1
|
Li Z, Ding Z, Yan Z, Han K, Zhang M, Zhou H, Sun X, Sun H, Li J, Zhang W, Liu X. NiO/AgNPs nanowell enhanced SERS sensor for efficient detection of micro/nanoplastics in beverages. Talanta 2025; 281:126877. [PMID: 39277933 DOI: 10.1016/j.talanta.2024.126877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The ubiquity of plastic products has led to an increased exposure to micro and nano plastics across diverse environments, presenting a novel class of pollutants with substantial health implications. Emerging research indicates their capacity to infiltrate human organs, posing risks of tissue damage and carcinogenesis. Given the prevalent consumption of beverages as a primary vector for these plastics' entry into the human system, there is an imperative need for the advancement of precise detection methodologies in liquids. In this study, we introduce a substrate comprising a Nickel Oxide (NiO) nanosheet array decorated with Silver Nanoparticles (AgNPs) for the Surface-Enhanced Raman Spectroscopy (SERS) analysis of micro//nano plastics. This configuration, leveraging a unique nanowell architecture alongside silver plasmonic enhancement, demonstrates unparalleled sensitivity and repeatability in signal, facilitating the accurate quantification of these contaminants. Through the application of a portable Raman apparatus, this study successfully identifies prevalent micro/nano plastics including polystyrene (PS), polyethylene (PE), and polypropylene (PP), achieving detection sensitivities of 5 μg/mL, 25 μg/mL, and 25 μg/mL, respectively. Moreover, the substrate's efficacy extends to the detection of PS within commonly consumed beverages such as water, milk, and liquor with sensitivities of 25 μg/mL, 50 μg/mL, and 50 μg/mL, respectively. These findings highlight the substrate's potential as an expedient and effective sensor for the real-time monitoring of micro/nano plastic pollutants.
Collapse
Affiliation(s)
- Zhihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhuang Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zilong Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Konghao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Hongyang Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Xu Sun
- Xuancheng Product Quality Supervision and Inspection Institute, Xuan Cheng, 242000, China
| | - Hui Sun
- Xuancheng Product Quality Supervision and Inspection Institute, Xuan Cheng, 242000, China
| | - Jianhua Li
- Anhui Topway Testing Services Co. Ltd., Rixin Road, Xuan Cheng, 242000, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China.
| |
Collapse
|
2
|
Lu Y, Ji T, Xu W, Chen D, Gui P, Long F. Rapid, sensitive, and non-destructive on-site quantitative detection of nanoplastics in aquatic environments using laser-backscattered fiber-embedded optofluidic chip. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135591. [PMID: 39213771 DOI: 10.1016/j.jhazmat.2024.135591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A definitive link between the micro- and nano-plastics (NPLs) and human health has been firmly established, emphasizing the higher risks posed by NPLs. The urgent need for a rapid, non-destructive, and reliable method to quantify NPLs remains unmet with current detection techniques. To address this gap, a novel laser-backscattered fiber-embedded optofluidic chip (LFOC) was constructed for the rapid, sensitive, and non-destructive on-site quantitation of NPLs based on 180º laser-backscattered mechanism. Our theoretical and experimental findings reveal that the 180º laser-backscattered intensities of NPLs were directly proportional to their mass and particle number concentration. Using the LFOC, we have successfully detected polystyrene (PS) NPLSs of varying sizes, with a minimum detection limit of 0.23 μg/mL (equivalent to 5.23 ×107 particles/mL). Moreover, PS NPLs of different sizes can be readily differentiated through a simple membrane-filtering method. The LFOC also demonstrates high sensitivity in detecting other NPLs, such as polyethylene, polyethylene terephthalate, polypropylene, and polymethylmethacrylate. To validate its practical application, the LFOC was used to detect PS NPLs in various aquatic environments, exhibiting excellent accuracy, reproducibility, and reliability. The LFOC provides a simple, versatile, and efficient tool for direct, on-site, quantitative detection of NPLs in aquatic environments.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Tianxiang Ji
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Dan Chen
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Ping Gui
- China Academy of Urban Planning and Design, Beijing 100044, China
| | - Feng Long
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Yang Z, Zhu K, Yang K, Qing Y, Zhao Y, Wu L, Zong S, Cui Y, Wang Z. One-step detection of nanoplastics in aquatic environments using a portable SERS chessboard substrate. Talanta 2024; 282:127076. [PMID: 39442265 DOI: 10.1016/j.talanta.2024.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R2 = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 μL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.
Collapse
Affiliation(s)
- Zhaoyan Yang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yeming Qing
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Youjiang Zhao
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Carreón R, Rodríguez-Hernández AG, Serrano de la Rosa LE, Calixto ME, Gervacio-Arciniega J, Krishnan SK. A Scalable Synthesis of Ag Nanoporous Film As an Efficient SERS-Substrates for Sensitive Detection of Nanoplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17476-17488. [PMID: 39102563 PMCID: PMC11340027 DOI: 10.1021/acs.langmuir.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Nanoplastics pollution has led to a severe environmental crisis because of a large accumulation of these smaller nanoplastic particles in the aquatic environment and atmospheric conditions. Detection of these nanoplastics is crucial for food safety monitoring and human health. In this work, we report a simple and eco-friendly method to prepare a SERS-substrate-based nanoporous Ag nanoparticle (NP) film through vacuum thermal evaporation onto a vacuum-compatible deep eutectic solvent (DES) coated growth substrate for quantitative detection of nanoplastics in environmental samples. The nanoporous Ag NP films with controlled pores were achieved by the soft-templating role of DESs over the growth substrate, which enabled the self-assembly of deposited Ag NPs over the surface of DES. The optimized nanoporous Ag substrate provides high sensitivity in the detection of analyte molecules, crystal violet (CV), and rhodamine 6G (R6G) with a limit of detection (LOD) up to 1.5 × 10-13 M, excellent signal reproducibility, and storage stability. Moreover, we analyzed quantitative SERS detection of polyethene terephthalate (PET, size of 200 nm) and polystyrene (PS, size of 100 nm) nanoplastics with an LOD of 0.38 and 0.98 μg/mL, respectively. In addition, the SERS substrate efficiently detects PET and PS nanoplastics in real environmental samples, such as tap water, lake water, and diluted milk. The enhanced SERS sensing ability of the proposed nanoporous Ag NP film substrate holds immense potential for the sensitive detection of various nanoplastic contaminants present in environmental water.
Collapse
Affiliation(s)
- Rafael
Villamil Carreón
- Facultad
de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 18 sur., Puebla, Puebla 72570, México
| | - Ana G. Rodríguez-Hernández
- CONAHCyT-Centro
de Nanociencias and Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada
Apdo Postal 14, Ensenada, Baja California 22800, México
| | - Laura E. Serrano de la Rosa
- Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| | - Ma. Estela Calixto
- Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| | - J.J. Gervacio-Arciniega
- CONAHCyT—Facultad
de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Puebla 72570, México
| | - Siva Kumar Krishnan
- CONAHCyT—Instituto
de Física, Benemérita Universidad Autónoma de
Puebla, Av. San Claudio
y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, Puebla 72570, México
| |
Collapse
|
5
|
Chaisrikhwun B, Balani MJD, Ekgasit S, Xie Y, Ozaki Y, Pienpinijtham P. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics. Analyst 2024; 149:4158-4167. [PMID: 39010793 DOI: 10.1039/d4an00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Plastic pollution at the nanoscale continues to pose adverse effects on environmental sustainability and human health. However, the detection of nanoplastics (NPLs) remains challenging due to limitations in methodology and instrumentation. Herein, a "green approach" for surface-enhanced Raman spectroscopy (SERS) was exploited to detect polystyrene nanospheres (PSNSs) in water, employing untreated filter paper and a simple syringe-filtration set-up. This SERS protocol not only enabled the filtration of nano-sized PSNSs, which are smaller than the pore size of the ordinary filter paper, but also offered SERS enhancement by utilizing quasi-spherical-shaped silver nanoparticles (AgNPs) as the SERS-active substrate. The filtering of NPLs was accomplished by adding an aggregating agent to the nanoparticle mixture, which caused the aggregation of NPLs and AgNPs, resulting in a larger cluster and more hot spots for SERS detection. The optimal aggregating agent and its concentration, as well as the volume ratio between the AgNPs and NPLs, were also optimized. This SERS method successfully detected and quantified PSNSs of various sizes (i.e., 100, 300, 460, 600, and 800 nm) down to a limit of detection (LOD) of about 0.31 μg mL-1. The method was also validated against the presence of several interferents (i.e., salts, sugars, amino acids, and surfactants) and was proven practical, as evidenced by the detection of 800nm PSNSs in drinking and tap water (LODs of 1.47 and 1.55 μg mL-1, respectively).
