1
|
Cheng F, Wang J. Iron coagulant regulating reactive species in ionizing radiation process for enhanced degradation of bisphenol A. CHEMOSPHERE 2024; 368:143764. [PMID: 39551195 DOI: 10.1016/j.chemosphere.2024.143764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
In the treatment of industrial wastewater by electron beam technology, the flocculation process was frequently coupled with electron beam radiation to improve the water quality to meet the discharge standard. Iron-containing coagulant was widely used in the flocculation process. Therefore, this study investigated the impact of residual iron-containing coagulants on pollutant degradation by the ionizing radiation process. Results showed that the absorbed dose required for complete removal of 50 mg/L bisphenol A decreased from 5 kGy to 2.5 kGy in the presence of 100 μM typical iron coagulant (FeCl3). BPA degradation efficiency increased with the increase of FeCl3 dosage over a wide pH range (3.0-10.0), and the TOC removal efficiency increased from 20% to 45% with the addition of 300 μM Fe(III). The mechanistic investigation demonstrated that •OH was the primary reactive species responsible for BPA degradation. The residual iron coagulants (FeCl3) significantly enhanced the degradation and mineralization efficiency. Under suitable pH conditions (3.0-6.0), the reducing reactive species (eaq‒ and •H) could effectively reduce Fe(III) to Fe(II), which then reacted with H2O2, thus inducing in-situ Fenton reaction to generate more •OH, thus promoting the radiolysis degradation of micropollutants. This study explored the potential of using residual iron coagulants from the flocculation process to enhance the performance of electron beam technology for wastewater treatment.
Collapse
Affiliation(s)
- Feng Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; CAEA Center of Excellence on Nuclear Technology Applications for Electron Beam on Environmental Application, Beijing, Tsinghua University, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
2
|
Cheng F, Wang J. Regulation of reactive species during ionizing radiation by peroxydisulfate for enhanced degradation of typical pollutants in coking wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124581. [PMID: 39033843 DOI: 10.1016/j.envpol.2024.124581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study focused on exploring the effect of peroxydisulfate (PDS) on the regulation of reactive species during water radiolysis process and its potential application for degrading organic pollutants. The results indicated that PDS was successfully activated by ionizing radiation for efficient removal of three typical phenolic compounds over a wide pH range (3.0∼12.0) at absorbed dose of 5 kGy. Chemical probe methods provided the evidence that the addition of PDS could introduce the sulfate radicals (SO4•-) and enhance the production of hydroxyl radicals (•OH). According to the quenching tests, •OH and SO4•- were the dominant reactive species responsible for the degradation of 4-NP, while hydrated electron (eaq-) played a minor role. The regulatory effect of PDS on active species in the ionizing radiation process could divided by (i) PDS could be directly activated by ionizing radiation to produce •OH and SO4•- via energy transfer pathway; (ii) PDS could boost the conversion of eaq- to SO4•- via electron transfer pathway. Furthermore, we assessed the applicability of the IR and IR/PDS systems in treating mixed solutions containing various pollutants and actual coking wastewater.
Collapse
Affiliation(s)
- Feng Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; CAEA Center of Excellence on Nuclear Technology Applications for Electron Beam on Environmental Application, Beijing, Tsinghua University, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; CAEA Center of Excellence on Nuclear Technology Applications for Electron Beam on Environmental Application, Beijing, Tsinghua University, 100084, China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Masud MAA, Shin WS. Advanced carbo-catalytic degradation of antibiotics using conductive polymer-seaweed biochar composite: Exploring N/S functionalization and non-radical dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135449. [PMID: 39137546 DOI: 10.1016/j.jhazmat.2024.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Zhang H, Zhang J, Ma C, Dai W, Ding Y, Pi K. Mechanism of adsorption and targeted degradation of antimicrobial micropollutant sulfamethoxazole in aquatic environments. CHEMOSPHERE 2024; 365:143302. [PMID: 39255856 DOI: 10.1016/j.chemosphere.2024.143302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
FHWSB as an integrated absorptive catalyst, based on Walnut shell biochar (WSB) via hydrochloric acid modification and ferrous chloride impregnation, was prepared, reacted with H2O2 to generate active free radicals •OH and •O2-, which oxidized and degraded about 80% of micro-pollutant sulfamethoxazole (SMX) from water, effectively resolving micro-pollutants' removal being inefficient because of high toxicity, persistence, and bioaccumulation in existed methods. It was clarified the specific degradation pathways and mechanisms of SMX by FHWSB synergistic H2O2 via characterization and analysis assisted DFT calculations. Furthermore, it was found that the toxicity of a series of intermediates produced by SMX degraded continued to decline, consistent with its direction of degradation via toxicological analysis. The work provides a simple and feasible strategy for the effective removal of antibiotic micro-pollutants in aquatic environments.
