1
|
Esmaeili SV, Alboghobeish A, Feyzi V, Ravannakhjavani F, Zendehdel R. Virtual screening study for biological activity assessment and metabolism pathway of a fuel dye in airborne exposure scenario. Toxicol Ind Health 2025; 41:1-10. [PMID: 39313242 DOI: 10.1177/07482337241286187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The utilization of synthetic dyes increases the risk to human health. Despite the progress of information on azo dyes, very little attention has been reported on toxicity assessment of anthraquinone dyes. Solvent Blue 35 (SB35) is one of the anthraquinone dyes likely to be encountered because of its increasing use in various industries. Whereas the design of laboratory tests is very expensive, in silico screening was used to predict the metabolic profile and toxicity effect of SB35. MetaTox software was used to predict the metabolites of phase I and II in two layers. Since airborne exposure has been considered, the pathways of inhalation and dermal absorption of SB35 were investigated through the SwissADME model based on the modified Lipinski's rule of five. To predict the biological effect and toxicity of SB35 and each of the metabolites, PASS online software was used. Chemical activity was considered according to the probability of activation values (Pa) higher than the probability of inactivation values (Pi). N- dealkylation of SB35 was predicted in the first layer, while seven active compounds were obtained in the second layer from phases I and II reactions. Investigating the physicochemical properties of SB35 confirmed inhalation absorption for occupational exposure scenarios. All metabolites are absorbed from intestinal routes based on the RO5 rules. SB35 and their metabolites have an effective substrate role for the sub-type of CYP 450 enzymes. The toxicity effect of carcinogenicity for SB35 and mutagenicity for metabolites are predicted while confirmed with some biological effects. However, reproductive disorders are pointed with SB35 by probability higher than 70%. Virtual screening methods are efficient tools for creating cost-effective predictions in the hazard's evaluation of SB35. However, a perspective view is suggested before decision-making for laboratory designing tests.
Collapse
Affiliation(s)
- Sayed Vahid Esmaeili
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Alboghobeish
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vafa Feyzi
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravannakhjavani
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Alam R, Naznin M, Ardiati FC, Solihat NN, Anita SH, Purnomo D, Yanto DHY, Kim S. Targeted and non-targeted identification of dye and chemical contaminants in Loji River, Indonesia using FT-ICR-MS. CHEMOSPHERE 2024; 365:143324. [PMID: 39278327 DOI: 10.1016/j.chemosphere.2024.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Deni Purnomo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
De Sousa IAL, Boari AJ, Santos AS. Ligninolytic enzyme potential of Trametes spp. associated with leaf litter in riparian forest of the Amazônia region. BRAZ J BIOL 2024; 84:e282099. [PMID: 38985070 DOI: 10.1590/1519-6984.282099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 07/11/2024] Open
Abstract
The present study explored the potential of leaf litter as a source of fungi able to produce ligninolytic enzymes for the biodegradation of anthraquinone dyes. Within the colonies isolated from the leaf litter, only three colonies of two species Trametes were selected based on the detection of oxidation and decolorization halos in Petri dishes with PDA (potato-dextrose-agar) + Guaicol and PDA + RBBR (Remazol Brilliant Blue R). The identification of the colonies was done through sequencing of the ITS region. The enzymatic activity of Lac (lacase), MnP (manganês peroxidase) and LiP (lignina peroxidase) was analyzed by spectrophotometry during fermentation in PD+RBBR imedium. Isolates A1SSI01 and A1SSI02 were identified as Trametes flavida, while A5SS01 was identified as Trametes sp. Laccase showed the highest enzymatic activity, reaching 452.13 IU.L-1 (A1SSI01, 0.05% RBBR) after 96h. Isolate A1SSI02 reached the highest percentage of decolorization, achieving 89.28% in seven days. The results imply that these Trametes isolates can be highly effective in waste treatment systems containing toxic anthraquinone dyes. Keywords: laccase, peroxidases, basidiomycete, litter and biodecolorization.