Collapse
Affiliation(s)
- Boonphop Chaisrikhwun
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mary Jane Dacillo Balani
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sanong Ekgasit
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Meenakshi, Das S, Verma AK, Kundu V, Kumari A, Mehta DS, Saxena K. Surface enhanced raman spectroscopy based sensitive and onsite detection of microplastics in water utilizing silver nanoparticles and nanodendrites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34403-6. [PMID: 39060892 DOI: 10.1007/s11356-024-34403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Plastics, of the order of microns in size, being not visible to the naked eye, are one of the significant contributors to pollution in the environment. Thus, the detection of micron-sized plastics (microplastics (MPs)) is crucial because of its hazardous toxic effects on our surroundings. In this work, we have proposed a quick and on-site detection of MPs, such as, polyvinyl chloride (PVC), polyvinyl alcohol (PVA) and polystyrene (PS) at ultra trace level using surface-enhanced Raman spectroscopy (SERS). To detect and analyse the spectra, two different nanostructures, such as, spherical shaped Ag nanoparticles (NPs), and shape anisotropic Ag nano-dendrites (NDs) were utilised to acquire the SERS spectra. A comprehensive analysis was further performed to check and investigate the amount of enhancements due to the mentioned nanostructures. We observed the Ag NDs exhibited amplified signal intensity compared to the Ag NPs due to the shape anisotropy leading to the surface charge confinement effect to create highly dense hotspots. However, the spherical shaped polystyrene beads of micron size exhibited better enhancement in Raman signal intensity when mixed with Ag NPs due to increased surface adsorption with the NPs. Therefore, the comparative study emphasizes the ability of using solution-based nanostructure as SERS for the onsite detection of microplastics having diverge size range at low concentration.
Collapse
Affiliation(s)
- Meenakshi
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sathi Das
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashwani Kumar Verma
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vrishty Kundu
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- Amity Institute of Renewable and Alternative Energy, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Anjika Kumari
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Dalip Singh Mehta
- Biophotonics and Green-Photonics Laboratory, Physics Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kanchan Saxena
- Amity Institute of Renewable and Alternative Energy, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
7
|
Xu W, Dai Z, Huang X, Jiang G, Chang M, Wang C, Lai T, Liu H, Sun R, Li C. High sensitivity in quantitative analysis of mixed-size polystyrene micro/nanoplastics in one step. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173314. [PMID: 38761937 DOI: 10.1016/j.scitotenv.2024.173314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 μm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 μm PS are 8.89 × 10-5, 3.39 × 10-5, and 1.57 × 10-4 μg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 μm and 5 μm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R2 = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 μm and 5 μm PS MPs in a ratio of 1:1:1:1, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-4-10 μg/mL with an LOD value of approximately 7.82 × 10-5 μg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10-5 μg MPs and NPs per gram of oyster tissue.
Collapse
Affiliation(s)
- Wenhui Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Xiaoxin Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Guangzheng Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Min Chang
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Chenying Wang
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Tingting Lai
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China
| | - Huanming Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| | - Ruikun Sun
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Chengyong Li
- School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
8
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
9
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y, Yang H, Zhao F. Silver nanostars arrayed on GO/MWCNT composite membranes for enrichment and SERS detection of polystyrene nanoplastics in water. WATER RESEARCH 2024; 255:121444. [PMID: 38492312 DOI: 10.1016/j.watres.2024.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Nanoplastic water contamination has become a critical environmental issue, highlighting the need for rapid and sensitive detection of nanoplastics. In this study, we aimed to prepare a graphene oxide (GO)/multiwalled carbon nanotube (MWCNT)-silver nanostar (AgNS) multifunctional membrane using a simple vacuum filtration method for the enrichment and surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics in water. AgNSs, selected for the size and shape of nanoplastics, have numerous exposed Raman hotspots on their surface, which exert a strong electromagnetic enhancement effect. AgNSs were filter-arrayed on GO/MWCNT composite membranes with excellent enrichment ability and chemical enhancement effects, resulting in the high sensitivity of GO/MWCNT-AgNS membranes. When the water samples flowed through the portable filtration device with GO/MWCNT-AgNS membranes, PS nanoplastics could be effectively enriched, and the retention rate for 50 nm PS nanoplastics was 97.1 %. Utilizing the strong SERS effect of the GO/MWCNT-AgNS membrane, we successfully detected PS nanoparticles with particle size in the range of 50-1000 nm and a minimum detection concentration of 5 × 10-5 mg/mL. In addition, we detected 50, 100, and 200 nm PS nanoplastics at concentrations as low as 5 × 10-5 mg/mL in real water samples using spiking experiments. These results indicate that the GO/MWCNT-AgNS membranes paired with a portable filtration device and Raman spectrometer can effectively enrich and rapidly detect PS nanoplastics in water, which has great potential for on-site sensitive water quality safety evaluation.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Haolin Yang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Fenyu Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
10
|
Carreón R, Cortázar-Martínez O, Rodríguez-Hernández AG, Serrano de la Rosa LE, Gervacio-Arciniega JJ, Krishnan SK. Ionic Liquid-Assisted Thermal Evaporation of Bimetallic Ag-Au Nanoparticle Films as a Highly Reproducible SERS Substrate for Sensitive Nanoplastic Detection in Complex Environments. Anal Chem 2024; 96:5790-5797. [PMID: 38452224 PMCID: PMC11024884 DOI: 10.1021/acs.analchem.3c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Nanoplastic particles are emerging as an important class of environmental pollutants in the atmosphere that have adverse effects on our ecosystems and human health. While many methods have been developed to quantitatively detect nanoplastics; however, sensitive detection at low concentrations in a complex environment remains elusive. Herein, we demonstrate a greener method to fabricate a surface-enhanced Raman spectroscopy (SERS) substrate consisting of self-assembled plasmonic Ag-Au bimetallic nanoparticle (NP) films for quantitative SERS detection of nanoplastics in complex media. The self-assembly of Ag-Au bimetallic NPs was achieved through thermal evaporation onto a vapor-phase compatible ionic liquid based on deep eutectic solvent over the growth substrate. The finite-difference time-domain simulation revealed that the localized field enhancement is strong in the gaps, which generate uniform SERS "hotspots" in the obtained substrate. Benefiting from highly accessible SERS "hotspots" at the gaps, the SERS substrate exhibits excellent sensitivity for detecting crystal violet with a limit of detection (LOD) as low as 10-14 M and excellent reproducibility (RSD of 5.8%). The SERS substrate is capable of detecting PET nanoplastics with LOD as low as 1 μg/mL and about 100 μg/mL in real samples such as tap water, lake water, diluted milk, and wine. Moreover, we also validated the feasibility of the designed SERS substrate for the practical detection of PET nanoplastics collected from commercial drinking water bottles, and it showed great potential applications for sensitive detection in actual environments.
Collapse
Affiliation(s)
- Rafael
V. Carreón
- Facultad
de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 18 sur., Puebla, Pue. C.
