [PMID: 38250241 PMCID: PMC10799592 DOI: 10.1177/11786302231215667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
Despite the regulations by The World Health Organization (WHO) on the permissible limit of chromium, many industries still discharge wastewater polluted with chromium into the environment irrationally. This poses a lot of risk to aquatic lives and humans because of its carcinogenic and toxic attributes. Thus, treatment of industrial wastewater polluted with chromium is highly imperative before its disposal. Nonetheless, the hulls generated from Garcinia kola in our various farmlands also causes environmental pollution when dumped unknowingly. In this present study, Garcinia kola hull particles (GK-HP) was hydrolyzed using NaOH and applied as adsorbent for Cr(VI) sequestration. The raw Garcinia kola hull particles (rGK-HP) and modified Garcinia kola hull particles (cMGK-HP) were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), powder X-ray diffractometry (XRD), Fourier-Transform-Infrared (FTIR), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) and point of zero charge (pHpzc). The influence of pH, adsorbent dose, contact time, temperature and adsorbate initial concentration on Cr(VI) sequestration were examined. The cMGK-HP was able to remove 96.25% of Cr(VI) from solution and proved to be effective than rGK-HP. The amount of Cr(VI) removed from solution decreased as the pH and adsorbate initial concentration were increased. However, the amount increased as the adsorbent dose, contact time and temperature were increased. Change in morphological structure, textural property, spectral peak, phase composition and adsorbents chemical composition before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses respectively. The isotherm and kinetic studies suggest Cr(VI) adsorption on adsorbents' surface to be monolayer in nature and adsorption data to be well-fitted into pseudo second order model respectively. The cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, cMGK-HP could effectively be used as an adsorbent for Cr(VI) sequestration from solution.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-ekiti, Ekiti State, Nigeria
| |
Collapse
|
6
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Popoola LT. Efficient Cr(VI) sequestration from aqueous solution by chemically modified Garcinia kola hull particles: characterization, isotherm, kinetic, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109751-109768. [PMID: 37777702 DOI: 10.1007/s11356-023-29848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
There is a need for the removal of hexavalent chromium from contaminated water prior to its discharge into the environment, as part of industrial effluents, due to its toxic nature. In this present study, an adsorbent prepared via chemical modification of Garcinia kola hull particles (GK-HP) using NaOH was applied for Cr(VI) sequestration from aqueous solution. Both the raw (rGK-HP) and chemically modified Garcinia kola hull particles (cMGK-HP) were characterized using BET, SEM, XRD, FTIR, TGA, and EDS. The effects of pH, contact time, adsorbent dose, adsorbate initial concentration, and temperature on Cr(VI) sequestration were examined. The adsorbent, cMGK-HP, proved to be more effective for the adsorption process than rGK-HP with 96.25% removal efficiency at a pH of 2, a contact time of 60 min, an adsorbent dose of 5 g/L, Cr(VI) initial concentration of 20 mg/L and a temperature of 40°C. Isotherm and kinetic studies showed experimental data to be well-fitted with Langmuir isotherm and follow the pseudo-second-order kinetic model. The thermodynamic study revealed adsorption nature to be feasible, occur via physisorption, spontaneous, and exothermic. Changes in morphological structure, textural property, spectral peak, phase composition, and chemical composition of adsorbents before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses, respectively. cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, the adsorption capacity of cMGK-HP is better than many other adsorbents generated from agrowastes used in previous studies for Cr(VI) removal.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| |
Collapse
|
8
|
Fu C, He Y, Yang C, He J, Sun L, Pan Y, Deng L, Huang R, Li M, Chang K. Utilizing biochar to decorate nanoscale FeS for the highly effective decontamination of Se(IV) from simulated wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115285. [PMID: 37517306 DOI: 10.1016/j.ecoenv.2023.115285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Selenium (Se) as an essential nutrient for human beings at trace concentrations, the allowable concentration for the human is only 40 μg/L. Iron sulfide (FeS) nanoparticles have been applied for excessive of selenium (Se) remediation in surface water and groundwater. In this study, FeS nanoparticles were anchored onto biochar (BC) to reduce agglomeration of FeS and prepared into the composite of FeS-BC by pyrolysis to economically and efficiently remove Se(IV) from simulated wastewater based on the excellent performance of FeS and the low cost of BC. Characterizations presented the uniform anchorage of FeS on the BC surface to prevent agglomeration. The results of batch experiments revealed that the removal of Se(IV) by FeS-BC nanomaterials significantly depended on the pH value, with the maximum removal of ∼174.96 mg/g at pH 3.0. A pseudo-second-order kinetic model well reflected the kinetic removal of Se(IV) in pure Se(IV) solution with different concentration, as well as the coexistence of K+, Ca2+, Cl-, and SO42- ions. The presence of K+ ions significantly inhibited the removal of Se(IV) with the increase of K+ ion concentration compared with the effect of the other three ions. SEM-EDS and XPS analyses indicated that the removal process was achieved through adsorption by surface complexation, and reductive precipitation of Se(IV) into Se0 with the electron donor of Fe(II) and S(-II) ions. The FeS-BC nanomaterial exhibited an excellent application prospect in the remediation of Se(IV).