Collapse
Affiliation(s)
- I A L De Sousa
- Universidade Federal do Pará - UFPA, Programa de Pós-graduação em Biodiversidade e Biotecnologia - PPG-REDE BIONORTE, Instituto de Ciências Biológicas, Belém, PA, Brasil
| | - A J Boari
- Embrapa Amazônia Oriental - EMBRAPA, Laboratório de Fitopatologia, Belém, PA, Brasil
| | - A S Santos
- Universidade Federal do Pará - UFPA, Instituto de Ciências Biológicas, Belém, PA, Brasil
| |
Collapse
|
4
|
Kalia S, Samuchiwal S, Dalvi V, Malik A. Exploring fungal-mediated solutions and its molecular mechanistic insights for textile dye decolorization. CHEMOSPHERE 2024; 360:142370. [PMID: 38763399 DOI: 10.1016/j.chemosphere.2024.142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Decolorization of textile dyes and study of their intermediate compounds is necessary to comprehend the mechanism of dye degradation. In the present study, different fungal mediated solutions were explored to provide an alternative to treat the reactive dyes. Growing biomass of Pleurotus sajor caju showed 83% decolorization (249.99 mg L-1 removal) of Reactive Blue 13 (RB 13) and 63% decolorization (188.83 mg L-1) of Reactive Black 5 (RB 5) at 300 mg L-1 initial concentration on 8 d. Higher laccase activity was positively correlated with increase in decolorization. However, increasing dye concentration has inhibitory effect on fungal biomass due to increase in toxicity. In laccase mediated decolorization, laccase produced from P. sajor caju using carbon rich waste material as substrate showed 89% decolorization (276.36 mg L-1 removal) of RB 13 and 33% decolorization (105.37 mg L-1 removal) of RB 5 at 300 mg L-1 initial dye concentration in 100 min at 30 °C and pH 3.0'. Comparing the two methods, laccase-mediated decolorization shows better decolorization in less time and does not produce sludge. Further, the present work also attempted to study the dye degradation pathway for Reactive blue 13 via laccase mediated process. Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the degraded products. The GC-MS analysis showed the formation of naphthalene, naphthalene 2-ol, benzene,1-2, dicarboxylic acid, 4, amino, 6,chloro, 1-3-5, triazin-2-ol as the final degraded products after enzymatic degradation of RB 13. These findings provide in-depth study of laccase-mediated textile dye degradation mechanism.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Vivek Dalvi
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
5
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Cho M, Oh BT. Bio-electrochemical degradation of carbamazepine (CBZ): A comprehensive study on effectiveness, degradation pathway, and toxicological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121161. [PMID: 38761626 DOI: 10.1016/j.jenvman.2024.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Recent attention on the detrimental effects of pharmaceutically active compounds (PhACs) in natural water has spurred researchers to develop advanced wastewater treatment methods. Carbamazepine (CBZ), a widely recognized anticonvulsant, has often been a primary focus in numerous studies due to its prevalence and resistance to breaking down. This study aims to explore the effectiveness of a bio-electrochemical system in breaking down CBZ in polluted water and to assess the potential harmful effects of the treated wastewater. The results revealed bio-electro degradation process demonstrated a collaborative effect, achieving the highest CBZ degradation compared to electrodegradation and biodegradation techniques. Notably, a maximum CBZ degradation efficiency of 92.01% was attained using the bio-electrochemical system under specific conditions: Initial CBZ concentration of 60 mg/L, pH level at 7, 0.5% (v/v) inoculum dose, and an applied potential of 10 mV. The degradation pathway established by identifying intermediate products via High-Performance Liquid Chromatography-Mass Spectrometry, revealed the complete breakdown of CBZ without any toxic intermediates or end products. This finding was further validated through in vitro and in vivo toxicity assays, confirming the absence of harmful remnants after the degradation process.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
6
|
Qin W, Guo S, Li Q, Tang A, Liu H, Liu Y. Biotransformation of the azo dye reactive orange 16 by Aspergillus flavus A5P1: Performance, genetic background, pathway, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133562. [PMID: 38401208 DOI: 10.1016/j.jhazmat.2024.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
This study reports the strain Aspergillus flavus A5P1 (A5P1), which is with the capable of degrading the azo dye reactive orange 16 (RO16). The mechanism of RO16 degradation by A5P1 was elucidated through genomic analysis, enzymatic analysis, degradation pathway analysis and oxidative stress analysis. Strain A5P1 exhibited aerobic degradation of RO16, with optimal degradation at an initial pH of 3.0. Genomic analysis indicates that strain A5P1 possesses the potential for acid tolerance and degradation of azo dye. Enzymatic analysis, combined with degradation product analysis, demonstrated that extracellular laccase, intracellular lignin peroxidase, and intracellular quinone reductase were likely key enzymes in the RO16 degradation process. Oxidative stress analysis revealed that cell stress responses may participate in the RO16 biotransformation process. The results indicated that the biotransformation of RO16 may involves biological processes such as transmembrane transport of RO16, cometabolism of the strain with RO16, and cell stress responses. These findings shed light on the biodegradation of RO16 by A5P1, indicating A5P1's potential for environmental remediation.
