1
|
Mercan S, Zengin S, Kilic MD, Yayla M. Theoretical Health Risk Assessment Based on Potentially Toxic Element Profiling of Cosmetic Products in Istanbul Street Bazaars. Biol Trace Elem Res 2024; 202:1816-1828. [PMID: 37558909 DOI: 10.1007/s12011-023-03791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
Toxic elements that pose a potential threat to human health are found as impurities in various cosmetic products. In this study, the inorganic profile of 19 elements (Li, B, Mg, Al, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Hg, and Pb) in 90 cosmetic products (lipsticks, lip glosses, lip pencils and eye shadows) were detected by inductively coupled plasma-mass spectrometry after microwave acid digestion method and hazard indices (HI) of 9 toxic elements (Pb, Cd, Cr, Ni, Co, As, Hg, Sb, and Al) were calculated for the assessment of theoretical health risk. Satisfactory method performance parameters were found for each analyte. The results were compared with the maximum permissible limits set by regulatory agencies; 38 of 41 lip products (92.68%) and all eye shadows (n = 49) exceeded the established limits. The HI was found to be ≥ 1 in 82.76% of lip products for oral exposure, whereas HI was ≤ 1 for dermal exposure in all lip products (n = 41) and only one eye shadow sample was ≥ 1 (2.04%). Remarkable results were also detected for 19 elements in this study, which conducted a comprehensive inorganic profiling for the first time. Wide-range concentrations of Mg, Al, Ba, Mn, Cu, Zn, and Sr elements were remarkable. HI values were firstly brought out in this study, although Al, as a well-known toxic element, has not been listed in regulations yet. In conclusion, it is obviously seen that continuous monitoring of cosmetics is crucial not only for toxic elements but also for other essential or non-toxic elements to prevent consumers from long-term exposure.
Collapse
Affiliation(s)
- Selda Mercan
- Istanbul University- Cerrahpaşa Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpaşa, 34500, Buyukcekmece, Istanbul, Türkiye.
| | - Simge Zengin
- Istanbul University- Cerrahpaşa Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpaşa, 34500, Buyukcekmece, Istanbul, Türkiye
| | - Mihriban Dilan Kilic
- Istanbul University- Cerrahpaşa Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpaşa, 34500, Buyukcekmece, Istanbul, Türkiye
| | - Murat Yayla
- Istanbul University- Cerrahpaşa Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpaşa, 34500, Buyukcekmece, Istanbul, Türkiye
| |
Collapse
|
2
|
Gong Y, Chu J, Kwong R, Nunes LM, Zhao D, Tang W, Li C, Wei Z, Ju Y, Li H, Ma LQ, Yu X, Zhong H. Contamination and Carcinogenic Risks of Lead in Lip Cosmetics in China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:27. [PMID: 38281165 DOI: 10.1007/s00128-024-03851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
There are growing concerns about elevated lead (Pb) levels in lip cosmetics, yet in China, the largest lip cosmetic market, recent Pb contamination in lip cosmetics and associated Pb exposure remain unclear. Here, we measured Pb levels of 29 popular lip cosmetics in China and conducted the bioaccessibility-corrected carcinogenic risk assessments and sensitivity analysis regarding Pb exposure for consumers using Monte Carlo simulation. The Pb concentrations of collected samples ranged from undetectable (< 0.05 µg/kg) to 0.21 mg/kg, all of which were well below the Pb concentration limit set for cosmetics in China (10 mg/kg). The 50th percentile incremental lifetime cancer risk (ILCR) of Pb in Chinese cosmetics (1.20E-07) was below the acceptable level (1E-06), indicating that the application of lip cosmetics and subsequent Pb exposure does not pose carcinogenic risks to consumers in most cases. The results of this study provide new insights into understanding the Pb risk in lip cosmetics.
Collapse
Affiliation(s)
- Yu Gong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, P. R. China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Junru Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Raymond Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Luis M Nunes
- University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, 8005-139, Portugal
| | - Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Chengjiu Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, P. R. China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China.
- Environmental and Life Science Program (EnLS), Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
3
|
Chen H, Cheng J, Li Y, Li Y, Wang J, Tang Z. Occurrence and potential release of heavy metals in female underwear manufactured in China: Implication for women's health. CHEMOSPHERE 2023; 342:140165. [PMID: 37709063 DOI: 10.1016/j.chemosphere.2023.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Underwear is a potential source of women's exposure to heavy metals owing to its direct contact with the skin, especially the skin of the vagina and vulva, which has a strong absorptive capacity. However, information regarding the prevalence of metals in female underwear, and its potential hazards, remains scarce. In the present study, we examined the concentrations and potential release of Cr, Co, Ni, Cu, As, Cd, Sb, and Pb in brassieres and briefs manufactured in China. We detected higher levels of Pb and moderate levels of other metals, relative to the metal levels reported for other textiles in the literature. Cu, As, Ni and Cd, had higher migration rates (MRs) from the underwear, with medians of 100%, 100%, 30.1%, and 20.7%, respectively. The median MRs of the other metals were in the range 1.07%-15.7%. On the whole, the total and extractable concentrations of these metals differed by item and fabric type. The pollution of raw materials and the use of chemical additives containing metals commonly contributed to the metals in the underwear. On the basis of the exposure estimation, the non-carcinogenic risks posed by the underwear metals were acceptable, but the carcinogenic risks from the metals in 5.18% of brassiere samples exceeded the acceptable level.