Collapse
Affiliation(s)
- Chengke Fu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yichao He
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Chengyun Yang
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Jieyu He
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Luna Sun
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yixin Pan
- School of Civil Engineering, Shaoxing University, Zhejiang 312000, PR China.
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Rui Huang
- School of Civil Engineering, Shaoxing University, Zhejiang 312000, PR China.
| | - Manli Li
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Zhejiang 312000, PR China
| | - Kaikai Chang
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China; Shaoxing Yigao Testing Technology Co.,Ltd., Zhejiang 312000, PR China; Shanxi Pingyao Coal Chemical (Group) Co., Ltd., Shanxi 031100, PR China.
| |
Collapse
|
9
|
Superior photocatalytic aptitude of MWCNT/TiO2 for the removal of Cr (VI) from polluted water. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Jiang C, Zhou S, Li C, Yue F, Zheng L. Properties and mechanism of Cr(VI) removal by a ZnCl 2-modified sugarcane bagasse biochar-supported nanoscale iron sulfide composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26889-26900. [PMID: 36372858 DOI: 10.1007/s11356-022-24126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
A ZnCl2-modified biochar-supported nanoscale iron sulfide composite (FeS-ZnBC) was successfully prepared to address the easy oxidization of FeS and enhance Cr(VI) removal from water. The material was characterized by SEM, XRD, FTIR, and XPS. The effects of FeS:ZnBC mass ratio, FeS-ZnBC dosage, solution pH, initial Cr(VI) concentration, and reaction time on the adsorption performance were investigated. The results revealed that the optimum adsorption capacity of FeS-ZnBC (FeS:ZnBC = 1:2) for Cr(VI) was 264.03 mg/g at 298 K (pH = 2). A Box-Behnken design (BBD) was applied to optimize the input variables that affected the adsorption of Cr(VI) solution. The results revealed that the highest removal (99.52%) of Cr(VI) solution was achieved with a Cr(VI) initial concentration of 150.59 mg/L, FeS-ZnBC adsorbent dosage of 2 g/L, and solution pH of 2. The sorption kinetics could be interpreted using a pseudo-second-order kinetic model. The isotherms were simulated using the Redlich-Peterson isotherm model, indicating that Cr(VI) removal by the FeS-ZnBC composites was a hybrid chemical reaction-sorption process. The main mechanisms of Cr(VI) removal by FeS-ZnBC were adsorption, chemical reduction, and complexation. This study demonstrated that FeS-ZnBC has potential application prospects in Cr(VI) removal.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China.
- Anhui University, No. 111 Jiulong Road, Hefei, Anhui Province, China.
| | - Shijia Zhou
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Fengdie Yue
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
11
|
Fu S, Di J, Guo X, Dong Y, Bao S, Li H. Preparation of lignite-loaded nano-FeS and its performance for treating acid Cr(VI)-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3351-3366. [PMID: 35947258 DOI: 10.1007/s11356-022-22411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, lignite-loaded nano-FeS (nFeS@Lignite) was successfully prepared by ultrasonic precipitation, and its potential for treating acid Cr(VI)-containing wastewater was explored. The results showed that the 40--80-nm rod-shaped nFeS was successfully loaded onto lignite particles, and the maximum adsorption capacity of Cr(VI) by nFeS@Lignite reached 33.08 mg∙g-1 (reaction time = 120 min, pH = 4, temperature = 298.15 K). The adsorption process of Cr(VI) by nFeS@Lignite fitted the pseudo-second-order model and the Langmuir isotherm model, and thermodynamic results showed that the adsorption process was an endothermic process with an adsorption enthalpy of 28.0958 kJ·mol-1. The inhibition intensity of coexisting anions on Cr(VI) removal was in the order of PO43- > NO3- > SO42- > Cl-, and the increase of ionic strength resulted in more pronounced inhibition. Electrostatic adsorption, reduction, and precipitation were synergistically engaged in the adsorption of Cr(VI) by nFeS@Lignite, among which reduction played a major role. The characterization results showed that Fe2+, S2-, and Cr(VI) were converted to FeOOH, S8, SO42-, Fe2O3, Cr2O3, and Fe(III)-Cr(III) complexes. This research demonstrates that nFeS@Lignite is a good adsorbent with promising potential for application in the remediation of heavy metal-contaminated wastewater.
