1
|
Wen J, Zhang K, Liu Y, Du Z, Xiong C, Jiang H. Direct extraction of ten estrogens from milk samples with DVB/NVP-modified magnetic solid-phase extraction adsorbent followed by pre-column derivatization-UHPLC-MS/MS. Food Chem 2024; 459:140312. [PMID: 39003855 DOI: 10.1016/j.foodchem.2024.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Estrogens and their analogues can cause harm to human health through the food chain. Ten estrogens in different milk samples were directly extracted by amphiphilic divinylbenzene/N-vinyl-2-pyrrolidone (DVB/NVP)-Fe3O4@SiO2-based magnetic solid-phase extraction (MSPE) followed by pre-column derivatization and ultra-high performance liquid chromatography tandem mass-spectrometry (UHPLC-MS/MS) detection. Under the optimal conditions, the limits of detection for ten analytes were in the range of 0.05-0.38 ng mL-1 in whole liquid milk matrix and 0.04-3.00 ng g-1 in milk powder matrix. The intra-/inter-day accuracy ranged in 83.4-113.8%, with RSDs in 2.5-15.0%. A total of 15 brands of liquid milk and milk powder samples were analyzed, and only estradiol was detected in three brands of boxed liquid milk within safe range. The proposed sample pretreatment eliminated the common protein precipitation process, improved the sample throughput, and has the potential for routine testing of estrogens and their analogues in market-sale milk samples.
Collapse
Affiliation(s)
- Jiaxi Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Kehan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Yujun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Zhifeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Chaomei Xiong
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China..
| | - Hongliang Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| |
Collapse
|
2
|
Wang Z, Ren X, Zhang A, Sun M, Ding Z, Fan J. A fungal hyphae-derived biomass carbon for magnetic solid-phase extraction of the organochlorine pesticides in water samples, tea beverages, and Chinese traditional medicines before gas chromatography-tandem mass spectrometry determination. Food Chem 2024; 457:140123. [PMID: 38917562 DOI: 10.1016/j.foodchem.2024.140123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
A magnetic biochar nanomaterial derived from fungal hyphae was introduced into the sample preparation field. The magnetic fungal hyphae-derived biomass carbon (MFHBC) could be produced by a controllable hydrothermal method. In order to obtain the best sorbent for magnetic solid-phase extraction (MSPE), the reaction conditions containing temperature, time and the consumption of fungal hyphae were investigated. A series of MFHBC materials were characterized by vibrating sample magnetometers, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. A material with a satisfactory saturation magnetization (21.58 emu g-1) and largest surface area (88.06 m2 g-1) was selected as the sorbent to extract ten typical organochlorine pesticides (OCPs). The extraction conditions were optimized as 20 mL of sample solution with 70 mg of sorbent and 2.0 g of NaCl oscillated at 50 °C for 5.0 min. And the optimum desorption was performed by oscillating sorbent in 1.0 mL acetonitrile for 5.0 min. Then, the MFHBC-based MSPE-GC-MS/MS methods were established for different samples including water samples, tea beverages, and Chinese traditional medicines. The linearities were 10-2500 ng L-1 or 100-25,000 ng kg-1, and the limits of detection were 0.3-13.9 ng L-1 for water sample, 0.1-9.7 ng L-1 for tea beverage samples, 0.1-21.4 ng L-1 for Shenqi Fuzheng injection samples, and 7.2-278.3 ng kg-1 for Astragali Radix decoction pieces. Except for satisfactory repeatability (RSDs ≤13.8%) in intra-day and inter-day tests (n = 3), the reproducibility (RSDs ≤13.5%, n = 3) of MFHBC was acceptable. The methods were applied in the determination of OCPs from above real samples, with the recoveries of 80.5-117.2% and the RSDs (n = 3) <8.9%. The methods were suitable in the sensitive determination of OCPs from simple to complex matrix samples.
Collapse
Affiliation(s)
- Zhenzhong Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaoyan Ren
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Ainv Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Zongqing Ding
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Jing Fan
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
3
|
Alsuhybani M, Aleid M, Alzidan R, Bin Bander K, Alrehaili A. High removal of methylene blue and methyl violet dyes from aqueous solutions using efficient biomaterial byproduct. Heliyon 2024; 10:e36731. [PMID: 39296183 PMCID: PMC11407934 DOI: 10.1016/j.heliyon.2024.e36731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Dyes are among the toxic contaminants that significantly impact water ecosystems. A biomaterial prepared from Zizyphus Spina-Christi seed (ZSCS) to remove methylene blue (MB) and methyl violet (MV) from an aqueous solution was investigated. Several techniques have been used, including FTIR, SEM, EDX, XPS, and TGA, to characterize the physical and chemical properties of ZSCS. The effect of various parameters such as pH, adsorbent dosage, contact time, temperature, and initial dye concentration on the adsorption process were studied. The ZSCS adsorbent showed efficient MB and MV dye adsorption with Langmuir adsorption capacity of 666.66 and 476.19 mg/g, respectively, at experimental condition [(pH = 6; time = 30 min; T = 45 °C, dye concentration: 500 mg/L, and adsorbent dose = 0.6 g/L for MB and 1 g/L for MV dye)]. Kinetic and isotherm models were applied to fit the experimental outcomes. The result showed that ZSCS showed an ultrafast absorption process with a high removal efficiency of MB and MV within 5 min indicating its effective adsorption properties. The Langmuir isotherm model was the most suitable model for describing the adsorption of MB and MV dyes on ZSCS. The pseudo-second-order model kinetic fits better to MB and MV adsorption onto ZSCS than other models, suggesting that the adsorption mechanism followed chemisorption. Our results could offer an efficient cost-effective approach for dye removal from wastewater.
Collapse
Affiliation(s)
| | - Musaad Aleid
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Reema Alzidan
- Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khaled Bin Bander
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ayman Alrehaili
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Xue S, Wang Y, Bo W, Wan K, Miao Z. Calcium-doped magnetic humic acid nano particles for the efficient removal of heavy metals from wastewater: the role of Ca. ENVIRONMENTAL TECHNOLOGY 2024; 45:3228-3243. [PMID: 37194989 DOI: 10.1080/09593330.2023.2213832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Ca doping is an effective method for improving the adsorption capacity of HA-Fe aggregates and regulating their structures. Understanding the structural characteristics of Ca-HA-Fe aggregates can help explore their microscopic adsorption effect on heavy metals. However, the heterogeneity of HA results in an incomplete understanding of the structural characteristics of the ternary system of Ca-HA-Fe aggregates and adsorption of the quaternary system of Ca-HA-Fe-Pb/Cu/Cd. In this study, interactions between Ca-HA-Fe ternary and Ca-HA-Fe-Pb/Cu/Cd quaternary systems were discussed from a molecular perspective. The structures of the basic structural units of HA were identified. Density functional theory (DFT) was employed to calculate the stable states of basic structural units of HA and Ca2+. The results showed that hydroxyl and carboxyl groups exhibited the highest capacity to bind with Ca2+. The interactions among Ca, HA, and Fe led to the formation of network aggregates. The binding energies of functional groups for heavy metals and the feasibility of ion exchange were calculated by the method of experiment and DFT. According to the contribution of functional group complexation and ion exchange, the ion exchange values for Pb2+, Cu2+, and Cd2+ were 66.71%, 62.87%, and 60.79%, respectively, which indicated that Ca2+ ion exchange showed considerable potential in enhancing the adsorption capacity of heavy metals.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Yingwei Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| |
Collapse
|
5
|
Farzam SF, Shemirani F, Karimi S. Synthesis of imidazolium ionic liquid immobilized on magnetic mesoporous silica: A sorbent material in a green micro-solid phase extraction of multiclass pesticides in water. Talanta 2024; 272:125744. [PMID: 38382299 DOI: 10.1016/j.talanta.2024.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
In this study, we synthesized an imidazolium ionic liquid immobilized on magnetic mesoporous silica (IL-MMS) and evaluated its performance as a sorbent material for a green micro-solid phase extraction (μ-SPE) of multiclass pesticides in water. The synthesized IL-MMS was characterized by various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses (N2 adsorption/desorption), Vibrating Sample Magnetometer (VSM), energy-dispersive spectroscopy (EDS) and Field emission scanning electron microscopy (FESEM). Our synthesized IL-MMS demonstrated excellent magnetic properties (31.5 emu/g), high surface area (1177.4 m2/g), proper pore size (⁓4.2 nm) and volume (1.80 cm3/g). Under optimized extraction conditions, the IL-MMS exhibited a high adsorption capacity for a variety of pesticides, including organophosphates, carbamates, and pyrethroids. The proposed μ-SPE method using IL-MMS showed good linearity (R2 > 0.99), low limits of detection (LODs) ranging from 0.04 to 1.63 ng/L, and suitable recovery rate was between 82.4% and 109.8% for different pesticides. In addition, the method also exhibited excellent reproducibility, with relative standard deviations (RSDs) of less than 8% for both intra and inter-day precision. In overall, the synthesized IL-MMS has proven to be a highly promising material for sorbent-based micro-solid phase extraction (μ-SPE) of multiclass pesticides in water. With its simple, efficient, and eco-friendly approach to pesticide analysis, this method shows great potential for future pesticide detection and monitoring efforts due to its sensitivity, accuracy, and adaptability to various environmental conditions.