Collapse
Affiliation(s)
- Hanzhi Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Yuan Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jiayu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
Lukić J, Đurkić T, Onjia A. Dispersive liquid-liquid microextraction and Monte Carlo simulation of margin of safety for octocrylene, EHMC, 2ES, and homosalate in sunscreens. Biomed Chromatogr 2023; 37:e5590. [PMID: 36709999 DOI: 10.1002/bmc.5590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Dispersive liquid-liquid microextraction (DLLME) using a floating organic drop has been optimized and used for the sample preparation of four commonly used ultraviolet filter (UVF) substances in sunscreens. Plackett-Burman experimental design was used to screen 10 variables in DLLME. The most significant variables were then optimized by using a response surface method with a Box-Behnken design. DLLME followed by an optimized HPLC identified octocrylene, 2-ethylhexyl-4-methoxycinnamate, ethylhexyl salicylate, and homosalate as the frequently found UVFs in commercial sunscreens. The systemic exposure dosage and margin of safety (MoS) for the identified UVFs were estimated using in-use concentrations and application patterns. The average systemic exposure dosage values for octocrylene, 2-ethylhexyl-4-methoxycinnamate, ethylhexyl salicylate, and homosalate were 0.52, 0.61, 0.020, and 0.079 mg/kg body weight per day, respectively. Whereas the average MoS values for individual UVFs ranging from 296 to 3160 were all significantly higher than the limit value of 100, the combined exposure risks were slightly above the limit. The probabilistic health risk assessment using Monte Carlo simulation revealed that the combined MoS values were (mean, 10‰, 90‰) 342, 119, and 441, respectively. Regarding the usage of sunscreen cosmetics containing the UVFs studied, these results indicate a safety concern for those who apply multiple UVF products.
Collapse
Affiliation(s)
- Jelena Lukić
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Tatjana Đurkić
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Wang B, Tian L, Tian L, Wang X, He Y, Ji R. Insights into Health Risks of Face Paint Application to Opera Performers: The Release of Heavy Metals and Stage-Light-Induced Production of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3703-3712. [PMID: 36820615 DOI: 10.1021/acs.est.2c03595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Face paints used by opera performers have been shown to contain high levels of heavy metals. However, whether frequent exposure, via dermal contact and inadvertent oral ingestion, results in occupational diseases is unknown, as is the potential exacerbation of toxicity by high-intensity irradiation from stage lights. In this study, we examined the release of Cr, Cu, Pb, and Zn from 40 face paints and the consequent health risks posed by different practical scenarios involving their use. The results showed that the in vitro bioaccessibility (IVBA) of Cr, Cu, Pb, and Zn in the tested products was, on average, 7.0, 5.5, 19.9, and 7.9% through oral ingestion and 1.1, 2.2, 1.6, and 1.2% through dermal contact, respectively. Stage light irradiation significantly increased the IVBA associated with dermal contact, to the average of 4.8, 34.9, 5.7, and 1.9% for Cr, Cu, Pb, and Zn, respectively. The increase was mainly due to the light-induced generation of reactive oxygen species, particularly hydroxyl free radicals. The vitality and transcriptional response of 3D skin models as well as a quantitative risk assessment of skin sensitization indicated that dermal contact with face paints may induce predictable skin damage and potentially other skin diseases. Long-term exposure to face paints on stage may also pose a non-carcinogenic health risk. The demonstrated health risks to opera performers of face paint exposure should lead to strict regulations regarding the content of theatrical face paints.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liyan Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lili Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xisheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
6
|
Xu X, Li L, Zhou H, Fan M, Wang H, Wang L, Hu Q, Cai Q, Zhu Y, Ji S. MRTCM: A comprehensive dataset for probabilistic risk assessment of metals and metalloids in traditional Chinese medicine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114395. [PMID: 36508783 DOI: 10.1016/j.ecoenv.2022.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Traditional Chinese medicine (TCM) is still considered a global complementary or alternative medical system, but exogenous hazardous contaminants remain in TCM even after decocting. Besides, it is time-consuming to conduct a risk assessment of trace elements in TCMs with a non-automatic approach due to the wide variety of TCMs. Here, we present MRTCM, a cloud-computing infrastructure for automating the probabilistic risk assessment of metals and metalloids in TCM. MRTCM includes a consumption database and a pollutant database involving forty million rows of consumption data and fourteen types of TCM potentially toxic elements concentrations. The algorithm of probabilistic risk assessment was also packaged in MRTCM to assess the risks of eight elements with Monte Carlo simulation. The results demonstrated that 96.64% and 99.46% had no non-carcinogenic risk (hazard indices (HI) were < 1.0) for animal and herbal medicines consumers, respectively. After twenty years of exposure, less than 1% of the total carcinogenic risk (CRt) was > 10-4 for TCM consumers, indicating that they are at potential risk for carcinogenicity. Sensitivity analysis revealed that annual consumption and concentration were the main variables affecting the assessment results. Ultimately, a priority management list of TCMs was also generated, indicating that more attention should be paid to the non-carcinogenic risks of As, Mn, and Hg and the carcinogenic risks of As and Cr in Pheretima and Cr in Arcae Conch. In general, MRTCM could significantly enhance the efficiency of risk assessment in TCM and provide reasonable guidance for policymakers to optimize risk management.