Collapse
Affiliation(s)
- Huiqin Zhang
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, China.
| | - Juan Zhang
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Chao Ma
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Weiwen Dai
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Yucheng Ding
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Kewu Pi
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, China
| |
Collapse
|
5
|
Zeng Y, Deng J, Zhou N, Xia W, Wang Z, Song B, Wang Z, Yang Y, Xu X, Zeng G, Zhou C. Mediated Peroxymonosulfate Activation at the Single Atom Fe-N 3O 1 Sites: Synergistic Degradation of Antibiotics by Two Non-Radical Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311552. [PMID: 38501866 DOI: 10.1002/smll.202311552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Indexed: 03/20/2024]
Abstract
The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.
Collapse
Affiliation(s)
- Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wu Xia
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
6
|
Aribi J, Jahouach-Rabai W, Bousselmi L, Trabelsi MH, Azzouz Z, Hamrouni B. Radiolysis performance of ibuprofen using ionizing processes: kinetics and energy consumption. ENVIRONMENTAL TECHNOLOGY 2024:1-17. [PMID: 39038281 DOI: 10.1080/09593330.2024.2367723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 07/24/2024]
Abstract
ABSTRACTIonizing technologies are used for disinfection and treatment of different industrial wastewaters. For this purpose, the radiolytic degradation of ibuprofen (IBP), selected within the main detected pharmaceuticals in different water locations with different concentrations, was investigated. Irradiation was performed with a gamma irradiator (60Co) and with electron beam accelerator. The degree of ibuprofen degradation was monitored following the evolution of its absorbance, the residual concentration by HPLC, carbon oxygen demand and total organic carbon. The degradation of IBP was higher than the removal of TOC or COD and reached 95% according to residual concentration. This pollutant (at 0.1 mM) was totally degraded when irradiated at 3 kGy and needed higher doses (7-10 kGy) for the highest concentrations (0.8-1 mM). The addition of 1 mM of persulfate ion remarkably enhanced IBP degradation by around 2 and 2.8 times for 5 and 10 kGy, respectively. Pseudo-first-order reaction kinetics could be used to depict the degradation process of IBP in all conditions. Electrical energy per order (EEO) was estimated under various conditions. The smallest EEO was obtained when gamma radiation and persulfate ion were combined. The possible degradation pathways of IBP were proposed. The results achieved in this study can be used to optimize large-scale application of nuclear techniques in water treatment in particular in treating pharmaceutical effluents.
Collapse
Affiliation(s)
- Jihene Aribi
- Laboratory of Energy and Materials for Nuclear Sciences Development, National Centre of Nuclear Sciences and Technologies, Ariana, Tunisia
- Laboratory of Wastewater and Environment, Centre for Water Researches and Technologies, Soliman, Tunisia
- Dessalination and Water Treatment, Faculty of Sciences of Tunis, University Tunis ElManar, Tunis, Tunisia
| | - Wafa Jahouach-Rabai
- Laboratory of Energy and Materials for Nuclear Sciences Development, National Centre of Nuclear Sciences and Technologies, Ariana, Tunisia
- Laboratory of Wastewater and Environment, Centre for Water Researches and Technologies, Soliman, Tunisia
| | - Latifa Bousselmi
- Laboratory of Wastewater and Environment, Centre for Water Researches and Technologies, Soliman, Tunisia
| | - Mohamed Hedi Trabelsi
- Laboratory of Energy and Materials for Nuclear Sciences Development, National Centre of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Zohra Azzouz
- Laboratory of Energy and Materials for Nuclear Sciences Development, National Centre of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Bechir Hamrouni
- Dessalination and Water Treatment, Faculty of Sciences of Tunis, University Tunis ElManar, Tunis, Tunisia
| |
Collapse
|
7
|
Bayode AA, Osti A, Glisenti A. Sonophotocatalytic degradation of sulfamethoxazole using lanthanum ferrite perovskite oxide anchored on an ultrasonically exfoliated porous graphitic carbon nitride nanosheet. RSC Adv 2024; 14:22063-22075. [PMID: 39005251 PMCID: PMC11240137 DOI: 10.1039/d4ra03096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The lanthanum ferrite perovskite (La0.8FO) was synthesized using a citric combustion route and then modified with a porous graphitic nitride nanosheet via the wet impregnation-assisted ultrasonic method to produce La0.8FO@PgNS. Various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Tauc plot analysis were employed to confirm the functional moieties, crystallinity, phase change, morphology, composition, and