Collapse
Affiliation(s)
- Seyed Farnood Farzam
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Sadegh Karimi
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75168, Iran.
| |
Collapse
|
6
|
Sheng X, Mei Z, Jing Q, Zou X, Wang L, Xu Q, Guo H. Revealing the Orbital Interactions between Dissimilar Metal Sites during Oxygen Reduction Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305390. [PMID: 37797192 DOI: 10.1002/smll.202305390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Indexed: 10/07/2023]
Abstract
A FeCo/DA@NC catalyst with the well-defined FeCoN6 moiety is customized through a novel and ultrafast Joule heating technique. This catalyst demonstrates superior oxygen reduction reaction activity and stability in an alkaline environment. The power density and charge-discharge cycling of znic-air batteries driven by FeCo/DA@NC also surpass those of Pt/C catalyst. The source of the excellent oxygen reduction reaction activity of FeCo/DA@NC originates from the significantly changed charge environment and 3d orbital spin state. These not only improve the bonding strength between active sites and oxygen-containing intermediates, but also provide spare reaction sites for oxygen-containing intermediates. Moreover, various in situ detection techniques reveal that the rate-determining step in the four-electron oxygen reduction reaction is *O2 protonation. This work provides strong support for the precise design and rapid preparation of bimetallic catalysts and opens up new ideas for understanding orbital interactions during oxygen reduction reactions.
Collapse
Affiliation(s)
- Xuelin Sheng
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhiyuan Mei
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qi Jing
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Xiaoxiao Zou
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Lilian Wang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qijun Xu
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
7
|
Algethami JS, Alhamami MAM, Alqadami AA, Melhi S, Seliem AF. Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: Modeling, adsorption behavior, and mechanism analysis. Int J Biol Macromol 2024; 254:127767. [PMID: 38287576 DOI: 10.1016/j.ijbiomac.2023.127767] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Water pollution by organic dyes is one of the most serious environmental problems worldwide. Malachite green (MG) is considered as one the serious organic dyes which is discharged in wastewater by leather and textile manufacturing plants. MG dye can cause severe hazards to the environment and human health. Therefore, the removal of MG dye from wastewater is very important and essential. This study aims to synthesize a new magnetic hydrochar grafted to chitosan (MWSHC@CS) for the removal of MG dye from the aqueous solutions. Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and Zeta potential analysis were used to characterize the synthesized MWSHC@CS. Batch experiments were conducted to optimize MG dye adsorption conditions, including adsorbent mass, pH, temperature, initial concentration, and contact time. The results revealed that MWSHC@CS had an excellent removal efficiency (96.47 %) for MG dye at the optimum condition (at m: 20 mg, pH: 7.5, t: 420 min, and T: 298 K). Adsorption isotherms outcomes revealed the MG adsorption data were best fit by the Langmuir model with a maximum adsorption capacity (420.02 mg/g). Adsorption kinetics outcomes exhibited that the adsorption process of MG dye fitted well to the Elovich model. The thermodynamic results revealed that the adsorption process was physical, exothermic, and spontaneous. The adsorption mechanisms of MG onto MWSHC@CS were hydrogen bonding, electrostatic interaction, and π-π interactions. Furthermore, MWSHC@CS showed excellent reusability for the removal of MG over five cycles of adsorption-desorption (83.76 %). In conclusion, the study provides a new, low-cost, and effective magnetic nanocomposite based on chitosan as a promising adsorbent for the high-performance removal of MG dye from aqueous solutions.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran 11001, Saudi Arabia; Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia.
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran 11001, Saudi Arabia.
| | - Ayoub Abdullah Alqadami
- Department of Industrial Chemistry, Faculty of Applied Science, University of Hajjah, Yemen.
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Amal F Seliem
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran 11001, Saudi Arabia.
| |
Collapse
|
8
|
Tian X, Zhao L. Determination of concentrations of Sr and Ba in coal and coal combustion by-products: A comparison between results by ICP-MS and XRF techniques. Talanta 2024; 266:124919. [PMID: 37481887 DOI: 10.1016/j.talanta.2023.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Concentrations of trace elements in coal and coal combustion products are commonly analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) due to large number of elements detected and the relatively the low detection limits of this technique. Like other geological samples, complete dissolution of coal and coal combustion products is also essential for accurate ICP-MS results. In this study, Sr and Ba in coal and coal combustion products (fly and bottom ashes) from two coal-combustion power plants from North China analyzed by XRF and ICP-MS were comparatively studied. The concentrations of Sr and Ba analyzed by ICP-MS, when a mixture of acids (2 ml HF + 5 ml HNO3 for each 50 mg coal sample and 5 ml HF + 2 ml HNO3 for each 50 mg ash sample) was used for microwave-assisted digestion, do not fit well with the their relative XRF results. This is most probably due to the formation of the fluorides during microwave digestion, and this assumption is supported by the presence of various fluoride compounds, NaMgAl(F, OH)6·H2O, NH4MgAlF6, AlF3, and K2SiF6, in the residues of all the coal and ash samples in our sequential extraction experiment. Cations of Sr and Ba were probably trapped into the divalent cation sites of the fluorides. Concentrations of Sr and Ba analyzed by ICP-MS using increased HF and HF/HNO3 ratio (7 ml HF and 2 ml HNO3 for each 50 mg coal/ash sample) are in better agreement with the XRF results. Our results indicate that excess amount of HF probably has led to the suppression of these elements due to fluoride precipitation. The results indicate that the modified digestion method is capable of achieving complete digestion of coal samples and results in a reliable analysis of Sr and Ba concentrations in coal samples and most fly ashes by ICP-MS. However, the formation of insoluble fluorides is probably not completely suppressed for some bottom ash samples, which can result in underestimation of Sr and Ba concentrations. Nevertheless, XRF analysis can serve as a reliable cross-check method to assist in the evaluation of the accuracy of ICP-MS results.
Collapse
Affiliation(s)
- Xiao Tian
- College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Lei Zhao
- College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing, 100083, China.
| |
Collapse
|
9
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
10
|
Zhang X, Zeng L, Wang Y, Tian J, Wang J, Sun W, Han H, Yang Y. Selective separation of metals from wastewater using sulfide precipitation: A critical review in agents, operational factors and particle aggregation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118462. [PMID: 37384991 DOI: 10.1016/j.jenvman.2023.118462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Extensive research has been conducted on the separation and recovery of heavy metals from wastewater through the targeted precipitation of metal sulfides. It is necessary to integrate various factors to establish the internal correlation between sulfide precipitation and selective separation. This study provides a comprehensive review of the selective precipitation of metal sulfides, considering sulfur source types, operating factors, and particle aggregation. The controllable release of H2S from insoluble metal sulfides has garnered research interest due to its potential for development. The pH value and sulfide ion supersaturation are identified as key operational factors influencing selectivity precipitation. Effective adjustment of sulfide concentration and feeding rate can reduce local supersaturation and improve separation accuracy. The particle surface potential and hydrophilic/hydrophobic properties are crucial factors affecting particle aggregation, and methods to enhance particle settling and filtration performance are summarized. The regulation of pH and sulfur ion saturation also controls the zeta potential and hydrophilic/hydrophobic properties on the particles surface, thereby affecting particle aggregation. Insoluble sulfides can decrease sulfur ion supersaturation and improve separation accuracy, but they can also promote particle nucleation and growth by acting as growth platforms and reducing energy barriers. The combined influence of sulfur source and regulation factors is vital for achieving precise separation of metal ions and particle aggregation. Finally, suggestions and prospects are proposed for the development of agents, kinetic optimization, and product utilization to promote the industrial application of selective precipitation of metal sulfides in a better, safer, and more efficient way.
Collapse
Affiliation(s)
- Xingfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Liqiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yufeng Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jia Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jingbo Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Yang S, Zhang H, Hu Y, Jin H, Hu J, Li H, Lu M. Experimental study on remediation of petroleum-contaminated soil by combination of freeze-thaw and electro-osmosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121989. [PMID: 37301452 DOI: 10.1016/j.envpol.2023.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Electro-osmosis has been well recognized as a technique for the remediation of petroleum-contaminated soil, however seasonally freezing and thawing adds the complexity of petroleum mobility in cold regions. To investigate the influence of freeze-thaw on the electroosmotic removal of petroleum and explore the enhancement of freeze-thaw on the electroosmotic remediation efficiency in remediating the petroleum-contaminated soils, a set of laboratory tests were performed in three types of treatment modes, freeze-thaw (FT), electro-osmosis (EO) and freeze-thaw combined electro-osmosis (FE). The petroleum redistributions as well as the moisture content changes after the treatments were evaluated and compared. The petroleum removal rates of the three treatments were analyzed, and the underlying mechanisms were elaborated. The results indicated that the overall efficiency of the treatment mode regarding petroleum removal from soil followed the order of FE > EO > FT, corresponding to 54%, 36% and 21% in maximum, respectively. A considerable amount of water solution with surfactant was driven into contaminated soil during FT process, but the petroleum mobilization primarily occurred inside of the specimen. A higher remediation efficiency was yield in EO mode, but the induced dehydration and cracks leaded to the dramatical depression in the efficiency in further process. It is proposed that the petroleum removal is closely related to the flow of water solution with surfactant that is favorable to the solubility and mobilization of the petroleum in soil. Thus, the water migration induced by freeze-thaw cycles substantially improved the efficiency of the electroosmotic remediation in FE mode that gave the best performance for the remediation of the petroleum-contaminated soil.