Collapse
Affiliation(s)
- Xiaohui Xu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Limin Li
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Heng Zhou
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingcong Fan
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Hongliang Wang
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Lingling Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Qing Hu
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Irfan M, Shafeeq A, Siddiq U, Bashir F, Ahmad T, Athar M, Butt MT, Ullah S, Mukhtar A, Hussien M, Lam SS. A mechanistic approach for toxicity and risk assessment of heavy metals, hydroquinone and microorganisms in cosmetic creams. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128806. [PMID: 35398795 DOI: 10.1016/j.jhazmat.2022.128806] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The demand and importance of fairness creams as a major cosmetic have increased significantly in recent years. However, some of these cosmetics contain heavy metals, hydroquinone and microorganism that can cause various health problems. Therefore, the aim of this study is to determine and examine the concentration of metals (i.e. Cd, Pb, Cr, Ni, Zn, Hg), hydroquinone and microorganisms in nine different fairness creams produced by local and international brands. The health risk assessment of the tested substances for consumers was accessed through systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ) and hazard index (HI). The concentration of Zn and Hg were found the highest and measured in the range of 17.82-138.06 mg.kg-1 and 2.3-141 mg.kg-1, respectively. The concentrations of other metals were determined as 0.06-0.67 mg.kg-1 of Cd, 0.43-1.55 mg.kg-1 of Cr, 0.14-1.43 mg.kg-1 of Ni and 0.3-1.34 mg.kg-1 of Pb. HPLC results showed a significant presence of hydroquinone in the range of 0.12-7.2%. The total viable counts of cosmetic samples showed the substantial presence of microorganisms, and 44% of the collected samples surpassed the permissible limit of 100 cfu/g recommended by European Union. Many of the collected samples exceeded the MoS, HQ and HI tolerance limits. However, the LCR value in all samples was significantly higher than the acceptable limit. Therefore, it is advised to avoid overuse of these products in order to ensure human safety and reduce the risks to skin health.
Collapse
Affiliation(s)
- Muhammad Irfan
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex, Ferozepur Road, Lahore, Pakistan
| | - Amir Shafeeq
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Umair Siddiq
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Farzana Bashir
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex, Ferozepur Road, Lahore, Pakistan
| | - Tausif Ahmad
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Athar
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, BCG Chowk, Multan 60000, Pakistan
| | - Muhammad Tahir Butt
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex, Ferozepur Road, Lahore, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad 38000, Pakistan
| | - Mohamed Hussien
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Jiang L, Li Y, Cai Y, Liu K, Liu C, Zhang J. Probabilistic health risk assessment and monetization based on benzene series exposure in newly renovated teaching buildings. ENVIRONMENT INTERNATIONAL 2022; 163:107194. [PMID: 35339921 DOI: 10.1016/j.envint.2022.107194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
To meet the needs of the rapid development of education, there have been growing investments in the issue of university infrastructures. However, few studies have paid attention to the assessment and monetization of health risks in newly renovated teaching buildings. In this study, concentrations of the benzene series (BTEX) group were measured in five areas of three newly renovated teaching buildings. A total of 135 BTEX samples were collected using passive diffusion monitors and analyzed by GC-FID. Human health risk assessments were conducted by using probabilistic methods for four types of population exposure to BTEX. The results showed that the cancer risk of benzene accounted for most of the total in each group. There was over 90% probability of excess cancer risks in the areas within the tested buildings; and the non-cancer risks were all within the acceptable level. The health risks of men were greater than those of women, and those of teachers were higher than those of students. The model calculation results of Disability-Adjusted Life Year (DALY) and Willingness to Pay (WTP) indicated that the average price that society was willing to pay to offset the health damage caused in these newly renovated teaching buildings was 381.35 yuan/year. For the first time, this study highlights the health risks of newly built teaching buildings in universities, points out the urgent need to improve the control of BTEX sources in this type of indoor environment; moreover, it provides theoretical support for the society and occupational protection departments to compensate for the health damage to professionals.