P. 72570, México
| | - Orlando Cortázar-Martínez
- CINVESTAV-Unidad
Querétaro, Libramiento
Norponiente No. 2000, Real de Juriquilla, Querétaro, Qro 76230, México
| | - Ana G. Rodríguez-Hernández
- CONAHCyT-Centro
de Nanociencias and Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada
Apdo Postal 14, C. P. 22800 Ensenada, B.C., México
| | - Laura E. Serrano de la Rosa
- Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, México
| | - José Juan Gervacio-Arciniega
- CONAHCyT-
Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla 72570, México
| | - Siva Kumar Krishnan
- CONAHCyT-Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, México
| |
Collapse
|
11
|
Caldwell J, Taladriz-Blanco P, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Submicron- and nanoplastic detection at low micro- to nanogram concentrations using gold nanostar-based surface-enhanced Raman scattering (SERS) substrates. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1000-1011. [PMID: 38496351 PMCID: PMC10939171 DOI: 10.1039/d3en00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/29/2023] [Indexed: 03/19/2024]
Abstract
The presence of submicron- (1 μm-100 nm) and nanoplastic (<100 nm) particles within various sample matrices, ranging from marine environments to foods and beverages, has become a topic of increasing interest in recent years. Despite this interest, very few analytical techniques are known that allow for the detection of these small plastic particles in the low concentration ranges that they are anticipated to be present at. Research focused on optimizing surface-enhanced Raman scattering (SERS) to enhance signal obtained in Raman spectroscopy has been shown to have great potential for the detection of plastic particles below conventional resolution limits. In this study, we produce SERS substrates composed of gold nanostars and assess their potential for submicron- and nanoplastic detection. The results show 33 nm polystyrene could be detected down to 1.25 μg mL-1 while 36 nm poly(ethylene terephthalate) was detected down to 5 μg mL-1. These results confirm the promising potential of the gold nanostar-based SERS substrates for nanoplastic detection. Furthermore, combined with findings for 121 nm polypropylene and 126 nm polyethylene particles, they highlight potential differences in analytical performance that depend on the properties of the plastics being studied.
Collapse
Affiliation(s)
- Jessica Caldwell
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Patricia Taladriz-Blanco
- Water Quality Group, International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s/n 4715-330 Braga Portugal
| | - Laura Rodriguez-Lorenzo
- Water Quality Group, International Iberian Nanotechnology Laboratory (INL) Av. Mestre Jose Veiga s/n 4715-330 Braga Portugal
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
- Department of Chemistry, University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
12
|
Parmigiani M, Schifano V, Taglietti A, Galinetto P, Albini B. Increasing gold nanostars SERS response with silver shells: a surface-based seed-growth approach. NANOTECHNOLOGY 2024; 35:195603. [PMID: 38306966 DOI: 10.1088/1361-6528/ad25c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.
Collapse
Affiliation(s)
- Miriam Parmigiani
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Veronica Schifano
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Angelo Taglietti
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Pietro Galinetto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| | - Benedetta Albini
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| |
Collapse
|
13
|
Ruan X, Xie L, Liu J, Ge Q, Liu Y, Li K, You W, Huang T, Zhang L. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced raman spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132702. [PMID: 37837774 DOI: 10.1016/j.jhazmat.2023.132702] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Plastic pollution represents a pressing global environmental issue, with microplastics (MPs) and nanoplastics (NPs) being ubiquitously found in both food and the environment. However, the investigation of NPs has been hampered by limited detection technologies, necessitating the development of advanced techniques. This study introduces a sol-based surface-enhanced Raman spectroscopy (SERS) approach for the swift detection of MPs and NPs in aqueous environment. By leveraging the aggregation effect between silver nanoparticles (Ag nanoparticles) and plastic particles, the plastic Raman signals is significantly enhanced, effectively lowering the detection limit. Utilizing Ag nanoparticles, plastic particles as small as 20 nm were detected in liquid samples, with a detection limit of 0.0005%. With the developed method, nanoplastic particles in seafood packaging samples were successfully tested, with concentration found to be at μg/L level. This method offers a rapid, economical, and convenient means of detecting and identifying MPs and NPs. The sensitivity of the method allows for capturing plastic signals within 2 min, making it valuable for aquatic environment contamination detection. SERS technology also holds promise for rapid plastic solution detection, potentially becoming a fast detection method for food safety.
Collapse
Affiliation(s)
- Xuejun Ruan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tingting Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China.
| |
Collapse
|
14
|
Li Z, Han K, Zhang A, Wang T, Yan Z, Ding Z, Shen Y, Zhang M, Zhang W. Honeycomb-like AgNPs@TiO 2 array SERS sensor for the quantification of micro/nanoplastics in the environmental water samples. Talanta 2024; 266:125070. [PMID: 37591153 DOI: 10.1016/j.talanta.2023.125070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
There has been a growing concern over the micro/nanoplastics pollution and treatment. The fast qualitative and quantitative analysis of these small plastic particles is the crucial issues. Herein, a novel honeycomb-like AgNPs@TiO2 array-based surface-enhanced Raman scattering (SERS) sensor was developed for efficient identification and analysis of the micro/nanoplastics in the environmental water samples. The plasmonic AgNPs were uniformly anchored within the periodic TiO2 nanocage arrays to form a AgNPs@TiO2 array. The dual enhancement mechanisms in the AgNPs@TiO2 hybrid structure endow the SERS sensor high sensitivity to detect trace amount of micro/nanoplastics down to 50 μg/mL with a hand-held Raman spectrometer. Further, this SERS sensor successfully discerns two-component mixtures of the micro/nanoplastics due to the fingerprint feature. In addition, the superior reproducibility (RSD of 9.69%) of the SERS sensor assures the quantitative detection reliability, realizing quantitative analysis of Polystyrene (PS) microplastics in tap water, lake water, soil water and seawater with detection limits of 100 μg/mL, 100 μg/mL, 100 μg/mL, 100 μg/mL and 250 μg/mL, respectively. The recovery rates of PS microspheres in four water environments ranged from 97.6% to 109.7%, with the RSD ranging from 0.49% to 10.23%. This honeycomb AgNPs@TiO2 array sensor provides a promising application prospect in the detection of micro/nanoplastics contaminants from the environmental water.
Collapse
Affiliation(s)
- Zhihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Konghao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Anxin Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zilong Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhuang Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yonghui Shen
- Anhui Aochuang Environment Testing Co. Ltd., Fuyang Economic and Technological Development Zone, Weisan Road, Fuyang, 236000, China
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
15
|
Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim Acta 2023; 190:465. [PMID: 37953347 DOI: 10.1007/s00604-023-06044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.
Collapse
Affiliation(s)
- Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jiamiao Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China
| | - Xia Gao
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Yan Liu
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Jiamin Wang
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Luo S, Zhang J, de Mello JC. Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays. Front Bioeng Biotechnol 2023; 11:1242797. [PMID: 37941723 PMCID: PMC10628472 DOI: 10.3389/fbioe.2023.1242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-μL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 μg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - John C. de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
17
|
Luo Y, Su W, Xu D, Wang Z, Wu H, Chen B, Wu J. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165138. [PMID: 37379925 DOI: 10.1016/j.scitotenv.2023.165138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
With the increasing interest in microplastics (MPs) pollutants, relevant detection technologies are also developing. In MPs analysis, vibrational spectroscopy represented by surface-enhanced Raman spectroscopy (SERS) is widely used because they can provide unique fingerprint characteristics of chemical components. However, it is still a challenge to separate various chemical components from the SERS spectra of MPs mixture. In this study, it is innovatively proposed to combine the convolutional neural networks (CNN) model to simultaneously identify and analyze each component in the SERS spectra of six common MPs mixture. Different from the traditional method, which requires a series of spectral preprocessing such as baseline correction, smoothing and filtering, the average identification accuracy of MP components is as high as 99.54 % after the unpreprocessed spectral data is trained by CNN, which is better than other classical algorithms such as support vector machine (SVM), principal component analysis linear discriminant analysis (PCA-LDA), partial least squares discriminant analysis (PLS-DA), Random Forest (RF), and K Near Neighbor (KNN), with or without spectral preprocessing. The high accuracy shows that CNN can be used to quickly identify MPs mixture with unpreprocessed SERS spectra data.