Collapse
Affiliation(s)
- Suiqiao Yang
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Hu Zhang
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China; Permafrost Institute, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China; State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu Province, 730000, China.
| | - Yang Hu
- Lanzhou University of Technology, Lanzhou, Gansu Province, 730050, China
| | - Huijun Jin
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China; Permafrost Institute, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China; State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu Province, 730000, China
| | - Jintao Hu
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Hongchun Li
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| | - Ming Lu
- School of Civil Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, China
| |
Collapse
|
12
|
Farghal HH, Nebsen M, El-Sayed MMH. Exploitation of expired cellulose biopolymers as hydrochars for capturing emerging contaminants from water. RSC Adv 2023; 13:19757-19769. [PMID: 37404314 PMCID: PMC10316353 DOI: 10.1039/d3ra02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Expired chemicals pose a potential environmental threat to humans and living organisms. Herein, we proposed a green approach whereby expired cellulose biopolymers were converted to hydrochar adsorbents and tested for removing the emerging pharmaceutical contaminants of fluoxetine hydrochloride and methylene blue from water. A thermally stable hydrochar was produced with an average particle size of 8.1 ± 1.94 nm and a mesoporous structure that exhibited a larger surface area than the expired cellulose by 6.1 times. The hydrochar was efficient in removing the two contaminants with efficiencies that reached above 90% under almost neutral pH conditions. Adsorption exhibited fast kinetics and regeneration of the adsorbent was successful. The adsorption mechanism was hypothesized in view of the Fourier Transform Infra-Red (FTIR) spectroscopy and pH effect measurements to be mainly electrostatic. A hydrochar/magnetite nanocomposite was also synthesized, and its adsorption behavior for both contaminants was tested and it revealed an enhanced percent removal relative to the bare hydrochar by 27.2% and 13.1% for FLX and MB, respectively. This work supports the strategies for zero waste management and the circular economy.
Collapse
Affiliation(s)
- Hebatullah H Farghal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt +202-2795-7565 +202-2615-2564
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr-El Aini Street 11562 Cairo Egypt
| | - Mayyada M H El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt +202-2795-7565 +202-2615-2564
| |
Collapse
|
13
|
Zhuang M, Yao W, Han L, Bi Y, Qiao C, Lv X, Cao M, Xie H. Multivariate response surface methodology assisted modified QuEChERS method for the rapid determination of 39 pesticides and metabolites in medlar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115102. [PMID: 37311390 DOI: 10.1016/j.ecoenv.2023.115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
A modified QuEChERS method coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for residue analysis of 39 pollutants (34 commonly used multi-class pesticides and 5 metabolites) in medlar matrices (fresh, dried, and medlar juice). Samples were extracted using water with 0.1 % formic acid: acetonitrile (5: 10, v/v). The phase-out salts and five different cleanup sorbents (including N-propyl ethylenediamine (PSA), octadecyl silane bonded silica gel (C18), graphitized carbon black (GCB), Carbon nanofiber (C-Fiber) and MWCNTs) were investigated to improve the purification efficiency. The Box-Behnken Design (BBD) study was employed for an optimal solution of the volume of extraction solvent, phase-out salt, and the purification sorbents for the analytical method. The average recoveries of the target analytes in the three medlar matrices ranged from 70 % to 119 % with relative standard deviations (RSDs) of 1.0 %-19.9 %. Screening of market samples (fresh and dried medlars) collected from the major producing regions in China showed that 15 pesticides and metabolites were detected in the samples at concentrations of 0.01-2.22 mg/kg, and none of which exceeded the maximum residue limits (MRLs) set in China. The results showed that the risk of food safety by consumption of medlar products caused by the use of pesticides was low. The validated method could be used for rapid and accurate screening of multi-class multi-pesticide residues in Medlar for food safety.
Collapse
Affiliation(s)
- Ming Zhuang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Yao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Beijing Vocational College of Agriculture, Beijing 102500, China
| | - Lijun Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yingying Bi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinru Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengyuan Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
14
|
Eddy NO, Odiongenyi AO, Garg R, Ukpe RA, Garg R, Nemr AE, Ngwu CM, Okop IJ. Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell-based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64036-64057. [PMID: 37059957 DOI: 10.1007/s11356-023-26868-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
The present study was designed to synthesize and characterize calcium oxide nanoparticles (using mangrove oyster shell as a precursor) and apply the synthesized nanoparticles as a photocatalyst to degrade procaine penicillin in an aqueous solution. The photocatalyst exhibited an average band gap of 4.42 eV, showed a maximum wavelength of absorbance in the UV region (i.e., 280 nm), and is a microporous nanoparticle with a particle diameter of 50 nm. The photocatalyzed degradation of the drug was conducted under natural sunlight, and the influence of parameters such as the period of contact, catalyst load, pH, initial drug concentration, and ionic strength was investigated concerning the degradation profile. The results obtained from response surface analysis indicated that an optimum degradation efficiency of about 93% can be obtained at a concentration, pH, and catalyst dosage of 0.125 M, 2, and 0.20 g respectively, at 0.902 desirabilities. The Langmuir-Hinshelwood, modified Freundlich, parabolic diffusion, pseudo-first-/second-order, and zero-, first-, and second-order kinetic parameters were tested to ascertain the best model that best described the experimental data. Consequently, the Langmuir-Hinshelwood, modified Freundlich, and pseudo-second-order models were accepted based on the minimum error and higher R2 values. Based on the Langmuir-Hinshelwood rate constants for adsorption and photodegradation as well as the evaluated valence bond potential, the degradation of the drug first proceeded through the mechanism of adsorption and followed by the oxidation of the drug by superoxide (generated from the interaction of electrons that generated by through the absorption of UV radiation). The quantum chemical calculation gave evidence that pointed towards the establishment of strong agreement with experimental data and also showed that the carboxyl functional group in the drug is the target site for adsorption and subsequent degradation.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Anduang Ofuo Odiongenyi
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Akwa, Ibom State, Nigeria
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | | | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Comfort Michael Ngwu
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Imeh Jospeh Okop
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Akwa, Ibom State, Nigeria
| |
Collapse
|
15
|
Alterary SS, Amina M, El-Tohamy MF. Biogenic sunflower oil-chitosan decorated fly ash nanocomposite film using white shrimp shell waste: Antibacterial and immunomodulatory potential. PLoS One 2023; 18:e0282742. [PMID: 37011052 PMCID: PMC10069790 DOI: 10.1371/journal.pone.0282742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023] Open
Abstract
A new sunflower oil-chitosan decorated fly ash (sunflower oil/FA-CSNPs) bionanocomposite film was synthesized using the extract of Litopenaeus vannamei (White shrimp) and evaluated as an antibacterial and immunomodulatory agent. Fly ash-chitosan nanoparticles were produced by using chitosan (CS) isolated from white shrimp extract, glacial acetic acid and sodium tripolyphosphate solution as cross-linkage. The ultrafine polymeric sunflower oil-CS film was fabricated by treating fly ash-chitosan nanoparticles with sunflower oil in glacial acetic acid under continuous stirring for 24 h. The nanostructure of the fabricated polymeric film was confirmed and characterized by different microscopic and spectroscopic approaches. The surface morphology of pre-synthesized bionanocomposite film was found to be homogenous, even and without cracks and pores. The crystallinity of formed bionanocomposite film was noticed at angles (2θ) at 12.65°, 15.21°, 19.04°, 23.26°, 34.82°, and 37.23° in the XRD spectrum. The fabricated film displayed excellent stability up to 380 ⁰C. The formed sunflower oil/FA-CSNPs bionanocomposite film showed promising antibacterial towards Bacillus subtilis with highest zone of inhibition of 34 mm and Pseudomonas aeruginosa with zone of inhibition of 28 nm. The as-synthesized bionanocomposite film exhibited highest cell viability effect (98.95%), followed by FA-CSNPs (83.25%) at 200 μg mL-1 concentrations. The bionanocomposite film exerted notable immunomodulatory effect by promoting phagocytosis and enhancing the production of cytokines (NO, IL-6, IL-1β, and TNF-α) in macrophage-derived RAW264.7 cell line.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Diehl M, Silva LFO, Schnorr C, Netto MS, Bruckmann FS, Dotto GL. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51920-51931. [PMID: 36820982 DOI: 10.1007/s11356-023-26006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g-1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications.