Collapse
Affiliation(s)
- Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Xuying Guo
- College of Science, Liaoning Technical University, Fuxin, 123000, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Hanzhe Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
12
|
Shen H, Zhong D, Xu Y, Chang H, Wang H, Xu C, Mou J, Zhong N. Polyacrylate stabilized ZVI/Cu bimetallic nanoparticles for removal of hexavalent chromium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5847-5860. [PMID: 35984560 DOI: 10.1007/s11356-022-22609-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, a magnetic core-shell composite zero-valent iron/copper-polyacrylate (ZVI/Cu-PAA) was synthesized by a simple liquid-phase reduction process and used for hexavalent chromium Cr(VI) removal from wastewater. The optimization experiments show that the optimal dosages of polyacrylate and Cu are 7.00 wt% and 8.25 wt%, respectively. The maximum adsorption capacity and removal rate of Cr(VI) by ZVI/Cu-PAA reached 106.12 mg g-1 and 99.05% at pH 5.5, respectively. Furthermore, the presence of coexisting ions such as Ca2+, Mg2+, Na+, and NO3- had no significant effect on its Cr(VI) removal performance. The excellent performance of ZVI/Cu-PAA is attributed to that the modification of polyacrylate can not only give more active sites but also inhibit agglomeration of nano-metallic particles, while Cu doping promotes the electron generation and transformation of Fe(III)/Fe(II) and Cu(II)/Cu(I) redox cycles. This makes ZVI/Cu-PAA has rich active sites and excellent stability, and has broad application prospects in the remediation of Cr (VI) polluted wastewater. The magnetic core-shell composite ZVI/Cu-PAA has excellent Cr (VI) removal performance because of its rich active sites and high electron transformation efficiency.
Collapse
Affiliation(s)
- Hongyu Shen
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Haixing Chang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui Wang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunzi Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiaxing Mou
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
13
|
Salama E, Samy M, Shokry H, El-Subruiti G, El-Sharkawy A, Hamad H, Elkady M. The superior performance of silica gel supported nano zero-valent iron for simultaneous removal of Cr (VI). Sci Rep 2022; 12:22443. [PMID: 36575278 PMCID: PMC9794730 DOI: 10.1038/s41598-022-26612-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Pure nano zero-valent iron (NZVI) was fabricated under optimum conditions based on material production yield and its efficiency toward acid blue dye-25 decolorization. The optimum prepared bare NZVI was immobilized with two different supports of silica and starch to fabricate their composites nanomaterials. The three different prepared zero-valent iron-based nanomaterials were evaluated for removal of hexavalent chromium (Cr(VI)). The silica-modified NZVI recorded the most outstanding removal efficiency for Cr(VI) compared to pristine NZVI and starch-modified NZVI. The removal efficiency of Cr(VI) was improved under acidic conditions and decreased with raising the initial concentration of Cr(VI). The co-existence of cations, anions, and humic acid reduced Cr(VI) removal efficiency. The removal efficiency was ameliorated from 96.8% to 100% after adding 0.75 mM of H2O2. The reusability of silica-modified NZVI for six cycles of Cr(VI) removal was investigated and the removal mechanism was suggested as the physicochemical process. Based on Langmuir isotherm, the maximal Cr(VI) removal capacity attained 149.25 mg/g. Kinetic and equilibrium data were efficiently fitted using the pseudo-second-order and Langmuir models, respectively confirming the proposed mechanism. Diffusion models affirmed that the adsorption rate was governed by intraparticle diffusion. Adsorption thermodynamic study suggested the spontaneity and exothermic nature of the adsorption process. This study sheds light on the technology that has potential for magnetic separation and long-term use for effective removal of emerging water pollutants.
Collapse
Affiliation(s)
- Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mahmoud Samy
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Gehan El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
| | - Asmaa El-Sharkawy
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Elkady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
14
|
Du C, Xu N, Yao Z, Bai X, Gao Y, Peng L, Gu B, Zhao J. Mechanistic insights into sulfate and phosphate-mediated hexavalent chromium removal by tea polyphenols wrapped nano-zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157996. [PMID: 35964743 DOI: 10.1016/j.scitotenv.2022.157996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron via green synthesis (g-nZVI) has great potential in removing toxic hexavalent Cr(VI) from industrial wastewater. Sulfate and phosphate in wastewater can influence Cr(VI) removal by g-nZVI. In this study, the Cr(VI) removal kinetics by different g-nZVI materials were investigated with the existence of sulfate and/or phosphate, and the corresponding mechanisms were first revealed using multiple characterizations, including X-ray absorption near-edge spectra (XANES) and X-ray photoelectron spectroscopy (XPS). The results showed that Cr(OH)3 was the dominant species initially formed on the surface of g-nZVI particles before transforming to Cr2O3 during the reaction of g-nZVI with Cr(VI). Sulfate in wastewater can promote the reduction from Cr(VI) to Cr(OH)3 by g-nZVI, because sulfate triggers the release of Fe(II) and tea polyphenols (from tea extracts) from the g-nZVI surface due to the corrosion of Fe0 core, which is in line with an obvious increase in pseudo-second-order rate constant (k2) and subtle change in Cr(VI) removal capacity (qe). However, phosphate impedes the g-nZVI corrosion and inhibits qe because of the inner-sphere complexation of phosphate onto g-nZVI decreasing the released Fe(II) for Cr2O3 production. When sulfate and phosphate coexisted in contaminated water, the inhibition effect of phosphate in Cr(VI) removal by g-nZVI was stronger than the promotion of sulfate. Accordingly, qe value of g-nZVI declined from 93.4 mg g-1 to 77.5 mg g-1, while k2 remained constant as the molar ratio of phosphate/sulfate increased from 0.1 to 10 in water. This study provides new insights into applying g-nZVI in efficient Cr(VI) removal from contaminated water with enrichment of sulphates and phosphates.