Collapse
Affiliation(s)
- Yinlong Luo
- College of Science, Hohai University, Changzhou 213022, China
| | - Wei Su
- College of Science, Hohai University, Changzhou 213022, China.
| | - Dewen Xu
- College of Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Science, Hohai University, Changzhou 213022, China
| | - Hong Wu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Bingyan Chen
- College of Science, Hohai University, Changzhou 213022, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410003, China
| |
Collapse
|
18
|
Park C, Lim D, Kong SM, Won NI, Na YH, Shin D. Dark background-surface enhanced Raman spectroscopic detection of nanoplastics: Thermofluidic strategy. WATER RESEARCH 2023; 244:120459. [PMID: 37597446 DOI: 10.1016/j.watres.2023.120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
This study aims to develop a cost-effective and time-efficient method for detecting nanoplastics, which have recently garnered significant attention due to their potential harmful impact on the water environment (XiaoZhi, 2021; Gigault et al., 2021; Mitrano et al., 2021; Ferreira et al., 2019). Although several techniques are available to accumulate data on microplastics, there is currently no universally accepted analytical technique for detecting nanoplastics (Gigault et al., 2021; Mitrano et al., 2021; Mitrano et al., 2019; Cai et al., 2021a; Allen et al., 2022). In this study, we have developed a substrate that exhibits Surface-enhanced Raman scattering (SERS) (Zhou et al., 2021; Lv et al., 2020; Lê et al., 2021; Hu et al., 2022; Chang et al., 2022; Yang et al., 2022; Xu et al., 2020; Jeon et al., 2021; Lee and Fang, 2022; Vélez-Escamilla and Contreras-Torres, 2022; Liu et al., 2022; Xie et al., 2023) activity over a large area and a dark background in optical (darkfield mode) vision, enabling the detection of sparkling nanoplastics on the substrate. This darkfield-based strategy allows for the point-by-point detection of single nanoplastics, offering cost and time-saving advantages over other resource-intensive analytical techniques. Our findings reveal the presence of PP nanoplastics in commonly used laboratory equipment, individual PE nanoplastics from a hot water-contained commercial paper cup, and the first detection of natural nanoplastics in coastal seawater. We believe that this technique will have a universal application in establishing a global map of nanoplastics and advancing our understanding of the environmental life cycle of plastics.
Collapse
Affiliation(s)
- Changmin Park
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dohyun Lim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung Mo Kong
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Nam-Il Won
- Geosystem Research Corporation, 172 LS-ro, Gunpo-si, Gyeonggi-do 15807, Republic of Korea.
| | - Yang Ho Na
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea.
| | - Dongha Shin
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
19
|
Li D, Tian X, Yang W, Wang X, Liu Y, Shan J. Hydrophobicity-driven self-assembly of nanoplastics and silver nanoparticles for the detection of polystyrene microspheres using surface enhanced Raman spectroscopy. CHEMOSPHERE 2023; 339:139775. [PMID: 37567275 DOI: 10.1016/j.chemosphere.2023.139775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Microplastics (MPs) and Nanoplastics (NPs) accumulated in the environment have been identified as a major global issue due to their potential harm to wildlife. Current research in the detection of MPs is well established. However, the detection of NPs remains challenging. The aim of this paper is to investigate the detection of polystyrene (PS) NPs on a super-hydrophobic substrate using surface-enhanced Raman spectroscopy (SERS) technology after high-speed centrifugation of PS NPs and AgNPs. The hydrophobic substrate reduces the contact area of droplet, concentrating PS NPs and AgNPs on a small spot, which eliminates the random distribution of nano particles. The condensed PS NPs and AgNPs improve the SERS intensity, reproductivity and detection sensitivity. The results show that SERS measurement on a hydrophobic substrate could significantly improve the detection sensitivity of PS NPs, with the detection limits of PS NPs as low as 0.5 mg/L (500 nm PS NPs) and 1 mg/L (100 nm PS NPs). The study provides an effective and rapid method for the detection of NPs at trace concentration, demonstrating more possibility for the future detection of trace NPs in the aquatic environment.
Collapse
Affiliation(s)
- Dandan Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weiqing Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
20
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
21
|
Zhu Z, Han K, Feng Y, Li Z, Zhang A, Wang T, Zhang M, Zhang W. Biomimetic Ag/ZnO@PDMS Hybrid Nanorod Array-Mediated Photo-induced Enhanced Raman Spectroscopy Sensor for Quantitative and Visualized Analysis of Microplastics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466431 DOI: 10.1021/acsami.3c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Microplastics are persistent pollutants that accumulate in the environment and can cause serious toxicity to mammals. At present, few technologies are able to quantitatively detect chemicals and provide morphological information simultaneously. Herein, we developed a dragonfly-wing-mimicking ZnO nanorod array decorated with AgNPs on polydimethylsiloxane (PDMS) as a surface-enhanced Raman spectroscopy (SERS) and photo-induced enhanced Raman spectroscopy (PIERS) substrate for trace analysis of microplastics. The Ag/ZnO@PDMS hybrid nanorod array endows the sensor with high sensitivity and signal repeatability (RSD ∼ 5.89%), ensuring the reliable quantitative analysis of microplastics. Importantly, when the noble metal-semiconductor substrate was pre-radiated with ultraviolet light, a surprising PIERS was attained, achieving an additional enhancement of 11.3-fold higher than the normal SERS signal. By combining the PIERS technology with the "coffee ring effect", the sensor successfully discerned microplastics of polyethylene (PE) and polystyrene (PS) at a trace level of 25 μg/mL even with a portable Raman device. It was capable of identifying PS microspheres in contaminated tap water, lake water, river water, and seawater with detection limits of 25, 28, 35, and 60 μg/mL, respectively. The recovery rates of PS microspheres in four water environments ranged from 94.8 to 102.4%, with the RSD ranging from 2.40 to 6.81%. Moreover, quantitative and visualized detection of microplastics was readily realized by our sensor. This portable PIERS sensor represents a significant step toward the generalizability and practicality of quantitative and visual sensing technology.
Collapse
Affiliation(s)
- Zhengdong Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Konghao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yating Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zhihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Anxin Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
22
|
Shorny A, Steiner F, Hörner H, Skoff SM. Imaging and identification of single nanoplastic particles and agglomerates. Sci Rep 2023; 13:10275. [PMID: 37355695 DOI: 10.1038/s41598-023-37290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Pollution by nanoplastic is a growing environmental and health concern. Currently the extent of nanoplastic in the environment can only be cumbersomely and indirectly estimated but not measured. To be able to quantify the extent of the problem, detection methods that can identify nanoplastic particles that are smaller than 1 [Formula: see text]m are critically needed. Here, we employ surface-enhanced Raman scattering (SERS) to image and identify single nanoplastic particles down to 100 nm in size. We can differentiate between single particles and agglomerates and our method allows an improvement in detection speed of [Formula: see text] compared to state-of-the art surface-enhanced Raman imaging. Being able to resolve single particles allows to measure the SERS enhancement factor on individual nanoplastic particles instead of averaging over a concentration without spatial information. Our results thus contribute to the better understanding and employment of SERS for nanoplastic detection and present an important step for the development of future sensors.
Collapse
Affiliation(s)
- Ambika Shorny
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Fritz Steiner
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Helmut Hörner
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Sarah M Skoff
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria.
| |
Collapse
|
23
|
Zhang J, Peng M, Lian E, Xia L, Asimakopoulos AG, Luo S, Wang L. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37220668 DOI: 10.1021/acs.est.3c00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Micro/nanoplastics have emerged as global contaminants of serious concern to human and ecosystem health. However, identification and visualization of microplastics and particularly nanoplastics have remained elusive due to the lack of feasible and reliable analytical approaches, particularly for trace nanoplastics. Here, an efficient surface-enhanced Raman spectroscopy (SERS)-active substrate with triangular cavity arrays is reported. The fabricated substrate exhibited high SERS performance for standard polystyrene (PS) nanoplastic detection with size down to 50 nm and a detection limit of 0.001% (1.5 × 1011 particles/mL). Poly(ethylene terephthalate) (PET) nanoplastics collected from commercially bottled drinking water were detected with an average mean size of ∼88.2 nm. Furthermore, the concentration of the collected sample was estimated to be about 108 particles/mL by nanoparticle tracking analysis (NTA), and the annual nanoplastic consumption of human beings through bottled drinking water was also estimated to be about 1014 particles, assuming water consumption of 2 L/day for adults. The facile and highly sensitive SERS substrate provides more possibilities for detecting trace nanoplastics in an aquatic environment with high sensitivity and reliability.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lu Xia
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
24
|
Qin Y, Qiu J, Tang N, Wu Y, Yao W, He Y. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. ENVIRONMENTAL RESEARCH 2023; 228:115926. [PMID: 37076031 DOI: 10.1016/j.envres.2023.115926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Microplastics and nanoplastics are emerging classes of environmental contaminants that pose significant threats to human health. In particular, small nanoplastics (<1 μm) have drawn considerable attention owing to their adverse effects on human health; for example, nanoplastics have been found in the placenta and blood. However, reliable detection techniques are lacking. In this study, we developed a fast detection method that combines membrane filtration technology and surface-enhanced Raman spectroscopy (SERS), which can simultaneously enrich and detect nanoplastics with sizes as small as 20 nm. First, we synthesized spiked gold nanocrystals (Au NCs), achieving a controlled preparation of thorns ranging from 25 nm to 200 nm and regulating the number of thorns. Subsequently, mesoporous spiked Au NCs were homogeneously deposited on a glass fiber filter membrane to form an Au film as a SERS sensor. The Au-film SERS sensor achieved in-situ enrichment and sensitive SERS detection of micro/nanoplastics in water. Additionally, it eliminated sample transfer and prevented the loss of small nanoplastics. Using the Au-film SERS sensor, we detected 20 nm to 10 μm standard polystyrene (PS) microspheres with a detection limit of 0.1 mg/L. We also realized the detection of 100 nm PS nanoplastics at the 0.1 mg/L level in tap water and rainwater. This sensor provides a potential tool for rapid and susceptible on-site detection of micro/nanoplastics, especially small-sized nanoplastics.