Collapse
Affiliation(s)
- Matheus Diehl
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Franciele S Bruckmann
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
17
|
Wang T, Kumar A, Wang X, Zhang D, Zheng Y, Wang G, Cui Q, Cai J, Zheng J. Construction of activated biochar/Bi 2WO 6 and /Bi 2MoO 6 composites to enhance adsorption and photocatalysis performance for efficient application in the removal of pollutants and disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30493-30513. [PMID: 36434458 DOI: 10.1007/s11356-022-24049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To synergistically enhance the adsorption and photocatalytic performance of Bi2WO6 and Bi2MoO6, using activated biochar (ACB) as substrate, ACB-Bi2WO6 and ACB-Bi2MoO6 composites were facilely prepared by hydrothermal synthesis. Their adsorption-photocatalytic degradation effects on rhodamine B (RhB), tetracycline (TC), and norfloxacin (NOR) were comparatively investigated. Additionally, the effects of environmental factors, wastewater treatment tests, and disinfection were systematically studied, and the enhancement mechanisms and reasons for the degradation differences were highlighted. The results showed that ACB-Bi2WO6 and ACB-Bi2MoO6 were confirmed to form intimately contacted heterojunctions by various advanced characterization techniques. The introduction of ACB narrowed the band-gap energy of Bi2WO6 and Bi2MoO6, and improved the visible light absorption range and specific surface area. The optimal loading ratios of ACB-Bi2WO6 and ACB-Bi2MoO6 were 1:1.06 and 1:0.58, respectively. The removal rate of ACB-Bi2WO6 for high concentrations of RhB (200 mg·L-1), TC and NOR (50 mg·L-1) were 89.15%, 87.27%, and 72.17%, respectively, which were higher than those of ACB-Bi2MoO6 and significantly stronger than those of Bi2WO6 and Bi2MoO6. This was attributed to the more effective inhibition of photogenerated carrier recombination, higher absorbance, and uniform morphology via ACB-Bi2WO6. ·OH and holes were dominant active species in photocatalysis, and the possible photogenerated carrier transfer path is type II heterojunction. Furthermore, ACB-Bi2WO6 possessed good reusability, and the removal of RhB and TC from the actual wastewater exceeded 80.63% and 58.54%, respectively. The sterilization rates of ACB-Bi2WO6 reached 99% and 95% for E. coli and S. aureus within 24 h, respectively. Therefore, ACB-Bi2WO6 was more recommended for environmental applications.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, People's Republic of China
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Di Zhang
- College of Plant Sciences, Tarim University, Alar, 843300, People's Republic of China
| | - Yi Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Guogang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jinjun Cai
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China.
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
18
|
Pompeu LD, Viana AR, Fernandes LDS, da Silva WL. Evaluation of cytotoxicity, reactive oxygen species and nitrous oxide of nanochitosan from shrimp shell. Int J Biol Macromol 2023; 235:123730. [PMID: 36801308 DOI: 10.1016/j.ijbiomac.2023.123730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
This work aims to synthesize, characterize and evaluate the biological activity of nanochitosan (NQ) prepared from shrimp, showing an innovative character and correlating with sustainable development, in promoting an alternative to the solid waste (shrimp) shell and a biological application of the novel nanomaterial. The NQ synthesis was carried out by the alkaline deacetylation process of chitin obtained of the demineralization, deproteinization and deodorization steps from shrimp shells. NQ was characterized by X-ray Powder Diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), N2 porosimetry (BET/BJH methods), zeta potential (ZP) and zero charge point (pHZCP). To evaluate the safety profile was carried out the cytotoxicity, DCFHA and NO tests in 293T and HaCat cell lines. Regarding the cell viability, NQ did not show toxicity for the tested cell lines. In the evaluation of the ROS production and NO tests, there was no increase in the levels of free radicals and between the negative control, respectively. Therefore, NQ does not present cytotoxicity in the cell lines tested (10, 30, 100 and 300 μg mL-1), proposing new perspectives on the use of NQ as a potential nanomaterial for biomedical applications.
Collapse
Affiliation(s)
- Lenise Deon Pompeu
- Nanoscience Graduate Program, Franciscan University, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
19
|
Labanda J, Llorens J. Separation of tripeptides in binary mixtures using ion-exchange membrane adsorber. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Majdoubi H, Alqadami AA, Billah RELK, Otero M, Jeon BH, Hannache H, Tamraoui Y, Khan MA. Chitin-Based Magnesium Oxide Biocomposite for the Removal of Methyl Orange from Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20010831. [PMID: 36613153 PMCID: PMC9819834 DOI: 10.3390/ijerph20010831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
In this work, a cost-effective chitin-based magnesium oxide (CHt@MgO) biocomposite with excellent anionic methyl orange (MO) dye removal efficiency from water was developed. The CHt@MgO biocomposite was characterized by FT-IR, XRD, SEM-EDX, and TGA/DTG. Results proved the successful synthesis of CHt@MgO biocomposite. Adsorption of MO on the CHt@MgO biocomposite was optimized by varying experimental conditions such as pH, amount of adsorbent (m), contact time (t), temperature (T), and initial MO concentration (Co). The optimized parameters for MO removal by CHt@MgO biocomposite were as follows: pH, 6; m, 2 g/L; t, 120 min. Two common isotherm models (Langmuir and Freundlich) and three kinetic models (pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD)) were tested for experimental data fitting. Results showed that Langmuir and PFO were the most suitable to respectively describe equilibrium and kinetic results on the adsorption of MO adsorption on CHt@MgO biocomposite. The maximum Langmuir monolayer adsorption capacity (qm) on CHt@MgO biocomposite toward MO dye was 252 mg/g at 60 °C. The reusability tests revealed that CHt@MgO biocomposite possessed high (90.7%) removal efficiency after the fifth regeneration cycle.
Collapse
Affiliation(s)
- Hicham Majdoubi
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | | | - Rachid EL Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, Avenue Jabran Khalil Jabran, B.P 299, El Jadida 24000, Morocco
| | - Marta Otero
- Departmento de Química y Física Aplicadas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hassan Hannache
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
- Laboratory of Engineering and Materials LIMAT, Faculty of Science Ben M’Sik, Hassan II University, Casablanca 2600, Morocco
| | - Youssef Tamraoui
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Hiremath PG, Phattepur H, Baradol OS, Shreyas KV. Application of response surface methodology for defluoridation of water using zirconia-activated carbon nanocomposite. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2144486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Poornima G. Hiremath
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Harish Phattepur
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Omkar S. Baradol
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - K. V. Shreyas
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| |
Collapse
|
22
|
de Mello R, Motheo AJ, Sáez C, Rodrigo MA. Treatment of benzene contaminated gas streams by combining adsorption and electrochemical oxidation processes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Sayqal A, Snousy MG, Mubarak MF, Ragab AH, Mohamed AMG, El Shahawy A. Synthetization and characterization of SnCaAl2O3 nanocomposite and using as a superior adsorbent for Pb, Zn, and Cd ions in polluted water. PLoS One 2022; 17:e0276888. [PMID: 36327220 PMCID: PMC9632833 DOI: 10.1371/journal.pone.0276888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Abstract
The presence of heavy metals in drinking water or wastewater poses a serious threat to the ecosystem. Hence, the present study focused on synthesizing SnCaAl2O3 core-shell nanoparticles (C.N.P.s) in the α-Alumina phase by thermal annealing a stacked structure sandwiched between two Al2O3 layers at low temperatures. The obtained structure showed Sn N.P. floating gate with an Al2O3 dielectric stacked tunneling barrier to remove the excess of these heavy metals from polluted water. To characterize the prepared composites, X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) were used. The synthesized SnCaAl2O3 C.N.P.s composite was examined to utilize it as an adsorbent for removing Zn, Cd, and Pb divalent cations. The removal efficiency was studied by various parameters such as adsorbent dose, pH, contact time, metal concentrations, temperature, and coexisting ions. The experimental results were tested via Langmuir and Freundlich isotherm models. The obtained results were convenient to the Freundlich isotherm model. Moreover, the adsorption thermodynamic behavior of Zn+2, Cd+2, and Pb+2 on the synthesized composite was examined, and the process is endothermic and spontaneous under experimental conditions. The results illustrated that the adsorption efficiency of the SnCaAl2O3 core-shell nanoparticles (C.N.P.s) ranged from 88% to about 100% for all cations.
Collapse
Affiliation(s)
- Ali Sayqal
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi- Arabia
| | | | - Mahmoud F. Mubarak
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Ahmed H. Ragab
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Qadri T, Khan S, Begum I, Ahmed S, Shah ZA, Ali I, Ahmed F, Hussain M, Hussain Z, Rahim S, Shah MR. Synthesis of phenylbenzotriazole derivative stabilized silver nanoparticles for chromium (III) detection in tap water. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
A compact Z-scheme heterojunction of BiOCl/Bi2WO6 for efficiently photocatalytic degradation of gaseous toluene. J Colloid Interface Sci 2022; 631:44-54. [DOI: 10.1016/j.jcis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
26
|
Li Z, Mao Y, Yan X, Song Z, Liu C, Liu Z, Kang H, Yan X, Gu D, Zhang X, Huang Z. Design a flower-like magnetic graphite carbon microsphere for enhanced adsorption of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83138-83154. [PMID: 35763142 DOI: 10.1007/s11356-022-21364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a hazardous chlorinated organic chemical, so its removal is an important task to protect the whole ecosystem and human health. During the material preparation, the magnetic graphitic carbon adsorbent (HFMCM) with a sparse sheet-like stacking structure was formed by interlayer assembly of nickel hydroxide nanosheets and hydrothermal glucose carbon. The conditions for optimal performance of the adsorbent are 45 °C and pH 5. The maximum adsorption capacity of HFMCM-180 for 2,4-DCP is 147.06 mg·g-1. Adsorption behavior in accordance with Langmuir isothermal model and pseudo-second-order kinetic models. The adsorbent remains selective for 2,4-DCP in metal ion solutions. More than 75% of the adsorption capacity is maintained after five cycles of adsorption. Electrostatic interaction, hydrogen bonding, and π-π bonding play a major role in the adsorption of 2,4-DCP by HFMCM. The adsorbent was glucose as the carbon source, nickel sulfate as the magnetic source, and hexamethylenetetramine as the precipitant. Its carbonization after pretreatment with different hydrothermal temperatures resulted in the synthesis of flower-like graphitic carbon spheres with magnetic properties. The interconnected pore channels on the adsorbent surface conferred large specific surface area to the material. 2,4-DCP was efficiently adsorbed by π-π stacking, hydrogen bonding, and electrostatic attraction within the pore channels with low spatial potential resistance.