Collapse
Affiliation(s)
- Wen Qin
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shiqi Guo
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Qingyun Li
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Aixing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Haibo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Youyan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, Rajamohan R, Rajasekar A. Electrochemical oxidation of azo dyes degradation by RuO 2-IrO 2-TiO 2 electrode with biodegradation Aeromonas hydrophila AR1 and its degradation pathway: An integrated approach. CHEMOSPHERE 2023; 345:140516. [PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
Collapse
Affiliation(s)
- Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Suresh S
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Rajagopal Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|
8
|
Yanto DHY, Chempaka RM, Nurhayat OD, Argo BD, Watanabe T, Wibisono Y, Hung YT. Optimization of dye-contaminated wastewater treatment by fungal Mycelial-light expanded clay aggregate composite. ENVIRONMENTAL RESEARCH 2023; 231:116207. [PMID: 37244498 DOI: 10.1016/j.envres.2023.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Dye-contaminated wastewaters from the printing batik industry are hazardous if discharged into the environment without any treatment. Finding an optimization and reusability assessment of a new fungal-material composite for dye-contaminated wastewater treatment is important for efficiency. The study purposes to optimize fungal mycelia Trametes hirsuta EDN 082 - light expanded clay aggregate (myco-LECA) composite for real priting batik dye wastewater treatment by using Response Surface Methodology with Central Composite Design (RSM-CCD). The factors included myco-LECA weight (2-6 g), wastewater volume (20-80 mL), and glucose concentration (0-10%) were applied for 144 h of incubation time. The result showed that the optimum condition was achieved at 5.1 g myco-LECA, at 20 mL wastewater, and at 9.1% glucose, respectively. In this condition, the decolorization values with an incubation time of 144 h were 90, 93, and 95%, at wavelengths 570, 620, and 670 nm, respectively. A reusability assessment was conducted for 19 cycles and the result showed that decolorization effectiveness was still above 96%. GCMS analysis showed the degradation of most compounds in the wastewater and the degradation products of the wastewater demonstrated detoxification against Vigna radiata and Artemia salina. The study suggests that myco-LECA composite has a good performance and therefore is a promising method for the treatment of printing batik wastewater.
Collapse
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN). Cibinong 16911, Indonesia.
| | - Rayi Mishellia Chempaka
- Department of Bioprocess Engineering, Universitas Brawijaya, Jl. Veteran, Malang 65145 Indonesia.
| | - Oktan Dwi Nurhayat
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN). Cibinong 16911, Indonesia.
| | - Bambang Dwi Argo
- Department of Bioprocess Engineering, Universitas Brawijaya, Jl. Veteran, Malang 65145 Indonesia.
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan.
| | - Yusuf Wibisono
- Department of Bioprocess Engineering, Universitas Brawijaya, Jl. Veteran, Malang 65145 Indonesia; MILI Institute for Water Research, Kawasan Industri Jababeka, Bekasi 17530, Indonesia.