Collapse
Affiliation(s)
- Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Jiaxin Qiu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Nan Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Control and Monitoring, National Anti-Drug Laboratory Zhejiang Regional Center, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China.
| |
Collapse
|
25
|
Lv E, Wang J, Li J, Zhao X, Yu J, Xu S, Li Z, Man B, Xue M, Xu J, Zhang C. Nanowire-in-bowl-shaped piezoelectric cavity structure for SERS directional detection of nanoplastics less than 50 nm. OPTICS EXPRESS 2023; 31:5297-5313. [PMID: 36823814 DOI: 10.1364/oe.480898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The accurate detection of nanoplastics is crucial due to their harmful effects on the environment and human beings. However, there is a lack of detection methods for nanoplastics smaller than 50 nm. In this research, we successfully constructed an Ag/CuO nanowire (NW)/BaTiO3@Polyvinylidene fluoride (PVDF) Bowl-shaped substrate with a nanowire-in-Bowl-shaped piezoelectric cavity structure that can modulate surface-enhanced Raman scattering (SERS) by the piezoelectric effect by the virtue of the tip effect of the CuO NW and light focusing effect of the Bowl-shaped cavity. Due to its unique nanowire-in-Bowl-shaped structure and piezoelectrically modifiable ability, nanoplastics less than 50 nm were successfully detected and quantitatively analyzed. We believe that the Ag/CuO NW/BaTiO3@PVDF Bowl-shaped substrate can provide an efficient, accurate, and feasible way to achieve qualitative and quantitative detection of nanoplastics.
Collapse
|
26
|
Sohn S, Huong VT, Nguyen PD, Ly NH, Jang S, Lee H, Lee C, Lee JI, Vasseghian Y, Joo SW, Zoh KD. Equilibria of semi-volatile isothiazolinones between air and glass surfaces measured by gas chromatography and Raman spectroscopy. ENVIRONMENTAL RESEARCH 2023; 218:114908. [PMID: 36442521 DOI: 10.1016/j.envres.2022.114908] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of ∼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at ∼1585 cm-1 and ∼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Phuong-Dong Nguyen
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Hyewon Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Chaisrikhwun B, Ekgasit S, Pienpinijtham P. Size-independent quantification of nanoplastics in various aqueous media using surfaced-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130046. [PMID: 36182893 DOI: 10.1016/j.jhazmat.2022.130046] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, we successfully developed an intriguing preparation strategy to reduce the size-dependent effect of nanoplastics (NPLs), which is the limitation of NPLs quantification by surface-enhanced Raman scattering (SERS). This simple and low-cost technique enabled us to quantify different sizes (i.e., 100, 300, 600, and 800 nm) of polystyrene nanospheres (PS NSs) in various aqueous media. The SERS substrate was simply prepared by sputtering gold particles to cover on a glass cover slide. By dissolving PS NSs in toluene and preconcentrating by coffee-ring effect, SERS measurement can quantify NPLs at a very low concentration with a limit of detection (LOD) of approximately 0.10-0.26 μg/mL. The experiment was also conducted in the presence of interferences, including salts, sugars, amino acids, and detergents. The method was validated for quantitative analysis using a mixture of 100-, 300-, 600-, and 800-nm PS NSs in a ratio of 1:1:1:1 in real-world media (i.e., tap water, mineral water, and river water), which successfully approaches the evaluation of PS NSs in the range of 10-40 µg/mL with an LOD of approximately 0.32-0.52 µg/mL.
Collapse
Affiliation(s)
- Boonphop Chaisrikhwun
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sanong Ekgasit
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
28
|
Xie L, Gong K, Liu Y, Zhang L. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:25-43. [PMID: 36576086 DOI: 10.1021/acs.est.2c07416] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics (<1000 nm) have been evidenced to be universal in a variety of environmental media. They pose a potential cytotoxicity and health risk due to their tiny size, which allows them to easily penetrate biological barriers and enter cells. Here, we briefly review the various prevalent analytical techniques or tools for identifying nanoplastics, and further move to focus on their advantages and disadvantages. Surface-enhanced Raman spectroscopy (SERS) has been implemented for the identification of individual nanoparticles because of its high sensitivity to molecules and ease of rapid characterization. Therefore, we introduce the SERS technique in the following aspects, (1) principles of SERS; (2) strategies and advances in SERS detection of nanoplastics; and (3) applying SERS to real environmental samples. We put our effort into the summarization of efficient SERS substrates that essentially enable the better detection of nanoplastics, and extend to discuss how the reported nanoplastics pretreatment methodologies can bring SERS analysis to practical applications. A further step moving forward is to investigate the problems and challenges of currently applied SERS detection methods and to look at future research needs in nanoplastics detection employing SERS analysis.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Kedong Gong
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| |
Collapse
|
29
|
Fernandes T, Martins NCT, Daniel-da-Silva AL, Trindade T. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121730. [PMID: 35988470 DOI: 10.1016/j.saa.2022.121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of magneto-plasmonic dendrimer-based nanosorbents containing Au nanostars and we demonstrate that they can be used as versatile optical sensors for the detection of pesticides in spiked water samples. The magnetic hybrid nanoparticles were obtained by conjugating silica-functionalized G5-NH2 PAMAM dendrimers to silica-coated magnetite cores. The resulting magnetic-PAMAM conjugates were then used to reduce and sequester Au seeds for the subsequent in situ growth of Au nanostars. The dendrimer-based magneto-plasmonic substrates containing the Au anisotropic nanophases were then investigated regarding their ability to monitor water quality through surface-enhanced Raman scattering (SERS) spectroscopy. As a proof-of-concept, the ensuing multifunctional materials were investigated as SERS probing systems to detect dithiocarbamate pesticides (ziram and thiram) dissolved in water samples. It was observed that the magneto-plasmonic hybrid materials enhance the Raman signal of these pesticides under variable operational conditions, suggesting the versatility of these systems for water quality monitoring. Moreover, a detailed analysis of the SERS data was accomplished to predict the adsorption profile of the dithiocarbamate pesticides to the Au surface.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Natércia C T Martins
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Mogha NK, Shin D. Nanoplastic detection with surface enhanced Raman spectroscopy: Present and future. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Li Z, Wu H, You JB, Wang X, Zeng H, Lohse D, Zhang X. Surface Nanodroplet-Based Extraction Combined with Offline Analytic Techniques for Chemical Detection and Quantification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11227-11235. [PMID: 36067516 DOI: 10.1021/acs.langmuir.2c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid-liquid extraction based on surface nanodroplets can be a green and sustainable technique to extract and concentrate analytes from a sample flow. However, because of the extremely small volume of each droplet (<10 fL, tens of micrometers in base radius and a few or less than 1 μm in height), only a few in situ analytical techniques, such as surface-enhanced Raman spectroscopy, were applicable for the online detection and analysis based on nanodroplet extraction. To demonstrate the versatility of surface nanodroplet-based extraction, in this work, the formation of octanol surface nanodroplets and extraction were performed inside a 3 m Teflon capillary tube. After extraction, surface nanodroplets were collected by injecting air into the tube, by which the contact line of surface droplets was collected by the capillary force. As the capillary allows for the formation of ∼1012 surface nanodroplets on the capillary wall, ≥2 mL of octanol can be collected after extraction. The volume of the collected octanol was enough for the analysis of offline analytical techniques such as UV-vis, GC-MS, and others. Coupled with UV-vis, reliable extraction and detection of two common water pollutants, triclosan and chlorpyrifos, was shown by a linear relationship between the analyte concentration in the sample solution and UV-vis absorbance. Moreover, the limit of detection (LOD) as low as 2 × 10-9 M for triclosan (∼0.58 μg/L) and 3 × 10-9 M for chlorpyrifos (∼1.05 μg/L) could be achieved. The collected surface droplets were also analyzed via gas chromatography (GC) and fluorescence microscopy. Our work shows that surface nanodroplet extraction may potentially streamline the process in sample pretreatment for sensitive chemical detection and quantification by using common analytic tools.