Collapse
Affiliation(s)
- Changsheng Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zihan Yao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Peng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Mehmood S, Mahmood M, Núñez-Delgado A, Alatalo JM, Elrys AS, Rizwan M, Weng J, Li W, Ahmed W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. ENVIRONMENTAL RESEARCH 2022; 213:113614. [PMID: 35710023 DOI: 10.1016/j.envres.2022.113614] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, 571126, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| |
Collapse
|
16
|
Guo X, Hu Z, Gao X, Dong Y, Fu S. Study on the Preparation of Nano-FeS Loaded on Fly Ash and Its Cr Removal Performance. ACS OMEGA 2022; 7:32331-32338. [PMID: 36119996 PMCID: PMC9476507 DOI: 10.1021/acsomega.2c03699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Chromium has been considered as one of the most hazardous heavy metals because of its strong and persistent toxicity to the ecosystem and human beings. In this study, fly ash-loaded nano-FeS (nFeS-F) composites were constructed with fly ash as the carrier, and the performance and mechanism of the composites for the removal of Cr(VI) and total chromium from water were investigated. The composite was characterized by X-ray diffraction and transmission electron microscopy. The effects of fly ash size, molarity of FeSO4, and flow rate of FeSO4 solution on the removal of Cr(VI) and total chromium were investigated by a single factor experiment. The interaction of various factors was studied by the Box-Behnken response surface methodology. The optimum conditions of removal of Cr(VI)and total chromium by nFeS-F were determined. The results show that ① the optimal preparation conditions for nFeS-F were an FeSO4 concentration of 0.45 mol/L, a fly ash particle size of 120-150 mesh, and a flow rate of 0.43 mL/s.② The response surface model provides reliable predictions for the removal efficiencies of Cr(VI) and total chromium.③ The removal efficiencies of Cr(VI) and total chromium were 92.87 and 83.53%, respectively, under the optimal preparation conditions by the experimental test. This study provides an effective method for the removal of Cr(VI) and total chromium.
Collapse
Affiliation(s)
- Xuying Guo
- College
of Mining, Liaoning Technical University, Fuxin, Liaoning 123000, China
- College
of Science, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Zhiyong Hu
- College
of Mining, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Xinle Gao
- College
of Mining, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Yanrong Dong
- College
of Civil Engineering, Liaoning Technical
University, Fuxin, Liaoning 123000, China
| | - Saiou Fu
- College
of Civil Engineering, Liaoning Technical
University, Fuxin, Liaoning 123000, China
| |
Collapse
|
17
|
Xiao H, Wang Y, Peng H, Zhu Y, Fang D, Wu G, Li L, Zeng Z. Highly Efficient Degradation of Tetracycline Hydrochloride in Water by Oxygenation of Carboxymethyl Cellulose-Stabilized FeS Nanofluids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11447. [PMID: 36141721 PMCID: PMC9565224 DOI: 10.3390/ijerph191811447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transformation of organic pollutants by stabilized nano-FeS in oxic conditions is far less understood than in anoxic states. Herein, carboxymethyl cellulose-stabilized FeS (CMC-FeS) nanofluids are prepared at a CMC-to-FeS mass ratio of 1/2 and their performance of tetracycline hydrochloride (TC) degradation under oxic conditions was investigated. Here, we showed that TC could be efficiently removed by oxygenation of CMC-FeS nanofluids at neutral initial pH. We found that CMC-FeS dosages as low as 15 mg/L can achieve the TC removal efficiency as high as 99.1% at an initial TC concentration of 50 mg/L. Oxidative degradation plays a predominated role in TC removal (accounting for 58.0%), adsorption has the second importance (accounting for 37.0%), and reduction has minor impact (accounting for 4.1%) toward TC removal. Electron spin resonance assays, fluorescent detection using coumarin as a probe, and radical scavenging experiments confirm that hydroxy radicals (•OH), both in free and surface-bound forms, contribute to oxidation of TC. Humic acids brought detrimental effects on TC removal and therefore should be biologically degraded in advance. This work offers a facile and cost-effective solution to decontaminate TC in natural and engineered water bodies.
Collapse
|
18
|
Zhu G, Wang Y, Tan X, Xu X, Li P, Tian D, Jiang Y, Xie J, Xiao H, Huang X, Chen Y, Su Z, Qi J, Jia S, Zhang S. Synthesis of cellulose II-based spherical nanoparticle microcluster adsorbent for removal of toxic hexavalent chromium. Int J Biol Macromol 2022; 221:224-237. [PMID: 36084868 DOI: 10.1016/j.ijbiomac.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Since natural cellulose is mostly cellulose I and has a fibrous form, most cellulose-based adsorbents are fibrous/rod-shaped and exhibit the cellulose I crystal structure. This study reports a cellulose II-based spherical nanoparticle microcluster adsorbent (SNMA), synthesized from biomass by a bottom-up approach, for removing toxic hexavalent chromium (Cr(VI)). The basic structure of SNMA was investigated. Notably, the prepared adsorbent was a microcluster composed of spherical nanoparticles, while exhibiting cellulose II crystal structure, resulting in higher thermal stability and significantly enhanced adsorption performance. The adsorption process and mechanism of SNMA on Cr(VI) were studied in detail. The SNMA achieved a high adsorption capacity (225.94 mg/g) and receptor site density. The SNMA is expected to be used as a bio-based spherical nanoparticle microcluster adsorbent platform for the adsorption of different toxic substances by changing the surface functional groups of its components, spherical nanoparticles.