Collapse
Affiliation(s)
- Zhaoyang Li
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanli Mao
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China.
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Xiaole Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhongxian Song
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Chaopeng Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Zuwen Liu
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Haiyan Kang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xu Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Deming Gu
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xia Zhang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhenzhen Huang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
27
|
Grover R, Srivastava R, Saxena K. Luminescence studies in cadmium telluride nanocrystals grown on glass substrates. RSC Adv 2022; 12:26596-26602. [PMID: 36275160 PMCID: PMC9487583 DOI: 10.1039/d2ra01387h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
The thermal evaporation method can easily be employed to fabricate hybrid inorganic-organic LEDs and the emission properties can be controlled by varying the thickness of the nanocrystalline CdTe film. The fabrication of CdTe nanocrystals on glass substrates was demonstrated using a thermal evaporation method. Films were characterised using various experimental tools, such as SEM, TEM, AFM, UV-Vis and PL spectroscopy. The formation of nanoparticles with diameters from 1.5 nm up to 9 nm was observed in the nanocrystalline thin films. The organic light emitting diodes (OLEDs) based on these nanocrystals as an emissive layer exhibit electroluminescence (EL) in the green to yellow region of the visible spectrum, which is ascribed to the varying size dependent EL from the nanocrystals of CdTe present in the thin film. The method demonstrates an easy and convenient way to incorporate inorganic CdTe nanocrystals inside the organic light emitting devices.
Collapse
Affiliation(s)
- Rakhi Grover
- Amity Institute of Advanced Research and Studies (Materials and Devices) AIARS (M&D) & Amity Institute of Renewable and Alternative Energy AIRAE, Amity University Sector 125 Noida UP 201303 India
| | - Ritu Srivastava
- Advanced Materials and Device Metrology Division, Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL) Dr K. S. Krishnan Road New Delhi-110012 India
| | - Kanchan Saxena
- Amity Institute of Advanced Research and Studies (Materials and Devices) AIARS (M&D) & Amity Institute of Renewable and Alternative Energy AIRAE, Amity University Sector 125 Noida UP 201303 India
| |
Collapse
|
28
|
Dobrzyńska J, Wysokińska A, Olchowski R. Raspberry stalks-derived biochar, magnetic biochar and urea modified magnetic biochar - Synthesis, characterization and application for As(V) and Cr(VI) removal from river water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115260. [PMID: 35569356 DOI: 10.1016/j.jenvman.2022.115260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Raspberry stalks-derived biochar (BC), magnetic biochar-iron oxide composite (BC-Fe) and its derivative modified with urea (BC-Fe-U) were synthesized, characterized and tested as(V) and Cr(VI) ion sorbents. The surface area of BC, BC-Fe and BC-Fe-U was 259, 163 and 117 m2 g-1, respectively. The structure of BC was dominated by micropores, while in BC-Fe and BC-Fe-U mesopores predominated. Based on the XRD results, it was found that the magnetic properties of the biochar-iron oxide composites are due to the presence of ferrimagnetic magnetite (Fe3O4) and maghemite (Fe2O3). The optimal pH of As(V) and Cr(VI) adsorption onto the studied sorbents is in the range of 2.3-5.7. Pristine biochar (BC) does not adsorb As(V) ions; however, it enables rapid adsorption of Cr(VI) with the static adsorption capacity of 19.2 mg g-1. The maximum static adsorption capacities of As(V) and Cr(VI) ions onto BC-Fe and BC-Fe-U are within the range of 13.5-16.3 mg g-1. For most adsorption systems tested, adsorption equilibrium is reached within 4 h, though even a few minutes is enough to reach half of the adsorption static value. Phosphates over 0.005 mol L-1 hinder adsorption of As(V) and Cr(VI) ions. Application of at least 5 mol L-1 nitric acid allows about 95% of Cr(VI) and As(V) to be desorbed from adsorbate-loaded BC-Fe material. For other materials, the desorption efficiencies are significantly lower. BC-Fe and BC-Fe-U materials were successfully used for simultaneous Cr(VI) and As(V) removal from river water.
Collapse
Affiliation(s)
- Joanna Dobrzyńska
- Department of Analytical Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 3, 20-031, Lublin, Poland.
| | - Anna Wysokińska
- Department of Analytical Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Rafał Olchowski
- Department of Analytical Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
29
|
Shin J, Choi M, Go CY, Bae S, Kim KC, Chon K. NaOH-assisted H 2O 2 post-modification as a novel approach to enhance adsorption capacity of residual coffee waste biochars toward radioactive strontium: Experimental and theoretical studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129081. [PMID: 35650751 DOI: 10.1016/j.jhazmat.2022.129081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, NaOH-assisted H2O2 post-modification was proposed as a novel strategy to enhance the adsorption of radioactive strontium (Sr) onto residual coffee waste biochars (RCWBs). To validate its viability, the adsorption capacities and mechanisms of Sr(II) using pristine (RCWBP), H2O2 post-modified (RCWBHP), and NaOH-assisted H2O2 post-modified residual coffee waste biochars (RCWBNHP) were experimentally and theoretically investigated. The highest adsorption capacity of Sr(II) for RCWBNHP (10.91 mg/g) compared to RCWBHP (5.57 mg/g) and RCWBP (5.07 mg/g) was primarily attributed to higher negative surface zeta potential (RCWBNHP = -5.66 → -30.97 mV; RCWBHP = -0.31 → -11.29 mV; RCWBP = 1.90 → -10.40 mV) and decoration of Na on the surfaces of RCWBP via NaOH-assisted H2O2 post-modification. These findings agree entirely with the theoretical observations that the adsorption of Sr(II) onto RCWBP and RCWBHP was controlled by electrostatic interactions involving carbonyls whereas enriched carboxylic acids and decorated Na on the surfaces of RCWBNHP through the replacement of Mg and K by NaOH-assisted H2O2 modification stimulated electrostatic interactions and cation exchanges governing the adsorption of Sr(II). Hence, NaOH-assisted H2O2 post-modification seemed to be practically applicable for improving the adsorption capacity of Sr(II) using RCWB-based carbonaceous adsorbents in real water matrices.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Minhee Choi
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae Young Go
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
30
|
Zampeta C, Mastrantonaki M, Katsaouni N, Frontistis Z, Koutsoukos PG, Vayenas DV. Treatment of printing ink wastewater using a continuous flow electrocoagulation reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115033. [PMID: 35427942 DOI: 10.1016/j.jenvman.2022.115033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Printing ink wastewater from printing facilities is difficult to treat because of its heavy pollutant load (chemical oxygen demand - COD, color and total suspended solids - TSS). In this study undiluted printing ink wastewater with high COD (i.e., 20,000 mgL-1) was treated using a highly efficient, continuous flow electrocoagulation reactor with aluminum electrodes. The parameters investigated were: initial COD concentration (4000, 10,000 and 20,000 mgL-1), current density (21, 42 and 83 mAcm-2), and inlet flow rate (6, 8 and 10 mLmin-1). All parameters showed great efficiency in terms of pollutant removal for diluted printing ink wastewater. For undiluted printing ink wastewater treatment, COD, color, and TSS removal were maximized at 6 mLmin-1 flow rate reaching 82%, 98%, and 85% COD, color, and TSS removal, respectively, by applying the lower tested current density 21 mAcm-2. COD, color and TSS removal increased with increasing current density. For undiluted printing ink wastewater and a flow rate of 8 mLmin-1, COD removal was between 42 and 88%, color reduction between 85 and 99%, and TSS reduction between 83 and 98% when the applied current was increased (from 21 to 83 mAcm-2). Lower pollutant removal was observed at the highest flow rate of 10 mLmin-1 for all current densities tested. Process cost calculations in terms of electrical energy, electrode material consumption and sludge disposal, showed that the use of continuous flow electrocoagulation reactor (with flow rate 6 mLmin-1, and at 21 mAcm-2) is an affordable and effective treatment method for printing ink wastewater streams with very high COD. Sludge characterization showed Al-silicate-rich sludge. Particle sizes increased after treatment and Cu and Ti were detected in the sludge. A post-treatment stage is necessary before discharging effluent into water bodies.
Collapse
Affiliation(s)
- Charikleia Zampeta
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece.
| | - Maria Mastrantonaki
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece.
| | - Niki Katsaouni
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece.
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50100, Kozani, Greece.
| | - P G Koutsoukos
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR-26504, Patras, Greece.