Collapse
Affiliation(s)
- Zhengxin Li
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Jae Bem You
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Xiaomeng Wang
- Natural Resources Canada, CanmetENERGY Devon, Alberta T9G 1A8, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
32
|
Li J, Wang G, Gou X, Xiang J, Huang QT, Liu G. Revealing Trace Nanoplastics in Food Packages─An Electrochemical Approach Facilitated by Synergistic Attraction of Electrostatics and Hydrophobicity. Anal Chem 2022; 94:12657-12663. [PMID: 36070514 DOI: 10.1021/acs.analchem.2c01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most food packages are made of plastics, nanoplastics released from which can be directly ingested and induce serious damage to organisms. Therefore, it is urgent to develop an effective and convenient method for nanoplastic determinations in food packages. In this work, we present a sandwich-based electrochemical strategy for nanoplastic determination. Positively charged Au nanoparticles were coated onto a Au electrode to selectively capture negatively charged nanoplastics in an aqueous environment. Subsequently, the nanoplastics were recognized by the signal molecule ferrocene via the hydrophobic interaction and determined by differential pulse voltammetry. Our sandwich-type detection depends on both electronegativity and hydrophobicity of nanoplastics, which make the method applicable for the assays of packages made of widely commercialized polystyrene (PS), polypropylene (PP), polyethylene (PE), and polyamide (PA). The method displays different sensitivities to above four nanoplastics but the same dynamic range from 1 to 100 μg·L-1. Based on it, the nanoplastics released from several typical food packages were assayed. Teabags were revealed with significant nanoplastic release, while instant noodle boxes, paper cups, and take-out boxes release slightly. The good recoveries in nanoplastic-spiked samples confirm the accuracy and applicability of this method. This work provides a sensitive, low-cost, and simple method without complicated instruments and pretreatment, which is of great significance for the determination of nanoplastics released from food packages.
Collapse
Affiliation(s)
- Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Gan Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Xiaoli Gou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qiu-Ting Huang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
33
|
Yang Q, Zhang S, Su J, Li S, Lv X, Chen J, Lai Y, Zhan J. Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10818-10828. [PMID: 35852947 DOI: 10.1021/acs.est.2c02584] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanoplastics are emerging pollutants that pose potential threats to the environment and organisms. However, in-depth research on nanoplastics has been hindered by the absence of feasible and reliable analytical methods, particularly for trace nanoplastics. Herein, we propose a hyphenated method involving membrane filtration and surface-enhanced Raman spectroscopy (SERS) to analyze trace nanoplastics in water. In this method, a bifunctional Ag nanowire membrane was employed to enrich nanoplastics and enhance their Raman spectra in situ, which omitted sample transfer and avoided losing smaller nanoplastics. Good retention rates (86.7% for 50 nm and approximately 95.0% for 100-1000 nm) and high sensitivity (down to 10-7 g/L for 50-1000 nm and up to 105 SERS enhancement factor) of standard polystyrene (PS) nanoplastics were achieved using the proposed method. PS nanoplastics with concentrations from 10-1 to 10-7 g/L and sizes ranging from 50 to 1000 nm were successfully detected by Raman mapping. Moreover, PS micro- and nanoplastics in environmental water samples collected from the seafood market were also detected at the μg/L level. Consequently, the proposed method provides more possibilities for analyzing low-concentration nanoplastics in aquatic environments with high enrichment efficiency, minimal sample loss, and high sensitivity.
Collapse
Affiliation(s)
- Qing Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shaoying Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaochen Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
34
|
Fu H, Liu W, Li J, Wu W, Zhao Q, Bao H, Zhou L, Zhu S, Kong J, Zhang H, Cai W. High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2359. [PMID: 35889585 PMCID: PMC9318914 DOI: 10.3390/nano12142359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022]
Abstract
Surface-enhanced Raman scattering (SERS) provides an unprecedented opportunity for fingerprinting identification and trace-level detection in chemistry, biomedicine, materials, and so on. Although great efforts have been devoted to fabricating sensitive plasmonic nanomaterials, it is still challenging to batch-produce a SERS substrate with high sensitivity, good reproducibility, and perfect recyclability. Here, we describe a facile fabrication of three-dimensional (3D) hierarchical Au/CuS nanocomposites, in which high-density Au nanotips enable highly SERS-active sensing, and the well-defined microflower (MF) geometry produces perfect signal reproducibility (RSD < 5%) for large laser spot excitations (>50 μm2), which is particularly suitable for practical on-site detection with a handheld Raman spectrometer. In addition, a self-cleaning ability of this Au/CuS Schottky junction photocatalyst under sunlight irradiation allows complete removal of the adsorbed analytes, realizing perfect regeneration of the SERS substrates over many cycles. The mass-production, ultra-sensitive, high-reproducibility, and fast-recyclability features of hierarchical Au/CuS MFs greatly facilitate cost-effective and field SERS detection of trace analytes in practice.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Junqing Li
- Dongying City Center for Disease Control and Prevention, Dongying 257000, China;
| | - Wenguang Wu
- Shandong Shouguang Testing Group Co., Ltd., Weifang 262700, China;
| | - Qian Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Haoming Bao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Le Zhou
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Shuyi Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
35
|
Ly NH, Kim MK, Lee H, Lee C, Son SJ, Zoh KD, Vasseghian Y, Joo SW. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:865-888. [PMID: 35757049 PMCID: PMC9206222 DOI: 10.1007/s40097-022-00506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 06/07/2023]
Abstract
Micro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection. This review article provides a comprehensive update on the facile detection of MNPs by Raman spectroscopy, which aims at early diagnosis of potential risks and human health impacts. In particular, Raman imaging and nanostructure-enhanced Raman scattering have emerged as effective analytical technologies for identifying MNPs in an environment. Here, the authors give an update on the latest advances in plasmonic nanostructured materials-assisted SERS substrates utilized for the detection of MNP particles present in environmental samples. Moreover, this work describes different plasmonic materials-including pure noble metal nanostructured materials and hybrid nanomaterials-that have been used to fabricate and develop SERS platforms to obtain the identifying MNP particles at low concentrations. Plasmonic nanostructure-enhanced materials consisting of pure noble metals and hybrid nanomaterials can significantly enhance the surface-enhanced Raman scattering (SERS) spectra signals of pollutant analytes due to their localized hot spots. This concise topical review also provides updates on recent developments and trends in MNP detection by means of SERS using a variety of unique materials, along with three-dimensional (3D) SERS substrates, nanopipettes, and microfluidic chips. A novel material-assisted spectral Raman technique and its effective application are also introduced for selective monitoring and trace detection of MNPs in indoor and outdoor environments. Graphical abstract
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyewon Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Cheolmin Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| |
Collapse
|
36
|
Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022; 147:2369-2377. [PMID: 35535968 DOI: 10.1039/d2an00549b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A neodymium metal-organic framework (MOFNd) was prepared using 1H-pyrazole-3,5-dicarboxylic acid (H3pdc) and 2-pyrazinecarboxylic acid as ligands. Through the addition of HAuCl4 as a precursor and NaBH4 as a reducing agent, a new MOFNd-loaded nanogold (AuNPs) (Au@MOFNd) nanosol with good stability and high catalytic activity was conveniently prepared via a solvothermal-reduction method and characterized. It was found that the indicator reaction of reducing HAuCl4 by Na2SO3 to generate AuNPs was slow. Au@MOFNd strongly catalyzes this nanoreaction, and the produced AuNPs exhibit a strong resonance Rayleigh scattering (RRS) peak at 370 nm, and a strong surface-enhanced Raman scattering (SERS) peak at 1617 cm-1 with the addition of the molecular probe Victoria blue 4R (VB4r). A novel SERS/RRS di-mode quantitative analysis method for glyphosate (GLY) was established by coupling this new Au@MOFNd catalytic indicator reaction with the aptamer (Apt) reaction of GLY, with SERS and RRS detection limits of 0.02 nM and 0.3 nM, respectively. It has been applied to the analysis of soil samples with a recovery rate of 93.0%-106.5% and precision of 2.2%-4.1%, and the results were satisfactory.