bandgap of La.0.8FO and La0.8FO@PgNS. La0.8FO and La0.8FO@PgNS were used for the sonophotocatalytic oxidative degradation of sulfamethoxazole (SMX) under low energy and ultrasound wave frequency in the presence of visible light. La0.8FO and La0.8FO@PgNS exhibited a sonophotocatalytic degradation capacity of 52.06 and 99.60%, respectively. Furthermore, the rate constant at the optimum condition of pH 7 and 5 mg L-1 concentration was 0.01343 and 0.01494 min-1 for La0.8FO and La0.8FO@PgNS, respectively. The integration of sonolysis and photocatalysis in the remediation process of SMX resulted in a synergy of 2.5-fold. Ultrasonic waves and hydroxyl and superoxide radicals are the main species governing the degradation process while La0.8FO@PgNS was stable over 8 cycles, proving to be a sustainable material for environmental remediation.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 Ede 232101 Nigeria
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| | - Andrea Osti
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| | - Antonella Glisenti
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| |
Collapse
|
8
|
Chen X, Zhu J, Ma Y, Zeng C, Mu R, Deng Z, Zhang Z. Facile synthesis of ball-milling and oxalic acid co-modified sludge biochar to efficiently activate peroxymonosulfate for sulfamethoxazole degradation: 1O 2 and surface-bound radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133026. [PMID: 38006858 DOI: 10.1016/j.jhazmat.2023.133026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min. Furthermore, PMS/BOSBC system was capable of maintaining high removal rates for SMX (>88.8%) in a wide pH range from 3 to 9, and displayed a high tolerance to background electrolytes including inorganic ions and humic acid (HA). Quenching experiments, electron paramagnetic resonance (EPR) analysis, in-situ Raman characterization and PMS decomposition experiments confirmed that the non-radicals of 1O2 and surface-bound radicals were the main contributors to SMX degradation by PMS/BOSBC system. The results of ecotoxicity assessment illustrated that all transformed products (TPs) generated in PMS/BOSBC system were less toxic than that of SMX. After five reuse cycles, PMS/BOSBC system still maintained a high removal rate for SMX (77.8%). Additionally, PMS/BOSBC system exhibited excellent degradation performance for SMX in various real waters (Yangtze River water (76.5%), lake water (74.1%), tap water (86.5%), and drinking water (98.1%)). Overall, this study provided novel insights on non-metal modification for sludge-based biochar and non-radical mechanism, and offered a feasible approach for municipal sludge disposal.
Collapse
Affiliation(s)
- Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
9
|
Serna-Carrizales JC, Zárate-Guzmán AI, Flores-Ramírez R, Díaz de León-Martínez L, Aguilar-Aguilar A, Warren-Vega WM, Bailón-García E, Ocampo-Pérez R. Application of artificial intelligence for the optimization of advanced oxidation processes to improve the water quality polluted with pharmaceutical compounds. CHEMOSPHERE 2024; 351:141216. [PMID: 38224748 DOI: 10.1016/j.chemosphere.2024.141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Sulfamethoxazole and metronidazole are emerging pollutants commonly found in surface water and wastewater. These compounds have a significant environmental impact, being necessary in the design of technologies for their removal. Recently, the advanced oxidation process has been proven successful in the elimination of this kind of compounds. In this sense, the present work discusses the application of UV/H2O2 and ozonation for the degradation of both molecules in single and binary systems. Experimental kinetic data from O3 and UV/H2O2 process were adequately described by a first and second kinetic model, respectively. From the ANOVA analysis, it was determined that the most statistically significant variables were the initial concentration of the drugs (0.03 mmol L-1) and the pH = 8 for UV/H2O2 system, and only the pH (optimal value of 6) was significant for degradation with O3. Results showed that both molecules were eliminated with high degradation efficiencies (88-94% for UV/H2O2 and 79-98% for O3) in short reaction times (around 30-90 min). The modeling was performed using a quadratic regression model through response surface methodology representing adequately 90 % of the experimental data. On the other hand, an artificial neural network was used to evaluate a non-linear multi-variable system, a 98% of fit between the model and experimental data was obtained. The identification of degradation byproducts was performed by high-performance liquid chromatography coupled to a time mass detector. After each process, at least four to five stable byproducts were found in the treated water, reducing the mineralization percentage to 20% for both molecules.