| | - Yung-Tse Hung
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
9
|
Wang X, Lu H, Li Q, Hong Z, Liu X, Zhou J. Anaerobic biotransformation of sulfonated anthraquinones by Pseudomonas nitroreducens WA and the fate of the sulfonic acid group in the presence of nitrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131887. [PMID: 37348367 DOI: 10.1016/j.jhazmat.2023.131887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
The presence of the sulfonic acid group in sulfonated anthraquinones (SAs) resulted in the difficulty in the mineralization of anthraquinone ring. Little information is available on the removal pathway of the sulfonic acid group of SAs under aerobic/anaerobic conditions. Herein, sodium 1-aminoanthraquinone-2-sulfonate (ASA-2) was used as an important intermediate of SAs. A novel Pseudomonas nitroreducens WA capable of ASA-2 desulfonation was isolated from the Reactive Blue 19-degrading consortium WRB. Anaerobic desulfonation efficiency of 0.165 mM ASA-2 by strain WA reached 99% in 36 h at pH 7.5 and 35 ℃ using glucose as an electron donor. Further analysis showed that ASA-2 as an electron acceptor could be anaerobically transformed into 1-aminoanthraquinone and sulfite via the cleavage of C-S bond. Strain WA could also desulfonate sodium 1-amino-4-bromoanthraquinone-2-sulfonate and sodium anthraquinone-2-sulfonate. Under denitrification conditions, the formed sulfite could be oxidized to sulfate by nitrite via a chemical reaction, which was beneficial for nitrite removal. This phenomenon was observed in consortium WRB-amended system. Moreover, the consortium WRB could reduce the formed sulfite to sulfide due to the presence of Desulfovibrio. These results provide a theoretical basis for the anaerobic biodesulfonation of SAs along with nitrate removal and support for the development of sulfite-based biotechnology.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongqiang Hong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Lee S, Alam MB, Lee SH, Jung MJ, Shim WJ, Kim S. Identification and quantification of photodegradation products of disposed expanded polystyrene buoy used in aquaculture. MARINE POLLUTION BULLETIN 2023; 192:114998. [PMID: 37156125 DOI: 10.1016/j.marpolbul.2023.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
This study investigated the chemicals extracted from an EPS buoy used in aquaculture, which were subsequently collected from a recycling center. It was observed that the chemicals generated upon photodegradation make disposed buoys more toxic. Analysis of the extracted chemicals revealed the presence of 37 compounds, with four compounds quantitatively determined. Further analysis showed that the quantity of compounds dissolved in seawater was significantly higher than the amount remaining on the buoy surface. Based on the assumption that the buoy was exposed to sunlight for a year, it was estimated that 14.44 mg of the four compounds dissolved into the ocean. Given that South Korea used over 7 million EPS buoys, photodegraded EPS buoys are expected to represent a significant source of potentially hazardous chemicals.
Collapse
Affiliation(s)
- Seulgidaun Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Maeng-Joon Jung
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Joon Shim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. CHEMOSPHERE 2023; 313:137505. [PMID: 36509189 DOI: 10.1016/j.chemosphere.2022.137505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raisul Awal Mahmood
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Syful Islam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
13
|
Gul R, Sharma P, Kumar R, Umar A, Ibrahim AA, Alhamami MAM, Jaswal VS, Kumar M, Dixit A, Baskoutas S. A sustainable approach to the degradation of dyes by fungal species isolated from industrial wastewaters: Performance, parametric optimization, kinetics and degradation mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114407. [PMID: 36216116 DOI: 10.1016/j.envres.2022.114407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Fungal abetted processes are among the finest approaches for the transformation or degradation and decolorization of dyes in effluents. In this piece of research; biodegradation and metabolic pathways of two toxic dyes Congo Red (CR) and Reactive black 5 (RB5) by two strains of Aspergillus sp. fungus in batch experiments has been investigated. Morphological characteristics of the isolates were observed with both light and electron microscopies. Based on molecular characterization the isolates were identified as Aspergillus flavus and Aspergillus niger. The degradation was also optimized via. operational parameters such as pH, temperature, incubation time, inoculums size, dye concentration, carbon sources and nitrogen sources. Degradation measurements revealed that the isolates effectively degraded 90% and 96% of CR and RB5 respectively. Metabolites were identified with Liquid chromatography-mass spectrometry (LCMS) and degradation pathways of the dyes were proposed. Toxicity assay Phaseolus mungo seeds showed that pure CR and RB5 dyes exhibits significant toxicity whereas fungal treated dye solution resulted in an abatement of the toxicity and cell viability was increased. The results stipulated in this article clearly showed the effectiveness of the isolates on detoxification of CR and RB5 dyes.