Collapse
Affiliation(s)
- Jingjing Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Jinling Shi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
37
|
Xu D, Su W, Lu H, Luo Y, Yi T, Wu J, Wu H, Yin C, Chen B. A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys Chem Chem Phys 2022; 24:12036-12042. [PMID: 35537128 DOI: 10.1039/d1cp05870c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to overuse of plastic products, decomposed microplastics (MPs) are widely spread in aquatic ecosystems, and will cause irreparable harm to the human body through the food chain. Traditional MP detection methods require cumbersome sample pre-processing procedures and complex instruments, so there is an urgent demand to develop methods to achieve simple on-site detection. Herein, a simple, sensitive, accurate, and stable MP detection method based on surface-enhanced Raman scattering (SERS) is investigated. Considering the hydrophobic problems of MPs, gold nanoparticle (AuNP) doped filter paper as a flexible SERS substrate is applied to capture MPs in the fiber pores. Benefitting from the electromagnetic (EM) hot spots generated by AuNPs, the Raman signal of MPs can be effectively enhanced. Meanwhile, the flexible SERS substrate has good sensitivity to a minimum detectable concentration of 0.1 g L-1 for polyethylene terephthalate (PET) in water, and the maximum enhancement factor (EF) can reach 360.5. Furthermore, the practicability of the developed method has been proved by the successful detection of MPs in tap water and pond water. This research provides an easy process, high sensitivity, and good reproducibility method for MP detection.
Collapse
Affiliation(s)
- Dewen Xu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Wei Su
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Hanwen Lu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Yinlong Luo
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Tianan Yi
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Hong Wu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Cheng Yin
- College of Science, Hohai University, Changzhou, 213022, China.
| | - Bingyan Chen
- College of Science, Hohai University, Changzhou, 213022, China.
| |
Collapse
|
38
|
SERS Determination of Trace Phosphate in Aquaculture Water Based on a Rhodamine 6G Molecular Probe Association Reaction. BIOSENSORS 2022; 12:bios12050319. [PMID: 35624620 PMCID: PMC9139008 DOI: 10.3390/bios12050319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
Although phosphate (Pi) is a necessary nutrient for the growth of aquatic organisms, the presence of excess Pi leads to water eutrophication; thus, it is necessary to accurately determine the content of Pi in water. A method for the determination of trace Pi in aquaculture water was developed based on surface-enhanced Raman spectroscopy (SERS) combined with rhodamine 6G (R6G)-modified silver nanoparticles (AgNPs) as the active substrate. The adsorption of R6G on the AgNP surfaces led to a strong SERS signal. However, in the presence of Pi and ammonium molybdate, phosphomolybdic acid formed, which further associated with R6G to form a stable R6G-PMo12O403− association complex, thereby hindering the adsorption of R6G on the AgNPs, and reducing the SERS intensity; this sequence formed the basis of Pi detection. The decrease in the SERS intensity was linear with respect to the Pi concentration (0.2–20 μM), and the limit of detection was 29.3 nM. Upon the application of this method to the determination of Pi in aquaculture water, a recovery of 94.4–107.2% was obtained (RSD 1.77–6.18%). This study provides an accurate, rapid, and sensitive method for the trace determination of Pi in aquaculture water, which is suitable for on-site detection.
Collapse
|
39
|
VishnuRadhan R, Lonappan A, Eldho TI. A microwave-based technique as a feasible method to detect plastic pollutants in experimental samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128224. [PMID: 35063835 DOI: 10.1016/j.jhazmat.2022.128224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Plastic-derived pollutants are hazardous and pervasive in the environment, and their detection is a challenge due to observational constraints of various dimensions. Physical, chemical, thermal, and spectroscopic methods are extensively used to identify microplastics in environmental systems, but fundamental challenges exist in the isolation and analysis of nanoplastics from environmental samples. The promising practices are often destructive, rendering the samples inutile for further investigations. In this paper, a technique based on the measurement of the dielectric properties of the samples, carried out using the rectangular cavity perturbation technique at the S-band of microwave frequency of 2-4 GHz is proposed. The ability of this method to identify some of the most abundant types of plastics found in the environment, polypropylene, low-density polyethylene, high-density polyethylene, and cross-linked polyethylene, is demonstrated. Electrical characteristics at microwave frequencies such as absorption factor, dielectric constant, and dielectric loss tangent are found useful in the identification of various polymers in the samples. Further, this method can be applied to identify other environmentally stable performance and engineering polymers, which are not often investigated in the environmental matrices for their hazardous effects. This non-destructive measurement method is quick and straightforward and can be further developed to identify a wide range of plastic materials present in various environmental compartments.
Collapse
Affiliation(s)
- Renjith VishnuRadhan
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA.
| | - Anil Lonappan
- Department of Electrical Engineering, Mangosuthu University of Technology, Durban, 4031, South Africa
| | - T I Eldho
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
40
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
41
|
Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Huang X, Zou X, Li Z, Wei R. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem 2022; 370:131276. [PMID: 34662790 DOI: 10.1016/j.foodchem.2021.131276] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 01/24/2023]
Abstract
This study presented an effective and sensitive SERS substrate for rapid detection of thiabendazole (TBZ) in fruit samples. A core-shell gold/silver nanorod (Au@Ag NRs) has been synthesized as a bimetallic SERS-active substrate. The obtained substrate showed an excellent SERS effect because of the tunable plasmon resonance of Au NRs, the significantly enhanced effect of silver, and the bimetallic synergistic effect of Au@Ag NRs. Under optimal conditions, the substrate was used to detect TBZ in fresh apple juice and peach juice with limits of detection of 0.032 and 0.034 ppm respectively. In addition, the recovery rate was within a satisfactory range of 95-101%, indicating that the Au@Ag NRs substrate could be a SERS detection platform for fruit pesticides residues with great development potential.
Collapse
Affiliation(s)
- Zhiyang Chen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Ruicheng Wei
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
42
|
Guo X, Lin H, Xu S, He L. Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1410-1422. [PMID: 35099960 DOI: 10.1021/acs.jafc.1c06085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution has become a worldwide concern in aquatic and terrestrial environments. Microplastics could also enter the food chain, causing potential harm to human health. To facilitate the risk assessment of microplastics to humans, it is critically important to have a reliable analytical technique to detect, quantify, and identify microplastics of various materials, sizes, and shapes from environmental, agricultural, and food matrices. Spectroscopic techniques, mainly vibrational spectroscopy (Raman and infrared), are commonly used techniques for microplastic analysis. This review focuses on recent advances of these spectroscopic techniques for the analysis of microplastics in food. The fundamental, recent technical advances of the spectroscopic techniques and their advantages and limitations were summarized. The food sample pretreatment methods and recent applications for detecting and quantifying microplastics in different types of food were reviewed. In addition, the current technical challenges and future research directions were discussed. It is anticipated that the advances in instrument development and methodology innovation will enable spectroscopic techniques to solve critical analytical challenges in microplastic analysis in food, which will facilitate the reliable risk assessment.
Collapse
Affiliation(s)
- Xin Guo
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Helen Lin
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theorical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Kihara S, Chan A, In E, Taleb N, Tollemache C, Yick S, McGillivray DJ. Detecting polystyrene nanoplastics using filter paper-based surface-enhanced Raman spectroscopy. RSC Adv 2022; 12:20519-20522. [PMID: 35919172 PMCID: PMC9286027 DOI: 10.1039/d2ra03395j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
This work presents a novel filter paper-based method using surface-enhanced Raman spectroscopy (SERS), for detecting polystyrene nanoplastics (PSNPs).