Collapse
Affiliation(s)
- Gaolu Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xi Tan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueju Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongze Jiang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiulong Xie
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xiao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuzhu Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiping Su
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinqiu Qi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Jia
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaobo Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Gao W, Tan Y, Wu B, Chen Y, Hu Z, Wang Y, Wen Y, Zhou Z, Zhou N. Nano-Fe1−xS embedded BCAA/Fe3O4 as the stabilized catalyst for simultaneous quinclorac oxidation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Zhu Q, Gao H, Sun Y, Xiang Y, Liang X, Ivanets A, Li X, Su X, Lin Z. Highly efficient adsorption of chromium on N, S-codoped porous carbon materials derived from paper sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155312. [PMID: 35439513 DOI: 10.1016/j.scitotenv.2022.155312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The synergistic effect of heteroatoms is a viable method to enhance the adsorption performance of heavy metal onto carbon-based materials. However, the high cost, complex operation and a lot of pollution from the synthesis process have limited its development. Herein, a facile two-step pyrolysis method is used to prepare in situ N and S doped porous biochar from paper mill sludge for the removal of Cr(VI) from aqueous environment. The NSC-450 sample prepared under the optimum conditions has a large specific surface area of 3336.7 m2 g-1, an average pore size of 2.56 nm and a total pore volume of 2.10 cm3 g-1, manifesting the excellent adsorption capacity of 356.25 mg g-1 for Cr(VI). The adsorption of Cr(VI) by NSC-450 is consistent with the Langmuir isotherm and pseudo-second-order model, suggesting a spontaneous and endothermic chemisorption process. The analysis results show that the NH, graphitic nitrogen and thiophene structures have a positive effect on converting a large amount of Cr(VI) to Cr(III) by synergistic reduction, indicating obviously facilitating Cr(VI) removal compared to other sites. Therefore, in this material, the strong adsorption mechanism is mainly reductive complexation. Moreover, the effects of real water quality, anions, cations and fulvic acid on the adsorption behavior of Cr(VI) onto the NSC-450 were further investigated. The results demonstrate that the chromium removal rate remains above 82% even in actual electroplating wastewater, suggesting NSC-450 has great practical application prospect. This work offered a feasible method for high-value utilization of sludge, but also provided a novel perspective for the future design of heteroatom-doped carbon materials for promoting to eliminate hexavalent chromium from water environment.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Huiqin Gao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yiwei Sun
- China-Singapore International Joint Research Institute (CSIRI), Guangzhou 510006, China
| | - Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiangjing Liang
- Guangzhou Haitao Environmental Protection Technology Company Limited, Guangzhou, Guangdong 511340, China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072 Minsk, Belarus
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhang Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
21
|
Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Sethi S, Thakur S, Sharma D, Singh G, Sharma N, Kaith BS, Khullar S. Malic acid cross-linked chitosan based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Xu R, Li Q, Yang Y, Jin S, Liao L, Wu Z, Yin Z, Xu B, Nan X, He Y, Zhu B, Jiang T. Removal of heavy metal(loid)s from aqueous solution by biogenic FeS-kaolin composite: Behaviors and mechanisms. CHEMOSPHERE 2022; 299:134382. [PMID: 35318021 DOI: 10.1016/j.chemosphere.2022.134382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
In this work, a green adsorbent, biogenic FeS-kaolin composite (KL-FeS) was synthesized by sulfate-reducing bacteria (SRB) mediation, and its potential for Cd(II), Pb(II), Cu(II), Zn(II), As(III) and Sb(III) removal was evaluated. Among prepared composites, the KL-FeS synthesized at a concentration of 2 g/L kaolin performed a better removal efficiency on heavy metal(loid)s and the adsorption results followed the pseudo-second-order and Redlich-Peterson models, indicating that the adsorption was a hybrid chemical reaction-adsorption process. Additionally, the maximum adsorption capacities of Cd(II), Pb(II), Cu(II), Zn(II), As(III) and Sb(III) on KL-FeS in monocomponent system were 71.71, 133.54, 51.90, 54.41, 38.71 and 96.38 mg/g, respectively (pH = 5.0 ± 0.1, T = 25 °C). In addition, the increase of pH and ionic strength promoted the adsorption capacities of KL-FeS for metal-(loid)s. Moreover, FTIR, XPS and XRD analyses supported that surface complexation, hydrogen bonding, ion exchange, electrostatic interaction and chemical precipitation were predominately mechanisms involved in the adsorption process. Furthermore, KL-FeS displayed higher affinity for Pb(II), Sb(III) and Cu(II) in the multi-component system. This work highlighted the potential of biogenic FeS-kaolin composite for simultaneous removal of multiple heavy metal(loid)s under aerobic conditions.