Collapse
Affiliation(s)
- Juan Carlos Serna-Carrizales
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P, 45129, Zapopan, Jalisco, Mexico.
| | - Rogelio Flores-Ramírez
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí, 78210, Mexico
| | | | - Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
| | - Walter M Warren-Vega
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P, 45129, Zapopan, Jalisco, Mexico
| | - Esther Bailón-García
- Grupo de Investigación en Materiales de Carbón, Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva S/n, 18071, Granada, Spain
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
| |
Collapse
|
10
|
Liu X, Wang J. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: An overview. CHEMOSPHERE 2024; 351:141255. [PMID: 38244870 DOI: 10.1016/j.chemosphere.2024.141255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The treatment of dye-containing wastewater generated from textile industries is still a challenge, and various technologies, including physical, chemical and biological ones have been used. In recent years, the ionizing radiation (usually including gamma ray generated by radionuclide, such as 60Co and 137Cs, and electron beam generated by electron accelerator) technology has received increasing attention for degrading refractory or toxic organic pollutants in wastewater because of its unique advantages, such as no chemical additives, fast reaction rate, strong degradation capacity, high efficiency, flexibility, controllability. Compared to the conventional wastewater treatment processes, ionizing radiation technology, as a disruptive wastewater treatment technology, is more efficient for the decolorization and degradation of dyes and the treatment of dye-containing wastewater. In this paper, the recent advances in the treatment of dye-containing wastewater by ionizing radiation, in particular by electron beam (EB) radiation were summarized and analyzed, focusing on the decolorization and degradation of various dyes. Firstly, the formation of various reactive species induced by radiation and their interactions with dye molecules, as well as the influencing factors on the removal efficiency of dyes were discussed. Secondly, the researches on the treating dye-containing wastewater by electron beam radiation technology were systematically reviewed. Then, the decolorization and degradation mechanisms by electron beam radiation were further discussed in detail. And the integrated processes that would contribute to the advancement of this technology in practical applications were examined. More importantly, the recent advances of electron beam radiation technology from laboratory to application were reviewed, especially successful operation of dye-containing wastewater treatment facilities in China. And eventually, current challenges, future research directions, and outlooks of electron beam radiation technology were proposed for further advancing this technology for the sustainable development of water resources.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
11
|
Wang J, Wang S, Hu C. Advanced treatment of coking wastewater: Recent advances and prospects. CHEMOSPHERE 2024; 349:140923. [PMID: 38092162 DOI: 10.1016/j.chemosphere.2023.140923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
12
|
Liu HL, Zhang Y, Lv XX, Cui MS, Cui KP, Dai ZL, Wang B, Weerasooriya R, Chen X. Efficient Degradation of Sulfamethoxazole by Diatomite-Supported Hydroxyl-Modified UIO-66 Photocatalyst after Calcination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3116. [PMID: 38133013 PMCID: PMC10745632 DOI: 10.3390/nano13243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Sulfamethoxazole (SMX) is a widely used antibiotic to treat bacterial infections prevalent among humans and animals. SMX undergoes several transformation pathways in living organisms and external environments. Therefore, the development of efficient remediation methods for treating SMX and its metabolites is needed. We fabricated a photo-Fenton catalyst using an UIO-66 (Zr) metal-organic framework (MOF) dispersed in diatomite by a single-step solvothermal method for hydroxylation (HO-UIO-66). The HO-UIO-66-0/DE-assisted Fenton-like process degraded SMX with 94.7% efficiency; however, HO-UIO-66 (Zr) is not stable. We improved the stability of the catalyst by introducing a calcination step. The calcination temperature is critical to improving the catalytic efficiency of the composite (for example, designated as HO-UIO-66/DE-300 to denote hydroxylated UIO-66 dispersed in diatomite calcined at 300 °C). The degradation of SMX by HO-UIO-66/DE-300 was 93.8% in 120 min with 4 mmol/L H2O2 at pH 3 under visible light radiation. The O1s XPS signatures signify the stability of the catalyst after repeated use for SMX degradation. The electron spin resonance spectral data suggest the role of h+, •OH, •O2-, and 1O2 in SMX degradation routes. The HO-UIO-66/DE-300-assisted Fenton-like process shows potential in degrading pharmaceutical products present in water and wastewater.