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR-26504, Patras, Greece.
| |
Collapse
|
31
|
Abstract
Due to rapid industrialization, urbanization, and surge in modern human activities, water contamination is a major threat to humanity globally. Contaminants ranging from organic compounds, dyes, to inorganic heavy metals have been of major concern in recent years. This necessitates the development of affordable water remediation technologies to improve water quality. There is a growing interest in nanotechnology recently because of its application in eco-friendly, cost-effective, and durable material production. This study presents a review of recent nanocomposite technologies based on clay, applied in the removal of heavy metals from wastewater, and highlights the shortcomings of existing methods. Recently published reports, articles, and papers on clay-based nanocomposites for the removal of heavy metals have been reviewed. Currently, the most common methods utilized in the removal of heavy metals are reverse osmosis, electrodialysis, ion exchange, and activated carbon. These methods, however, suffer major shortcomings such as inefficiency when trace amounts of contaminant are involved, uneconomical costs of operation and maintenance, and production of contaminated sludge. The abundance of clay on the Earth’s surface and the ease of modification to improve adsorption capabilities have made it a viable candidate for the synthesis of nanocomposites. Organoclay nanocomposites such as polyacrylamide-bentonite, polyaniline-montmorillonite, and β-cyclodextrin-bentonite have been synthesized for the selective removal of various heavy metals such as Cu2+, Co2+, among others. Bacterial clay nanocomposites such as E. coli kaolinite nanocomposites have also been successfully synthesized and applied in the removal of heavy metals. Low-cost nanocomposites of clay using biopolymers like chitosan and cellulose are especially in demand due to the cumulative abundance of these materials in the environment. A comparative analysis of different synthetic processes to efficiently remove heavy metal contaminants with clay-based nanocomposite adsorbents is made.
Collapse
|
32
|
Li Y, Yang X, Zhu M, Dong L, Jiang H, Xu Q, Zhou H, Han Y, Feng L, Li C. Synergistic effect of combined hydrothermal carbonization of Fenton's reagent and biomass enhances the adsorption and combustion characteristics of sludge towards eco-friendly and efficient sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153854. [PMID: 35189214 DOI: 10.1016/j.scitotenv.2022.153854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The amount of lignocellulose biomass and sludge is enormous, so it is of great significance to find a treatment combining the two substances. Co-hydrothermal carbonization (Co-HTC) has emerged as an efficient approach to dispose sludge. However, the improvement of sludge upgrading and combustion performance remains an important challenge during the Co-HTC of sludge. In this work, the Co-HTC of sludge and Fenton's reagent at different mixing ratios was proposed to achieve sludge reduction. Moreover, the addition of two kinds of biomass improved the adsorption capacity and combustion performance of hydrochars. When sludge and sawdust were the Co-HTC at the mass ratio of 1:3, the liquid phase Pb concentration decreased notably to 18.06%. Furthermore, the adsorption capacity of hydrochars was further improved by modification, which was in accordance with pseudo-second-order kinetics. Particularly, the hydrochars derived from the Co-HTC had higher heating value (HHV) and could be used as a clean fuel. This study proposed a new technical route of combining the HTC with Fenton's reagent and lignocellulose biomass, which could be served as a cleaner and eco-friendly treatment of sludge.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Xingru Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Mingyu Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Hao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Yongming Han
- College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lu Feng
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Chengfei Li
- Faculty of intelligent manufacturing, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
33
|
Karatepe A, Yemen M, Kayapa F, Yılmaz E, Karipcin F, Soylak M. Vortex-assisted restricted access-based supramolecular solvent microextraction of trace Pb(II) ions with 4-(benzimidazolisonitrosoacetyl)biphenyl as a complexing agent before microsampling flame AAS analysis. Talanta 2022; 248:123651. [PMID: 35671545 DOI: 10.1016/j.talanta.2022.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
A new oxime compound, 4-(benzimidazolisonitrosoacetyl)biphenyl (BIBP) was synthesized and used as a complexing agent in this study to preconcentrate trace amounts of Pb(II) ions with vortex-assisted restricted access-based supramolecular solvent microextraction (RA/SUPRAS-LPME) method. The new complexing agent was characterized by a combination of elemental analyses, Proton Nuclear Magnetic Resonance (1H- NMR), Carbon-13 Nuclear Magnetic Resonance (13C NMR) and Fourier Transform Infrared spectroscopy (FT-IR) and techniques. Extraction of the complex which was formed at pH 8.0 was done by using a supramolecular solvent phase of tetrahydrofuran (THF) and 1-decanol. A microsampling flame atomic absorption spectrophotometer was used to measure the lead ion concentrations of the extract. The method optimized and the optimum experimental conditions were found as; pH = 8, amount of the ligand 2,25 mg, supramolecular solvent volume 50 μL, sample volume 20 mL and vortex time 3 min. The limit of detection (LOD), limit of quantification (LOQ) were calculated as 0.69 μg L-1 and 2.29 μg L-1, respectively. Linear range was found between 15.1 μg L-1 and 606 μg L-1. The developed method was applied to Pb(II) determination in real samples after evaluating the accuracy by using the TMDA-53.3 fortified environmental water sample as certified reference material.
Collapse
Affiliation(s)
- Aslıhan Karatepe
- Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Chemistry, 50300, Nevşehir, Turkey.
| | - Mustafa Yemen
- Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Chemistry, 50300, Nevşehir, Turkey
| | - Faruk Kayapa
- Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Chemistry, 50300, Nevşehir, Turkey
| | - Erkan Yılmaz
- Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey
| | - Fatma Karipcin
- Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Chemistry, 50300, Nevşehir, Turkey
| | - Mustafa Soylak
- Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039, Kayseri, Turkey; Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
34
|
Visible Light Photocatalyst and Antibacterial Activity of BFO (Bismuth Ferrite) Nanoparticles from Honey. WATER 2022. [DOI: 10.3390/w14101545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visible light-driven photocatalyst BiFeO3 (BFO) nanoparticles were synthesised by the auto-combustion method. The honey was used to fuel the auto combustion method to synthesise the BFO nanoparticles. The structural, optical and morphological activities of the bismuth loaded BFO nanoparticles were characterised by X-ray diffraction (XRD), FTIR, UV, photoluminescence (PL) and SEM analysis, respectively. The bismuth content modifies the lattice parameters of XRD and reduces the bandgap energy. The observed crystallite size varies from 19 to 27 nm and the bandgap region is 2.07 to 2.21 eV. The photo-charge carriers increased upon the BFO nanoparticles and their emission at 587 nm in the visible region of the PL spectrum. The 2% bismuth loaded BFO nanoparticles showed better morphology than 0% and 5% bismuth loaded BFO nanoparticles. The oxidation state of BFO nanoparticles and their binding energies were characterised by X-ray Photoelectron Spectroscopy (XPS) analysis. The methylene blue dye (MB) degradation against 2% BFO nanoparticles showed enhanced catalytic activity (81%) than the remaining samples of BFO nanoparticles. The bacterial activity of BFO nanoparticles was assessed against Gram-positive and Gram-negative bacteria, including S. aureus and E. coli. 2% Excess bismuth BFO nanoparticles exhibit better antibacterial activity. Comparatively, 2% Excess bismuth BFO nanoparticles derived an outstanding crystallinity, charge separation, and reduced bandgap activities. Based on these findings, BFO nanoparticles may be applicable in drug delivery and water remediation applications.
Collapse
|
35
|
Ismail MS, Yahya MD, Auta M, Obayomi KS. Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater. Heliyon 2022; 8:e09516. [PMID: 35663746 PMCID: PMC9157000 DOI: 10.1016/j.heliyon.2022.e09516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 01/22/2023] Open
|
36
|
Dudek S, Kołodyńska D. Arsenate removal on the iron oxide ion exchanger modified with Neodymium(III) ions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114551. [PMID: 35066202 DOI: 10.1016/j.jenvman.2022.114551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this study the iron oxide ion exchanger with the quaternary ammonium groups, Ferrix A33E was modified with neodymium (III) ions in order to obtain the new material Ferrix A33E-Nd(III) characterized by greater sorption efficiency of arsenate(V) ions. A33E-Nd(III) was described by various techniques including scanning electron microscopy SEM, nitrogen adsorption/desorption isotherms, Fourier transform infrared spectroscopy FTIR and X-ray photoelectron spectroscopy XPS. The point of zero charge, pHPZC was also determined. The kinetic and thermodynamic parameters of the arsenate(V) sorption were calculated. The experimental data was fitted to the four isotherm models - Langmuir, Freundlich, Dubinin-Radushkevich and Halsey. Kinetic and equilibrium studies allowed to get to know the behaviour of arsenate(V) ions during the sorption on A33E-Nd(III). The obtained material A33E-Nd(III)- was found to possess a larger maximum sorption capacity than A33E, great stability and the possibility of regeneration at least 3 times without a significant decrease in efficiency. This allows for the complete removal of As(V) ions from a solution with a concentration of 50 mg/dm3 in just 30 min. The Nd(III)-modification improved the sorption properties of the tested ion exchanger.