Collapse
Affiliation(s)
- Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shengming Jin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Lang Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhenguo Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhe Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Bin Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaolong Nan
- 306 Bridge of Hunan Nuclear Geology, Changsha, 410083, China
| | - Youyu He
- 306 Bridge of Hunan Nuclear Geology, Changsha, 410083, China
| | - Bing Zhu
- 306 Bridge of Hunan Nuclear Geology, Changsha, 410083, China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
24
|
Xi Y, Xie T, Liu Y, Wu Y, Liu H, Su Z, Huang Y, Yuan X, Zhang C, Li X. Carboxymethyl cellulose stabilized ferrous sulfide@extracellular polymeric substance for Cr(VI) removal: Characterization, performance, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127837. [PMID: 34883376 DOI: 10.1016/j.jhazmat.2021.127837] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Iron-based materials, especially ferrous sulfide (FeS), effectively remediate chromium pollution. However, the agglomeration of FeS reduces its reactivity to chromium. Herein, carboxymethyl cellulose stabilized ferrous sulfide@extracellular polymeric substance (CMC-FeS@EPS) was developed to remove hexavalent chromium (Cr(VI)) from water. CMC-FeS@EPS (98.00%) exhibited excellent removal efficiency of 40 mg/L Cr(VI) than those of FeS (57.35%) and CMC-FeS (68.60%). CMC-FeS@EPS showed good removal efficiency of Cr(VI) in wide pH range (from 4 to 9) and the co-existence of ions. FTIR and XPS results demonstrated that EPS functional group accelerated the process of adsorption and precipitation. Electrochemical results showed that CMC-FeS@EPS transferred electrons to Cr(VI) faster than CMC-FeS. In total, this study started from a new idea of using EPS to improve the performance of CMC-FeS, and provided a simple and effective way to remediate chromium pollution without secondary pollution.
Collapse
Affiliation(s)
- Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
25
|
Enhanced performance for total Cr removal using a novel h-BN supported nanoscale iron sulfide composite: stabilization effects and removal mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Nie X, Li G, Wang Y, Luo Y, Song L, Yang S, Wan Q. Highly efficient removal of Cr(VI) by hexapod-like pyrite nanosheet clusters. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127504. [PMID: 34678566 DOI: 10.1016/j.jhazmat.2021.127504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Pyrite nanomaterials show an excellent performance in remediating Cr(VI) contaminated wastewater. However, the high surface reactivity makes them easy to agglomerate to reduce their removal efficiency for Cr(VI). In this study, a novel hexapod-like pyrite nanosheet clusters material was successfully synthesized via a facile hydrothermal method with the assistance of fluorides. The products were pyrite microspherulites without fluoride ion. The hexapod-like pyrite nanosheet clusters had dramatically higher Cr(VI) removal efficiencies than microspherulites due to more dissolved Fe(II) and S(-II) into the suspension released for nanosheet clusters should be responsible for the enhanced removal rate of Cr(VI). The XPS analysis revealed that the rapid adsorption on the surface of pyrite nanosheet clusters followed by reduction of Cr(VI) to Cr(III) by FeS2 and subsequent precipitation of Cr(III) hydroxides/oxyhydroxides are responsible for the high removal capacity of Cr(VI). The hexapod-like pyrite nanosheet clusters material had high stability and longevity, and did not aggregate during the Cr(VI) removal process. The removal efficiency of Cr(VI) was still 100% after 5 cycles. Our study shows that the hexapod-like pyrite nanosheet clusters material could be acted as a recyclable and promising mineral material with high activity, stability, feasibility for remediating Cr(VI) contaminated environment.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Yingmei Luo
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Lei Song
- School of Chemistry and Materials Science, Guizhou Education University, 115 Gaoxin Road, Wudang District, Guiyang 550018, Guizhou, China
| | - Shuguang Yang
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| |
Collapse
|
27
|
Yin L, Mi N, Yao Y, Li J, Hu X, Zhang Y, Yang S, Ni L, Li S, He H. Preparation of nano-ferrous sulfide modified with phytate for efficient Cr(VI) removal in aqueous solutions. ENVIRONMENTAL TECHNOLOGY 2022:1-10. [PMID: 35099365 DOI: 10.1080/09593330.2022.2036249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Phytate-modified nano-ferrous sulfide (IP6-nano-FeS) was successfully prepared to overcome the low efficiency of heavy metal removal by nano-ferrous sulfide (nano-FeS) due to the agglomeration and easy oxidization of this reducing agent. The results showed that IP6-nano-FeS improved the dispersion of nano-FeS particles, and the maximum Cr(VI) removal reached 436.94 ± 25.40 mg/g. A more novel contribution of this study is that Cr(VI) removal by IP6-nano-FeS was enhanced in the presence of Mg2+, Ca2+, and O2. The removal efficiency increased by ∼10% and ∼8.5% in the presence of conventional cations (Mg2+ and Ca2+: 2-10 g/L) and O2, respectively. The application potential of IP6-nano-FeS for the rapid removal of Cr(VI)-contamination in the presence of aerobic and coexisting cations was confirmed in this study.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Na Mi
- Jiangsu Suli Environmental Technology Co., Ltd., Nanjing, People's Republic of China
| | - Youru Yao
- School of Geography and Tourism, Anhui Normal University, Wuhu, People's Republic of China
| | - Jing Li