Collapse
Affiliation(s)
- Hui-Lai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Yu Zhang
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Xin-Xin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Min-Shu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Kang-Ping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Zheng-Liang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| |
Collapse
|
13
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
14
|
Wu D, Hua T, Han S, Lan X, Cheng J, Wen W, Hu Y. Two-dimensional manganese-iron bimetallic MOF-74 for electro-Fenton degradation of sulfamethoxazole. CHEMOSPHERE 2023; 327:138514. [PMID: 36972871 DOI: 10.1016/j.chemosphere.2023.138514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
This study reported a novel application of Mn0.67Fe0.33-MOF-74 with two-dimensional (2D) morphology grown on carbon felt as a cathode for efficiently removing antibiotic sulfamethoxazole in the heterogeneous electro-Fenton system. Characterization demonstrated the successful synthesis of bimetallic MOF-74 by a simple one-step method. Electrochemical detection showed that the second metal addition and morphological change improved the electrochemical activity of the electrode and contributed to pollutant degradation. At pH 3 and 30 mA of current, the degradation efficiency of SMX reached 96% with 12.09 mg L-1 H2O2 and 0.21 mM ·OH detected in the system after 90 min. During the reaction, electron transfer between ≡FeII/III and ≡MnII/III promoted divalent metal ions regeneration, which ensured the continuation of the Fenton reaction. Two-dimensional structures exposed more active sites favoring ·OH production. The pathway of sulfamethoxazole degradation and the reaction mechanisms were proposed based on the intermediates identification by LC-MS and radical capture results. High degradation rates were still observed in tap and river water, revealing the potential of Mn0.67Fe0.33-MOF-74@CF for practical applications. This study provides a simple MOF-based cathode synthesis method, which enhances our understanding of constructing efficient electrocatalytic cathodes based on morphological design and multi-metal strategies.
Collapse
Affiliation(s)
- Danhui Wu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuaipeng Han
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiuquan Lan
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Weiqiu Wen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
15
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
16
|
Wang J, Liu Z, Sun Z. In-situ cathode induction of HKUST-1-derived polyvalent copper oxides in electro-Fenton systems for effective sulfamethoxazole degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
17
|
He L, Yang S, Li Y, Kong D, Wu L, Li B, Chen X, Zhang Z, Yang L. Sludge biochar as an electron shuttle between periodate and sulfamethoxazole: The dominant role of ball mill-loaded Mn2O3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Thermal effect on sulfamethoxazole degradation in a trivalent copper involved peroxymonosulfate system. J Colloid Interface Sci 2023; 640:121-131. [PMID: 36842418 DOI: 10.1016/j.jcis.2023.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Persulfate (PS) activated by thermal or homogeneous metals can generate reactive oxygen species (ROS) and high-valence-state metals for contaminants degradation, showing great potential for applications. However, thermal effect in peroxymonosulfate (PMS) system with high-valence-state metal is still ambiguous. In this study, divalent copper (Cu(II)) catalysis was taken to explore thermal effect on PMS performance. Results showed that the Sulfamethoxazole (SMX) removal efficiency in the Cu(II)/PMS system at 60 min increased by only 5.9% with temperature increase from 30 °C to 60 °C. Moreover, SMX removal efficiency was excellent at neutral or basic pH, best with PMS concentration of 2.4 mM, and slightly affected by Cu(II) concentration. The singlet oxygen (1O2) was identified as main active species at low temperature while sulfate radicals (SO4-) was more effective at high temperature with Cu(II) co-activation. Also, trivalent copper (Cu(III)) was an important active species. The higher Cu(III) content, the better SMX removal efficiency, but the stronger intermediates toxicity. In combination with removal efficiency and intermediates toxicity at different temperatures, 30 °C was the optimal reaction temperature. Overall, this study provides new perspective on utilization of waste heat and high-valence-state metal for organic wastewater treatment in PMS systems.