Collapse
Affiliation(s)
- Sebastian Dudek
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
37
|
Kim H, Kim HR. Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PLoS One 2022; 17:e0265743. [PMID: 35324974 PMCID: PMC8947145 DOI: 10.1371/journal.pone.0265743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Owing to its sustainability and environmentally friendliness, bacterial cellulose (BC) has received attention as a zero-waste textile material. Since the color of original BC was mostly yellowish white, a dyeing process is necessary to suggest BC as a textile. Thus, this study aimed to suggest a natural dyeing method using coffee to produce an eco-friendly coffee-dyed bacterial cellulose (BC-COF) bio-leather and to propose a reusing method as a dye adsorbent. To determine the dyeing and mordanting conditions with the highest color strength value, parameters such as dyeing temperature, time, mordanting methods were evaluated. Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed that BC-COF was successfully colorized with coffee without changing its chemical and crystalline structures. In addition, field-emission scanning electron microscopy and Brunauer-Emmett-Teller surface area analysis confirmed that coffee molecules were successfully incorporated into fiber structures of BC. The effects of pH, concentration, temperature, and time on the adsorption of methylene blue dye using BC-COF bio-leather were also evaluated using ultraviolet-visible spectroscopy and zeta potential measurement. The results showed that BC-COF was found to be most effective when pH 6 of methylene blue solution with a concentration of 50 mg/L was adsorbed for 30 minutes at 25°C. Moreover, BC-COF could be reused for multiple times and had better dye adsorption rate compared to the original BC. From the results, it was confirmed that BC-COF could be employed as a dye adsorbent.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Clothing and Textiles, Sookmyung Women’s University, Seoul, South Korea
| | - Hye Rim Kim
- Department of Clothing and Textiles, Sookmyung Women’s University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
38
|
Bhullar N, Garg M, Kumari K, Sud D. Synthesis of biopolymer chitosan-based hydrogels with and without a crosslinker for the removal of industrial dye procion blue HERD: a comparative study. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2046509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N. Bhullar
- Department of Chemical Engineering, Chandigarh University, Gharuan, India
| | - M. Garg
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology (Deemed to be University), Sangrur, India
| | - Kamlesh Kumari
- Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology (Deemed to be University), Sangrur, India
| | - D. Sud
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology (Deemed to be University), Sangrur, India
| |
Collapse
|
39
|
Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, Geng Z, Xu C. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol 2022; 207:254-262. [PMID: 35263647 DOI: 10.1016/j.ijbiomac.2022.02.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022]
Abstract
Due to its wide application and high toxicity, Remazol Brilliant Blue R (RBBR) has become a fatal contaminate in aquatic environment. In this study, to remove RBBR, a cellulose-based activated carbon (CAC) was synthesized at 800 °C with a cellulose-based hydrocarbon (CHC) activated by NaOH. The CHC was synthesized by the hydrothermal method with microcrystalline cellulose and urea as raw materials. The CAC possessed great amounts of N and O-containing functional groups and had well-developed pore structure. The BET specific surface area of CAC reached up to 1872.30 m2/g. The maximum adsorption capacity of CAC on RBBR was 653.19 mg/g during which chemical adsorption was the dominant mechanism. Adsorption thermodynamics indicated that the adsorption of RBBR by CAC was exothermic and spontaneous. Regeneration adsorption and ion competition experiments showed that the material could be used repeatedly and had good anti-interference ability. In addition, the removal rates of RBBR by CAC in actual water bodies, including river water and artificial lake water, were above 99.40%. Therefore, the novel CAC shows great potential for the remediation of printing and dyeing wastewater.
Collapse
Affiliation(s)
- Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiawei Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Khan MA, Hameed BH, Siddiqui MR, Alothman ZA, Alsohaimi IH. Comparative Investigation of the Physicochemical Properties of Chars Produced by Hydrothermal Carbonization, Pyrolysis, and Microwave-Induced Pyrolysis of Food Waste. Polymers (Basel) 2022; 14:polym14040821. [PMID: 35215734 PMCID: PMC8878147 DOI: 10.3390/polym14040821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
This work presents a comparative study of the physicochemical properties of chars derived by three thermochemical pathways, namely: hydrothermal carbonization, HTC (at 180, 200 and 220 °C), pyrolysis, PY, (at 500, 600 and 700 °C) and microwave assisted pyrolysis, MW (at 300, 450 and 600 W). The mass yield of HTC samples showed a decrease (78.7 to 26.7%) as the HTC temperature increased from 180 to 220 °C. A similar decreasing trend in the mass yield was also observed after PY (28.45 to 26.67%) and MW (56.45 to 22.44%) of the food waste mixture from 500 to 700 °C and 300 to 600 W, respectively. The calorific value analysis shows that the best among the chars prepared by three different heating methods may be ranked according to the decreasing value of the heating value as: PY500, MW300, and HTC180. Similarly, a decreasing trend in H/C values was observed as: PY500 (0.887), MW300 (0.306), and HTC180 (0.013). The scanning electron microscope (SEM) analyses revealed that the structure of the three chars was distinct due to the different temperature gradients provided by the thermochemical processes. The results clearly show that the suitable temperature for the HTC and PY of food waste was 180 °C and 500 °C, respectively, while the suitable power for the MW of food waste was 300 W.
Collapse
Affiliation(s)
- Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.R.S.); (Z.A.A.)
- Correspondence: or
| | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.R.S.); (Z.A.A.)
| | - Zeid A. Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.R.S.); (Z.A.A.)
| | - Ibrahim H. Alsohaimi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
41
|
Investigation on Mechanism of Tetracycline Removal from Wastewater by Sinusoidal Alternating Electro-Fenton Technique. SUSTAINABILITY 2022. [DOI: 10.3390/su14042328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sinusoidal alternating electro-Fenton (SAEF) is a new type of advanced electrochemical oxidation technology for the treatment of refractory organic wastewater. In this research, the removal performance and degradation mechanism of tetracycline (TC) were investigated, and the optimal operation parameters were determined. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) were used to characterize the morphology, elemental composition, crystal structure, function groups of sludge produced by SAEF. UV-visible spectroscopy (UV) and liquid chromatograph-mass spectrometer (LC-MS/MS) were employed to determine the concentration of organic matter, middle products of decomposed organics in the SAEF process, respectively. The results showed that the removal rates of TC, chemical oxygen demand (COD), electric energy consumption (EEC) and the amount of produced sludge (Ws) are 94.87%, 82.42%, 1.383 kWh⋅m−3 and 0.1833 kg⋅m−3 by SAEF, respectively, under the optimal conditions (pH = 3.0, conductivity (κ) = 1075 μS⋅cm−1, current density (j) = 0.694 mA⋅cm−2, initial c (TC) = 100 mg·dm−3, c [30%H2O2] = 1.17 cm3⋅dm−3, frequency (f) = 50 Hz, t = 120 min). Compared with pure direct electro-Fenton (DEF) or sinusoidal alternating current coagulation (SACC), SAEF was a highly effective method with low-cost for the treatment of TC wastewater. It was found that the conjugated structure of TC was destroyed to generate intermediate products, and then most of them was gradually mineralized into inorganic materials in the SAEF process.
Collapse
|
42
|
Zhu R, Zhang P, Zhang X, Yang M, Zhao R, Liu W, Li Z. Fabrication of synergistic sites on an oxygen-rich covalent organic framework for efficient removal of Cd(II) and Pb(II) from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127301. [PMID: 34597930 DOI: 10.1016/j.jhazmat.2021.127301] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A key matter in heavy metal removal technology is to develop the adsorbents with efficient adsorption sites. In this study, an oxygen-rich covalent organic framework (JUC-505) was functionalized by carboxyl (-COOH) groups to form synergetic effects aiming for the removal of Cd(II) and Pb(II) ions. JUC-505-COOH shows a high Cd(II) uptake of 504 mg⋅g-1 surpassing most of the reported porous adsorbents. Meanwhile, the kinetics study shows a rapid adsorption process at a high initial concentration (100 mg⋅L-1), and the equilibrium can be reached within 5 min. We investigated the adsorption mechanism in-depth by density functional theory calculations, proving the synergistic effects of surface complexation and hydrogen-bond, which are from the post-modified -COOH groups and the in-situ oxygen atoms of JUC-505, respectively. Moreover, under the interference of common ions in natural water, the removal efficiency of Cd(II) is almost insusceptible, which sheds lights on the potential for the application in the natural water purification. In addition, the Pb(II) uptake (559 mg⋅g-1) and the adsorption kinetics also surpass most of the reported porous adsorbents.
Collapse
Affiliation(s)
- Ruomeng Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Pengling Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Xinxin Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Mei Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Ruiqi Zhao
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Zhongyue Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
43
|
Roy N, Alex SA, Chandrasekaran N, Kannabiran K, Mukherjee A. Studies on the removal of acid violet 7 dye from aqueous solutions by green ZnO@Fe 3O 4 chitosan-alginate nanocomposite synthesized using Camellia sinensis extract. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114128. [PMID: 34823906 DOI: 10.1016/j.jenvman.2021.114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ZnO-Fe3O4 nanoparticles were synthesized using the leaves of Camellia sinensis and immobilized in crosslinked alginate-chitosan polymer beads and tested for their photocatalytic applications. The prepared nanocomposite was used for the simultaneous adsorption and photocatalytic degradation of acid violet 7 (AV7) dye. The optimization of reaction conditions ensured higher dye removal efficacy up to 94.21 ± 1.02% using the nanocomposite under UV-C irradiation of 365 nm. The kinetics of the adsorption study fitted well with the pseudo-first-order reaction. The Langmuir model fitted better to the adsorption isotherms compared to the Freundlich and Temkin models. The mechanism of degradation was studied by analyzing the treated AV7 solution. The removal efficiency in tap water, groundwater, and lake water was 83.23 ± 0.4%, 69.13 ± 1.6%, and 67.89 ± 0.3%, respectively. The residual toxicity of the degraded AV7 solution was tested on model organisms like freshwater algae, Scenedesmus sp., and plant model, Allium cepa, demonstrating the lower toxicity of the degraded AV7 product. Finally, a cost-benefit analysis of the experiments was also carried out.