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education; School of Environment, Hohai University, Nanjing, People's Republic of China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, People's Republic of China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Zhao R, Wang Y, An Y, Yang L, Sun Q, Ma J, Zheng H. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126917. [PMID: 34464865 DOI: 10.1016/j.jhazmat.2021.126917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous present antibiotics in aquatic environment is attracting increasing concern due to the dual problems of bioaccumulation toxicity and antibiotic resistance. In this study, a low-cost chitin-biocalcium (CC) composite was developed by a facile alkali activation process from shell waste for typical antibiotics ciprofloxacin (CIP) removal. Response surface methodology (RSM) was utilized to optimize synthesis methodology. The optimized CC products featured superior CIP removal capacity of 2432 mg/g at 25 °C (adsorption combined with flocculation), rapid adsorption kinetics, high removal efficiency (95.58%) and wide pH adaptability (under pH range 4.0-10.0). The functional groups in chitin and high content of biocalcium (Ca2+) endowed CC abundant active sites. The kinetic experimental data was fitted well by pseudo-second-order and intraparticle diffusion model at different concentrations, revealing the removal was controlled by chemisorption and mass transport step. From the macroscopic aspect, flocs were produced with the increase of CIP concentration during the reaction, adsorption combined with flocculation were related to the CIP removal. From the microcosmic aspect, the superior removal performance was attributed to cation bridging, cation complexation among biocalcium-CIP and hydrogen bond between functional groups of chitin and CIP.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yuxuan Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Liuwei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
29
|
Yuan M, Gu Z, Minale M, Xia S, Zhao J, Wang X. Simultaneous adsorption and oxidation of Sb(III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127013. [PMID: 34461535 DOI: 10.1016/j.jhazmat.2021.127013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 05/27/2023]
Abstract
In this work, the superabsorbent polymer hydrogel (SPH) of Poly(potassium acrylate-co-acrylamide (PPAA)) incorporated with Fe-Mn binary oxides (FMBOs) was synthesized and used for the removal of Sb(III) from water. Characterization analysis proved that FMBO3 was successfully encapsulated into the SPH. The Fe/Mn oxide species in the composite SPH comprised FeO(OH), Fe2O3, MnO(OH), and MnO2. The functional groups including N-H, -OH, carboxy as well as Fe atoms were confirmed adsorption sites through ligand exchange and inner-sphere complexes formation. Mn oxides can partially oxidize Sb(III) to Sb(V). Compared with the pseudo-first-order model, the pseudo-second-order model could better describe the adsorption kinetics. And the swelling degree of the composite SPH had a positive impact on the removal rate. The Langmuir-Freundlich model was the most suitable isotherm model to analyze the experimental data. According to thermodynamic parameters, the adsorption process was a spontaneous exothermic reaction. The maximum adsorption capacity of the composite SPH for Sb(III) could be up to 105.59 mg/g at 288 K. In addition, a stable removal rate can be achieved over a wide pH range of 3-10, with little metal leaching even under acidic conditions. Furthermore, coexisting ions and DOM displayed an insignificant influence on the adsorption of Sb(III).
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zaoli Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Mengist Minale
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
30
|
Yao Y, Hu X, Zhang Y, He H, Li S. Visible light promoted the removal of tetrabromobisphenol A from water by humic acid-FeS colloid. CHEMOSPHERE 2022; 289:133192. [PMID: 34890606 DOI: 10.1016/j.chemosphere.2021.133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
Ferrous sulfide (FeS) and humic acid (HA) are typical black substances in black bloom water. Based on the strong reduction ability of FeS and the photosensitivity of HA, the transformation of toxic organic pollutants by the combination of FeS and HA (HA-FeS) is not clear. In order to explore this issue, the stability of HA-FeS was analyzed by measuring the hydrodynamic diameter and zeta potential of HA-FeS, and then the removal mechanism and possible degradation pathway of tetrabromobisphenol A (TBBPA) by HA-FeS under continuous illumination were discussed. The results showed that the hydrodynamic diameter of FeS was reduced and the stability of FeS was improved, and it was easily suspended after FeS combined with the HA in the water. The combination of HA and FeS promoted the removal of TBBPA in water, no matter it was in the presence or absence of light. Besides, compared with the absence of light, the removal efficiency of TBBPA was improved by HA-FeS with continuous light. There were two reasons for the increase in the removal efficiency of TBBPA by HA-FeS. On the one hand, Fe2+ and S2- of HA-FeS had more stable chemical valence and obtained better reducibility under continuous light than that in the dark. On the other hand, light induced the release of active species (O2-, 1O2, and OH) in the HA-FeS composite colloid and further promoted the degradation of organic pollutants. Therefore, the black substances (FeS) of black blooms may play a beneficial role in the removal of pollutants under sunlight.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
31
|
Bucatariu F, Teodosiu C, Morosanu I, Fighir D, Ciobanu R, Petrila LM, Mihai M. An Overview on Composite Sorbents Based on Polyelectrolytes Used in Advanced Wastewater Treatment. Polymers (Basel) 2021; 13:3963. [PMID: 34833262 PMCID: PMC8625399 DOI: 10.3390/polym13223963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023] Open
Abstract
Advanced wastewater treatment processes are required to implement wastewater reuse in agriculture or industry, the efficient removal of targeted priority and emerging organic & inorganic pollutants being compulsory (due to their eco-toxicological and human health effects, bio-accumulative, and degradation characteristics). Various processes such as membrane separations, adsorption, advanced oxidation, filtration, disinfection may be used in combination with one or more conventional treatment stages, but technical and environmental criteria are important to assess their application. Natural and synthetic polyelectrolytes combined with some inorganic materials or other organic or inorganic polymers create new materials (composites) that are currently used in sorption of toxic pollutants. The recent developments on the synthesis and characterization of composites based on polyelectrolytes, divided according to their macroscopic shape-beads, core-shell, gels, nanofibers, membranes-are discussed, and a correlation of their actual structure and properties with the adsorption mechanisms and removal efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model pollutants) are presented.