Collapse
Affiliation(s)
- Roshan Gul
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India
| | - Priyanka Sharma
- Shaheed Bhagat Singh Khalsa College for Women Padiala, S.A.S. Nagar, Punjab, 140103, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Vivek Sheel Jaswal
- Department of Chemistry and Chemical Science, Central University of Himachal Pradesh, Dharamshala, H.P., India
| | - Manish Kumar
- Department of Chemistry and Chemical Science, Central University of Himachal Pradesh, Dharamshala, H.P., India
| | - Ashutosh Dixit
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 265000, Patras, Greece
| |
Collapse
|
14
|
Zafar S, Bukhari DA, Rehman A. Azo dyes degradation by microorganisms - An efficient and sustainable approach. Saudi J Biol Sci 2022; 29:103437. [PMID: 36131780 PMCID: PMC9483650 DOI: 10.1016/j.sjbs.2022.103437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic aromatic compounds consisting of various functional groups are known as dyes. These colored compounds are often discharged in effluents, and they are very dangerous to aquatic life. Basically, the dye industry started by using natural plant and insect sources, and then suddenly turned into artificial manufacturing. Natural equilibrium of our environment gets changed by the reduction in photosynthetic activity due to the dyes. In China 900,000 tons of all kinds of dyes are usually produced, which are used in many industries like food, textile, food, paper and leather. Untreated wastewater contaminates aquatic bodies by causing eutrophication, change in water color, oxygen depletion which affect aquatic organisms to a great extent. Dye wastewater is now the key environmental pollution form. In recent eras an extensive study line has been developed to explore the dye decolorization and biodegradation under both aerobic as well as anaerobic conditions. In this review, the chemistry, toxicity and microbial biodegradation/decolorization are presented. Some recent studies along with the new techniques and methodologies of remediating the dye pollution are also discussed to provide the bases of their handling. Overall, efficient and high biodegradation potential make microbes an impending foundation for green chemistry to eradicate toxic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Sadia Zafar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Corresponding author at: Department of Microbiology & Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
15
|
Yanto DHY, Anita SH, Solihat NN. Enzymatic degradation and metabolic pathway of acid blue 129 dye by crude laccase from newly isolated Trametes hirsuta EDN 082. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Research Collaboration Center for Marine Biomaterials, Jatinangor, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
16
|
Chen BY, Hsueh CC, Tsai PW, Lin YH, Tsai PS, Lien TK, Yang CW, Jiang LD. Deciphering biotransformation of anthraquinone electron shuttles in Rheum palmatum L. for value-added production. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Zhu Q, Song J, Liu Z, Wu K, Li X, Chen Z, Pang H. Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Alkas TR, Ediati R, Ersam T, Nawfa R, Purnomo AS. Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
Cherif S, Djelal H, Firmin S, Bonnet P, Frezet L, Kane A, Amine Assadi A, Trari M, Yazid H. The impact of material design on the photocatalytic removal efficiency and toxicity of two textile dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66640-66658. [PMID: 35504995 DOI: 10.1007/s11356-022-20452-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This study deals with the toxicity of the treated solutions of two types of dyes, namely, the anthraquinonic Reactive Bleu 19 dye (RB19) and the bi-azoic Direct Red 227 dye (DR227), which are treated in single and binary mixture systems. The target molecules were removed by the photocatalysis process using ZnO as a catalyst, which was calcined at two temperatures 250 and 420 °C (ZnO250 and ZnO420) prepared in the lab by the one-step calcination method. XRD, TEM, EDX, XPS, FT-IR, BET, RAMAN, and EPR analyses were carried out to characterize the catalyst material. While the phytotoxicity was being conducted using watercress seeds, the cytotoxicity took place using a cell line (raw) and an intestinal cell (caco-2). The XRD analysis showed the partial calcination of ZnO250 and the presence of anhydrous zinc acetate along with the ZnO nanoparticles (NPs). This result was not observed for ZnO420. Despite the complete discoloration (100%) of all the final solutions, ZnO250 exhibited a high cytotoxicity and phytotoxicity against the RB19 dye after the photocatalytic treatment; however, it was not the case of ZnO420 which was selected as an eco-friendly photocatalyst for the degradation of organic dyes based on the results of removal efficiency, cytotoxicity, and phytotoxicity.
Collapse
Affiliation(s)
- Sonia Cherif
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria.
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France.