Collapse
Affiliation(s)
- Namrata Roy
- School of Biosciences and Technology, VIT, Vellore, India; Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | | | | | | |
Collapse
|
44
|
Amenaghawon AN, Anyalewechi CL, Darmokoesoemo H, Kusuma HS. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113989. [PMID: 34710761 DOI: 10.1016/j.jenvman.2021.113989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxyapatite (HAp) is a calcium phosphate material that was used primarily in bone regeneration and repair as a result of its chemical similarity with bone. However, HAp has emerged as a very promising adsorbent for sequestering contaminants like heavy metals, dyes, hydrocarbons as well as other emerging pollutants from wastewater as a result of its versatility and encouraging adsorptive properties. Contaminants like heavy metals and dyes have been a major source of environmental concern. Research studies involving the use of HAp as adsorbents for the adsorptive treatment of heavy metal- and dye-contaminated wastewater have become increasingly popular due to its eco-friendliness, easy synthesis, unique adsorption properties etc. Various methods are available for the synthesis of HAp and its composites with some of these methods used in combination with other methods to obtain more efficient HAp-based adsorbents. In this work, the adsorptive removal of heavy metals and dyes by HAp and its composites was extensively reviewed as well as the parametric effects of process factors like contact time, solution pH, temperature, solute concentration etc on the adsorption process. Kinetic, thermodynamic, and isotherm models for elucidating the adsorption process were also considered. Generally, from the works reviewed, HAp-based adsorbents were found to be very effective for sequestering heavy metals and dyes from solution and thus presents a low-cost option for adsorptive wastewater treatment.
Collapse
Affiliation(s)
- Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria.
| | - Chinedu L Anyalewechi
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| |
Collapse
|
45
|
Li J, Sun Y, Chen Y, Tang Y, Pan J, Wan P. Histidine functionalized MIL-53(Al) for lead( ii) removal from aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d2nj01724e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of histidine as a new modified material in MIL-53(Al) to enhance the adsorption properties for Pb(ii).
Collapse
Affiliation(s)
- Jipeng Li
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongmei Chen
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Tang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pingyu Wan
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Graphene oxide composite microspheres as a novel dispersive solid-phase extraction adsorbent of bisphenols prior to their quantitation by HPLC–mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Yang J, Duan Y, Guo Y, Li Z, Ni X, Zhang J, Awasthi MK, Li H. Grass waste utilization to alter aggregate-related carbon chemical composition and fungal community structure in apple orchard. CHEMOSPHERE 2022; 287:132404. [PMID: 34597634 DOI: 10.1016/j.chemosphere.2021.132404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The grass-waste management model affects soil organic carbon (SOC) and the microorganism community structure; however, studies on the relationship between the fungal community structure and the SOC chemical component at the aggregate level are poor. Solid-state 13C NMR and 18 S rDNA methods were used to evaluate the relationship between the SOC chemical composition and fungal community abundance at the aggregate level. Grass mulching significantly increased the percentage of labile carbon O-alkyl C (5.19%-11.79%) and decreased the instability of SOC (1.38-0.69). Microaggregates contained higher alkyl C (33.77%) and lower aromatic C (18.31%), and the A/O-A ratio (1.03) was higher than that of macroaggregates (0.89-0.96). Ascomycota, Basidiomycota and Mortierellomycota dominated the fungal community at the phylum level, and their abundance increased after grass mulching. Microaggregates supported more microbial diversity and richness and were rich in the Ascomycota (36.69%-67.49%) phylum, while LM aggregates were rich in Basidiomycota (5.62%-39.84%). We proved that changes in the O-alkyl C, carbonyl C, aromatic C and alkyl C of SOC chemical components were closely connected to fungal community composition, which together explained the change in fungal composition by 63.81%-71.99% among aggregates. We concluded that alterations in the chemical form of organic carbon were closely related to a change in the soil fungal community. This connection has a positive impact on soil nutrient utilization and SOC conversion in fruit-grass composite ecosystems and promotes the understanding of the relationship between the soil microbial community and nutrient cycling during long-term grass waste utilization.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Yaru Guo
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Zelin Li
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Xinhua Ni
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Jiatao Zhang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China.
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
48
|
Peng Y, Zhang X, Wu X, Li M, Zhang Y, Zhou C, Hua Y. Synthesis of core-shell magnetic metal organic frameworks composite for efficient uranium (VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of magnetic nanoparticles and metal-organic frameworks (MOFs) has demonstrated their prospective for pollutant sequestration. In this work, Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and used for the removal...
Collapse
|
49
|
Aliste M, Garrido I, Hernández V, Flores P, Hellín P, Navarro S, Fenoll J. Assessment of reclaimed agro-wastewater polluted with insecticide residues for irrigation of growing lettuce (Lactuca sativa L) using solar photocatalytic technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118367. [PMID: 34655696 DOI: 10.1016/j.envpol.2021.118367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Scientific literature is full of works studying the removal of different pollutants from water through different Advanced Oxidation Processes (AOPs). Many of them only suggest it is reused for agricultural purposes or for small crops in pots. This study is based on the reuse of reclaimed agricultural wastewater contaminated with four insecticides (chlorantraniliprole, imidacloprid, pirimicarb and thiamethoxam) for growing lettuce in field conditions. First, solar photocatalysis with TiO2/Na2S2O8 was used on a pilot plant in a sunny area (Murcia, SE of Spain) as an environmentally friendly technology to remove insecticide residues and their main reaction intermediates from contaminated water. The necessary fluence (H, kJ m-2) to accomplish 90% removal (H90) ranged from 0.12 to 1212 kJ m-2 for pirimicarb and chlorantraniliprole, respectively. Only six (derived from imidacloprid, pirimicarb and thiametoxam) of 18 transformation intermediate products studied were detected in reclaimed water during the photoperiod (2000 kJ m-2 of accumulated UVA radiation) although all of them were totally photodegraded after a fluence of 1250 kJ m-2. Secondly, reclaimed agro-wastewater was used to irrigate two lettuce crops grown under greenhouse conditions and under agricultural field conditions. In no cases, insecticide residues nor their TIPs were noticed above their respective LOQs (limits of quantification) in soil and lettuce samples (between 0.03 and 0.04 μg kg-1 for pirimicarb and 2.49 and 2.23 μg kg-1 for thiamethoxam, respectively) when they were irrigated with reclaimed water, while residues of the four insecticides and some of their intermediates were found in soil and lettuce by the end of cultivation when they were irrigated with non-reclaimed contaminated water. According to the results, this technology can be applied in a sustainable way, mainly in areas with water scarcity and high solar radiation, contributing to water utilisation in drought areas and the use of renewable energy.
Collapse
Affiliation(s)
- M Aliste
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain.
| | - I Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - V Hernández
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - P Flores
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - P Hellín
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - S Navarro
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - J Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcian Institute for Agricultural and Environmental Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| |
Collapse
|
50
|
Fseha YH, Sizirici B, Yildiz I, Yavuz C. Pristine biochar performance investigation to remove metals in primary and secondary treated municipal wastewater for groundwater recharge application. PLoS One 2022; 17:e0278315. [PMID: 36472965 PMCID: PMC9725145 DOI: 10.1371/journal.pone.0278315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, pristine biochar derived from date palm at 500°C was used in batch reactors (simulating blending adsorbent in aeration tank) and fixed-bed columns (simulating holding adsorbent in fixed-bed reactors). The removal performance of the biochar was assessed toward single and mixed-metal solutions as well as synthetic primary and secondary treated wastewater for copper (Cu2+), iron (Fe2+), nickel (Ni2+) and zinc (Zn2+). The order of maximum adsorption capacities of the metal ions at pH 7 followed: Fe2+ (2.92/2.94 mg/g)>Cu2+(2.69/2.78 mg/g) >Zn2+(2.03/2.19 mg/g)>Ni2+(1.69/1.02 mg/g) in single/mixed-metal solutions and Zn2+(2.91/11.26 mg/g)>Fe2+(0.60/5.29 mg/g)>Cu2+(0.56/5.05 mg/g)>Ni2+(0.13/2.02 mg/g) in synthetic primary/secondary treated wastewater. Blending biochar in aeration tank reduced metal concentrations. The metal ion concentrations in the final effluent were below the World Health Organization drinking water limits (2, 0.3, 0.1 and 3 mg/L for Cu2+, Fe2+, Ni2+ and Zn2+, respectively) suggesting that treated secondary wastewater can be spread into potable aquifers following disinfection. The Freundlich and the Pseudo-second order models fit best the batch experimental data. Experimental data from column analysis fit well to the Thomas model. The adsorption of metal ions on the surface of biochar was confirmed by Scanning electron microscopy, Energy dispersive X-ray studies, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Desorption studies using different eluents demonstrated the reusability potential of the studied biochar.
Collapse
Affiliation(s)
- Yohanna Haile Fseha
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- * E-mail:
| | - Banu Sizirici
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cafer Yavuz
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|