Collapse
Affiliation(s)
- Luping Jiang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanan Li
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Ying Cai
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Kangli Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430073, China.
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
9
|
Shaaban H, Issa SY, Ahmad R, Mostafa A, Refai S, Alkharraa N, Albaqshi BT, Hussien D, Alqarni AM. Investigation on the elemental profiles of lip cosmetic products: Concentrations, distribution and assessment of potential carcinogenic and non-carcinogenic human health risk for consumer safety. Saudi Pharm J 2022; 30:779-792. [PMID: 35812155 PMCID: PMC9257854 DOI: 10.1016/j.jsps.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 10/25/2022] Open
|
10
|
Xu X, Li L, Zhou H, Hu Q, Wang L, Cai Q, Zhu Y, Ji S. Heavy Metals and Probabilistic Risk Assessment via Pheretima (a Traditional Chinese Medicine) Consumption in China. Front Pharmacol 2022; 12:803592. [PMID: 35069214 PMCID: PMC8767006 DOI: 10.3389/fphar.2021.803592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Earthworms are known to accumulate inorganic contaminants from the soil; they are also used as a traditional Chinese medicine (TCM) called Pheretima, which might cause safety problems with long-term exposure. Here, this study was conducted to determine and analyze the level of heavy metal contamination such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), and lead (Pb) in Pheretima and then explore the probabilistic health risks caused by 8 heavy metals in 98 batches of Pheretima using Monte Carlo simulation. A risk assessment strategy was conducted to assess heavy metal-associated health risk of Pheretima based on consumption data. For random consumption sampling, the results found that the non-carcinogenic risk of As is higher than the acceptable level, and the carcinogenic risk levels of As and Cr exceeded the acceptable risk recommended by the USEPA. Cr and As were regarded as the priority metals for risk control in the present study. Finally, it was recommended that the dosing frequency should be less than 24 d/y. In general, this study conducted a probabilistic risk assessment of heavy metals in Pheretima, which would be of significance for policy makers to take effective strategies to improve the quality and safety of Pheretima.
Collapse
Affiliation(s)
- Xiaohui Xu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Limin Li
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhou
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai, China
| | - Qing Hu
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Wang
- Shandong Academy of Medical Sciences, Shandong, China
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Li Y, Fang Y, Liu Z, Zhang Y, Liu K, Jiang L, Yang B, Yang Y, Song Y, Liu C. Trace Metal Lead Exposure in Typical Lip Cosmetics From Electronic Commercial Platform: Investigation, Health Risk Assessment and Blood Lead Level Analysis. Front Public Health 2021; 9:766984. [PMID: 34869181 PMCID: PMC8637816 DOI: 10.3389/fpubh.2021.766984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb) in lipstick products has become an increasing concern, which can cause safety problems to human body directly with diet. To investigate the Pb exposure and potential health risk level of typical popular lip cosmetics in Chinese e-commerce market, Python crawler was introduced to identify and select 34 typical popular lip cosmetics, including 12 lipsticks, 13 lip glosses, and 9 lip balms. And then this study used ICP-MS to determine the content of Pb. Furthermore, the ingestion health risk assessment method issued by United States Environmental Protection Agency (USEPA) and Monte Carlo simulation algorithm were applied to assess the probabilistic health risks of adults exposure. Finally, taking the possible exposure of children contacting with lip products, the health risk assessment of children blood Pb was carried out. The results showed that the concentration of Pb in lip products ranged from 0 to 0.5237 mg/kg, which was far lower than the limit set by various countries. The probabilistic non-carcinogenic risks and carcinogenic risks were 4.93 ×10-7~2.82 ×10-3 and 1.68 ×10-12~9.59 ×10-9, respectively, which were in an acceptable level. The results of blood Pb assessment suggested that the Pb content of lip cosmetics had no obvious influence on blood Pb concentration of children, and background Pb exposure is the main factor affecting children's blood Pb level (BLL). Overall, the samples of lip products are selected by Python crawler in this study, which are more objective and representative. This study focuses on deeper study of Pb, especially for the health risk assessment of blood Pb in children exposed to lip products. These results perhaps could provide useful information for the safety cosmetics usage for people in China and even the global world.
Collapse
Affiliation(s)
- Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Business Administration, Zhongnan University of Economics and Law, Wuhan, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yahan Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Kangli Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China
| | - Luping Jiang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Business Administration, Zhongnan University of Economics and Law, Wuhan, China
| | - Boyuan Yang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yongdie Yang
- Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yongwei Song
- Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China.,Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|