| | - Hayet Djelal
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Stephane Firmin
- UniLaSalle, Aghyle UP2018.C101, 19 rue Pierre Waguet, BP 30313 Cedex, F-60026, Beauvais, France
| | - Pierre Bonnet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Lawrence Frezet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Abdoulaye Kane
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Aymen Amine Assadi
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, 3500, Rennes, France
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers, Algeria
| | - Hynda Yazid
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria
| |
Collapse
|
20
|
Cardoso RMF, Cardoso IMF, da Silva LP, Esteves da Silva JCG. Copper(II)-Doped Carbon Dots as Catalyst for Ozone Degradation of Textile Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1211. [PMID: 35407329 PMCID: PMC9003027 DOI: 10.3390/nano12071211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023]
Abstract
A catalytic ozonation advanced oxidation process (AOP) with a copper(II)-doped carbon dot as catalyst, Cu-CD (using L-cysteine and polyethylene glycol (PEG) as precursors and passivation agents), was developed for textile wastewater treatment (T = 25 °C and pH = 7). Four dyes were analyzed—Methyl Orange (MO), Orange II sodium salt (O-II), Reactive Black 5 (RB-5) and Remazol Brilliant Blue R (RBB-R), as well as a real effluent from the dying and printing industry. The Cu-CD, with marked catalytic ozonation properties, was successfully synthesized by one-pot hydrothermal procedure with a size of 4.0 nm, a charge of −3.7 mV and a fluorescent quantum yield of 31%. The discoloration of the aqueous dye solutions followed an apparent first-order kinetics with the following rate constants (kap in min−1): MO, 0.210; O-II, 0.133; RB-5, 0.177; RBB-R, 0.086. In the presence of Cu-CD, the following apparent first-order rate constants were obtained (kapc in min−1) with the corresponding increase in the rate constant without catalyst (%Inc): MO, 1.184 (464%); O-II, 1.002 (653%); RB-5, 0.709 (301%); RBB-R, 0.230 (167%). The presence of sodium chloride (at a concentration of 50 g/L) resulted in a marked increase of the discoloration rate of the dye solution due to generation of other radicals, such as chlorine and chlorine oxide, resulting from the reaction of ozone and chloride. Taking into consideration that the real textile effluent under research has a high carbonate concentration (>356 mg/L), which inhibits ozone decomposition, the discoloration first-order rate constants without and with Cu-CD (kap = 0.0097 min−1 and kapc = 0.012 min−1 (%Inc = 24%), respectively) were relatively small. Apparently, the Cu-CD, the surface of which is covered by a soft and highly hydrated caramelized PEG coating, accelerates the ozone decomposition and dye adsorption, increasing its degradation.
Collapse
Affiliation(s)
| | | | | | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS)—DGAOT, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007 Porto, Portugal; (R.M.F.C.); (I.M.F.C.); (L.P.d.S.)
| |
Collapse
|
21
|
Rational design of Aspergillus flavus A5p1-immobilized cell system to enhance the decolorization of reactive blue 4 (RB4). Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Andriani A, Yanto DHY. Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1929193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ade Andriani
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, Indonesia
| |
Collapse
|
23
|
Yanto DHY, Guntoro MA, Nurhayat OD, Anita SH, Oktaviani M, Ramadhan KP, Pradipta MF, Watanabe T. Biodegradation and biodetoxification of batik dye wastewater by laccase from Trametes hirsuta EDN 082 immobilised on light expanded clay aggregate. 3 Biotech 2021; 11:247. [PMID: 33968590 DOI: 10.1007/s13205-021-02806-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/15/2023] Open
Abstract
The biodegradation and biodetoxification of batik industrial wastewater by laccase enzyme immobilised on light expanded clay aggregate (LECA) were investigated. Laccase from Trametes hirsuta EDN 082 was covalently immobilised by modifying the LECA surface using (3-aminopropyl)trimethoxysilane and glutaraldehyde. The enzymatic characterisation of LECA-laccase showed promising results with an enzyme loading of 6.67 U/g and an immobilisation yield of 66.7% at the initial laccase activity of 10 U/g LECA. LECA-laccase successfully degraded batik industrial wastewater containing indigosol dye up to 98.2%. In addition, the decolorisation extent was more than 95.4% after four cycles. The phytotoxicity assessment of Vigna radiata and the microbial toxicity of two pathogenic bacteria, Bacillus subtilis and Pseudomonas aeruginosa, showed biodetoxification of treated batik dye wastewater. The characterisation using 3D light microscopy, scanning electron microscopy and Fourier transform infrared for LECA-laccase confirmed that laccase was successfully immobilised on LECA, and the decolorisation achieved through the combination of adsorption and enzymatic degradation. This study offers an environmentally friendly, effective and affordable LECA-laccase as a method for batik dye wastewater treatment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02806-8.
Collapse
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maria Andriani Guntoro
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Oktan Dwi Nurhayat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Sita Heris Anita
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maulida Oktaviani
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Kharisma Panji Ramadhan
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Mokhammad Fajar Pradipta
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011 Japan
| |
Collapse
|
24
|
Yuan T, Zhang S, Chen Y, Zhang R, Chen L, Ruan X, Zhang S, Zhang F. Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue. Front Microbiol 2021; 12:644679. [PMID: 33868203 PMCID: PMC8044803 DOI: 10.3389/fmicb.2021.644679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Ruan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medical Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|