Collapse
Affiliation(s)
- Shinji Kihara
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Andrew Chan
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Eugene In
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Nargiss Taleb
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Cherie Tollemache
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Samuel Yick
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Duncan J. McGillivray
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
44
|
Yılmaz D, Günaydın BN, Yüce M. Nanotechnology in food and water security: on-site detection of agricultural pollutants through surface-enhanced Raman spectroscopy. EMERGENT MATERIALS 2022; 5:105-132. [PMID: 35284783 PMCID: PMC8905572 DOI: 10.1007/s42247-022-00376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 05/08/2023]
Abstract
Agricultural pollutants are harmful components threatening human health, wildlife, the environment, and the ecosystem. To avoid their exposure, developing prevention and detection systems with high sensitivity and selectivity is required. Most conventional methods, including molecular and chromatographic techniques, cannot be adopted for outdoor on-site detection even though they can provide sensitive and selective detection. Thus, detection platforms that can provide on-site detection via miniaturized and high throughput systems should be developed. As an alternative method, surface-enhanced Raman scattering (SERS) provides unique information about the substances in the presence of plasmonic nanostructures, and it can be portable with the use of portable detection systems and spectrometers. In this study, on-site detection of agricultural pollutants through SERS is reviewed. Three different types of agricultural pollutants were pointed out. On-site detection of biological pollutants, including bacteria and viruses, is reviewed as the first type of pollutant. As a second type, the detection of pesticides, antibiotics, and additives are focused on as chemical pollutants. The third group includes the detection of microplastics and also nanoparticles from the environment.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
| | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Meral Yüce
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
| |
Collapse
|
45
|
Detection of benzalkonium chloride on glass surfaces using silver nanoparticles. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Jeon Y, Kim D, Kwon G, Lee K, Oh CS, Kim UJ, You J. Detection of nanoplastics based on surface-enhanced Raman scattering with silver nanowire arrays on regenerated cellulose films. Carbohydr Polym 2021; 272:118470. [PMID: 34420729 DOI: 10.1016/j.carbpol.2021.118470] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023]
Abstract
Plastic pollution has steadily become a global issue due to its ubiquity and degradation into micro and nanoparticles. Herein, we report the construction of surface-enhanced Raman scattering (SERS)-active array substrates with regenerated cellulose (RC) and plasmonic nanoparticles (AuNRs and AgNWs) via a simple vacuum-assisted filtration method using a silicon mask for rapid nanoplastic detection. The AgNWs/RC film exhibited a SERS intensity of crystal violet approximately six times higher than that of the AuNRs/RC film with a high enhancement factor of 1.8 × 107. Moreover, the AgNWs/RC film exhibits a better SERS activity for polystyrene nanoplastic detection than the AuNRs/RC film because the dense AgNW network structures are well suited for nanoplastic detection. The AgNWs/RC film can detect PS nanoplastics down to 0.1 mg/mL with a good reproducibility of the SERS signal. The low-cost, flexible, and highly sensitive AgNWs/RC films could provide an efficient and rapid SERS-based method for nanoplastic detection.
Collapse
Affiliation(s)
- Youngho Jeon
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Dabum Kim
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Goomin Kwon
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Kangyun Lee
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.
| |
Collapse
|
47
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|
48
|
Geißler F, Martínez-Cabanas M, Lodeiro P, Achterberg EP. Optimization of hyphenated asymmetric flow field-flow fractionation for the analysis of silver nanoparticles in aqueous solutions. Anal Bioanal Chem 2021; 413:6889-6904. [PMID: 34537865 PMCID: PMC8449749 DOI: 10.1007/s00216-021-03647-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The extensive use of silver nanoparticles (AgNPs) in consumer products, medicine, and industry leads to their release into the environment. Thus, a characterization of the concentration, size, fate, and toxicity of AgNPs under environmental conditions is required. In this study, we present the characterization and optimization of an asymmetric flow field-flow fractionation (AF4) system coupled with UV/Vis spectrophotometer and dynamic light scattering (DLS) detector as a powerful tool for the size separation and multi-parameter characterization of AgNPs in complex matrices. The hyphenated AF4-UV/Vis-DLS system was first characterized using individual injections of the different size fractions. We used electrostatically stabilized AgNPs of 20-, 50-, and 80-nm nominal diameters coated with lipoic acid. We investigated the effect of applied cross-flows, carrier solutions, focus times, and quantity of injected particles on the nature of the AF4 fractograms and on the integrity of the AgNPs. Best size separation of a 1:1 mixture of 20- and 80-nm AgNPs was achieved using cross-flows of 0.5 and 0.7 mL/min with 1 mM NaCl and 0.05% v/v Mucasol as carrier solutions. We also researched the behavior of AgNPs in natural waters using the hyphenated AF4-UV/Vis-DLS system, under determined optimal conditions. Schematic and photograph of the AF4 setup with numbered hardware devices. Dashed lines represent electrical connections; continuous lines represent fluidic connections. For a better overview, not all fluidic connections between pump/6-way valve (2) and the Eclipse AF4 device (3) are shown in the schematic. The fluorescence detector (FL (7)) was not used in the study presented herein.
Collapse
Affiliation(s)
- Felix Geißler
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - María Martínez-Cabanas
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Pablo Lodeiro
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Chemistry, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198, Lleida, Spain
| | - Eric P Achterberg
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
49
|
Ivleva NP. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem Rev 2021; 121:11886-11936. [PMID: 34436873 DOI: 10.1021/acs.chemrev.1c00178] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microplastics and nanoplastics have become emerging particulate anthropogenic pollutants and rapidly turned into a field of growing scientific and public interest. These tiny plastic particles are found in the environment all around the globe as well as in drinking water and food, raising concerns about their impacts on the environment and human health. To adequately address these issues, reliable information on the ambient concentrations of microplastics and nanoplastics is needed. However, micro- and nanoplastic particles are extremely complex and diverse in terms of their size, shape, density, polymer type, surface properties, etc. While the particle concentrations in different media can vary by up to 10 orders of magnitude, analysis of such complex samples may resemble searching for a needle in a haystack. This highlights the critical importance of appropriate methods for the chemical identification, quantification, and characterization of microplastics and nanoplastics. The present article reviews advanced methods for the representative mass-based and particle-based analysis of microplastics, with a focus on the sensitivity and lower-size limit for detection. The advantages and limitations of the methods, and their complementarity for the comprehensive characterization of microplastics are discussed. A special attention is paid to the approaches for reliable analysis of nanoplastics. Finally, an outlook for establishing harmonized and standardized methods to analyze these challenging contaminants is presented, and perspectives within and beyond this research field are discussed.
Collapse
Affiliation(s)
- Natalia P Ivleva
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| |
Collapse
|
50
|
Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Detection of Sub-Micro- and Nanoplastic Particles on Gold Nanoparticle-Based Substrates through Surface-Enhanced Raman Scattering (SERS) Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1149. [PMID: 33925012 PMCID: PMC8146356 DOI: 10.3390/nano11051149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
Small plastic particles such as micro- (<5 mm), sub-micro- (1 µm-100 nm) and nanoplastics (<100 nm) are known to be ubiquitous within our surrounding environment. However, to date relatively few methods exist for the reliable detection of nanoplastic particles in relevant sample matrices such as foods or environmental samples. This lack of relevant data is likely a result of key limitations (e.g., resolution and/or scattering efficiency) for common analytical techniques such as Fourier transform infrared or Raman spectroscopy. This study aims to address this knowledge gap in the field through the creation of surface-enhanced Raman scattering spectroscopy substrates utilizing spherical gold nanoparticles with 14 nm and 46 nm diameters to improve the scattering signal obtained during Raman spectroscopy measurements. The substrates are then used to analyze polystyrene particles with sizes of 161 nm or 33 nm and poly(ethylene terephthalate) particles with an average size of 62 nm. Through this technique, plastic particles could be detected at concentrations as low as 10 µg/mL, and analytical enhancement factors of up to 446 were achieved.
Collapse
Affiliation(s)
- Jessica Caldwell
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (J.C.); (B.R.-R.)
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (J.C.); (B.R.-R.)
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (J.C.); (B.R.-R.)
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (J.C.); (B.R.-R.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|