Collapse
Affiliation(s)
- Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Daniela Fighir
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Larisa-Maria Petrila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
| | - Marcela Mihai
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| |
Collapse
|
32
|
Kong A, Sun Y, Peng M, Gu H, Fu Y, Zhang J, Li W. Amino-functionalized MXenes for efficient removal of Cr(VI). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Hsini A, Benafqir M, Naciri Y, Laabd M, Bouziani A, Ez-zahery M, Lakhmiri R, Alem NE, Albourine A. Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: Adsorption behavior, regeneration and process capability studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126274] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Zhao R, Zheng H, Zhong Z, Zhao C, Sun Y, Huang Y, Zheng X. Efficient removal of diclofenac from surface water by the functionalized multilayer magnetic adsorbent: Kinetics and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144307. [PMID: 33341637 DOI: 10.1016/j.scitotenv.2020.144307] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 05/09/2023]
Abstract
Developing robust and effective adsorbent for removing ubiquitous pharmaceutical diclofenac (DCF) from the aquatic environment is vitally important for environmental safety. Hence, a novel chitosan-based multilayer adsorbent (FCS-PD) with magnetic separation ability and surface functionality was successfully assembled, which had countless potential for removing contaminants from water. A series of instrumental technologies were performed to demonstrate the physicochemical properties of FCS-PD. Its adsorption performance toward DCF removal was comprehensively evaluated in synthetic water and surface water. The effects of microplastics, inorganic ions and humic acid on the adsorption were investigated. The maximum adsorption capacity of FCS-PD was calculated as 434.78 mg/g under neutral conditions, exhibiting superior adsorption performance than most reported adsorbents. The DCF in surface water was practically removed at low concentration (50 μg/L). FCS-PD presented a multistage kinetics controlled by chemisorption and intraparticle diffusion, which was emphasized by the pseudo-second-order kinetic and intra-particle diffusion analysis. After five cycles of adsorption and regeneration, the adsorption capacity only decreased by 9.9%, indicating the satisfactory regeneration of FCS-PD. The analysis of high-resolution X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectroscopy (FTIR) revealed that the quaternary ammonium groups on the outer layer and the amino and hydroxyl groups on the chitosan layer are involved in the capture of DCF under electrostatic force and hydrogen bonding.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zheng Zhong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chun Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Yaoyao Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xinyu Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
36
|
Tang X, Ran G, Li J, Zhang Z, Xiang C. Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123579. [PMID: 33254745 DOI: 10.1016/j.jhazmat.2020.123579] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 05/27/2023]
Abstract
For the first time, zinc chloride activation method was used to prepare waste paper-based activated carbon in this study. The structure, morphology, surface functional groups and particle size distribution of the activated carbon was study using automatic specific surface area analyzer, FTIR, Boehm titration, X-ray diffraction, SEM and EDS. The specific surface area of the activated carbon is up to 1987 m2/g. Cumulative pore volume is up to 2.586 cm3/g, with micropore volume accounting for 92 %. Methylene blue adsorption performance results shown that the adsorbent has achieved high removal efficiency (99.65 % in 10 min, uptake = 996.5 mg/g), its maximum adsorption capacity has reached 1657 mg/g. The pHpzc of the adsorbent was determined to explore the adsorption mechanism, its results shown that electrostatic adsorption occurs between adsorbents and adsorbents at pH higher than pHpzc (pHpzc = 3.2). Moreover, adsorption mechanism was studied by various isothermal models, thermodynamic models, kinetic models. Redlich-Peterson isotherm model best describes the adsorption experiment, which indicated that the adsorption follows a non-ideal and mixed adsorption mechanism. Methylene blue molecules gone into micropore was the adsorption rate-limiting step, and MB adsorption by the waste paper-based adsorbent was a spontaneous, endothermic and randomly increasing adsorption. Simulated wastewater and regeneration experiments were also used to evaluate the adsorbent's treatment capacity and economic efficiency, and these results indicated that the adsorbent has good decolorization and regeneration ability.
Collapse
Affiliation(s)
- Xiaodong Tang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China.
| | - Gang Ran
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Jingjing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Zhiqi Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Chengxin Xiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| |
Collapse
|