Collapse
|
19
|
Zhang H, Wang B, Tang P, Lu Y, Gao C. Degradation of dibutyl phthalate by ozonation in the ultrasonic cavitation-rotational flow interaction coupled-field: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23225-23236. [PMID: 36319926 DOI: 10.1007/s11356-022-23225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dibutyl phthalate (DBP) is present in hydraulic fracturing flowback and produced water. Degradation of DBP in aqueous by means of ozonation in ultrasonic cavitation-rotational flow interaction coupled-field (UC-RF coupled-field) was studied. The effect of ozone dosage, ozone intake flow, operating temperature, initial pH, DBP initial concentration, liquid flow rate, and ultrasonic power on the DBP removal was investigated. Results indicated that the DBP degradation rate was strongly influenced by the liquid flow rate and the ultrasonic power over the range investigated. HCO3- and Cl- revealed an inhibitory effect on the DBP removal. SO42- seemed to have no effect on DBP removal. The ozone utilization efficiencies in the UC-RF coupled-field were 2.77 and 1.13 times higher than those in the conventional microporous aeration (CMA) and rotating-flow microbubble aeration (RFMA), respectively. The DBP degradation rate was diminished in the presence of tert-butyl alcohol. Cavitation bubbles are considered as innumerable microreactors. Degradation of DBP by direct ozonation, hydroxyl radical (·OH) oxidation, high pressure, and high-temperature pyrolysis was demonstrated. Finally, a possible degradation pathway of DBP is obtained on the basis of the main reaction intermediates.
Collapse
Affiliation(s)
- Huan Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Pan Tang
- Sichuan Changning Natural Gas Development Company, Limited, Chengdu, 610501, People's Republic of China
| | - Yuting Lu
- Sichuan Chuangang Gas Company, Limited, Chengdu, 610501, People's Republic of China
| | - Chunyang Gao
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
20
|
Zhang J, Lv S, Yu Q, Liu C, Ma J, Jia M, Fang S. Degradation of sulfamethoxazole in microbubble ozonation process: Performance, reaction mechanism and toxicity assessment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
He L, Yang S, Yang L, Shen S, Li Y, Kong D, Chen Z, Yang S, Wang J, Wu L, Zhang Z. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120620. [PMID: 36372368 DOI: 10.1016/j.envpol.2022.120620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The non-radical pathway of periodate (PI) activation for the removal of persistent organic contaminants has received increasing attention due to its higher stability and oxidative advantages. In this study, the degradation of sulfamethoxazole (SMX) by ball mill treated magnetic sludge biochar (BM-MSBC) through activation of PI by electron transfer mechanism was reported. Experimental and characterization results showed that the ball milling treatment resulted in a better pore and defect structure, which also significantly enhanced the electron transfer capacity of the sludge biochar. The BM-MSBC/PI system exhibited notable dependence of activator concentration and initial pH, while the effect of PI concentration was not significant. The coexisting substances (common anions and natural organic matters) hardly affect the degradation of SMX in the BM-MSBC/PI system. The phytotoxicity experiments suggested that the treatment of BM-MSBC/PI system could significantly reduce the biological toxicity of SMX solution. This study provides a novel, economical, and facile modification method for the application of sludge biochar in advanced oxidation processes.
Collapse
Affiliation(s)
- Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shangding Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dejin Kong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhuqi Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, PR China
| | - Jia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler ABI5 8QH, Aberdeen, UK
| |
Collapse
|
22
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
The enhanced mechanism of Fe(III)/H2O2 system by N, S-doped mesoporous nanocarbon for the degradation of sulfamethoxazole. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Sang J, Yang Y, Fu W, Chen X, Tang T, Sun X, Yang C, Zhang X. Catalytic ceramic nanofiber membrane coupled with ozonation for degradation of sulfamethoxazole: Critical parameters, mechanisms and applicability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Converting Hybrid Mechanisms to Electron Transfer Mechanism by Increasing Biochar Pyrolysis Temperature for the Degradation of Sulfamethoxazole in a Sludge Biochar/Periodate System. Catalysts 2022. [DOI: 10.3390/catal12111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, sludge biochar was prepared under four pyrolysis temperatures (SBC300, SBC500, SBC700, and SBC900) and then was employed to activate periodate (PI) for the degradation of sulfamethoxazole (SMX). Various characterization methods were employed to investigate the effect of pyrolysis temperature on the physicochemical properties of sludge biochar and the activation capacity of periodate. The SMX adsorption capacity of SBCs and the ability of activating PI to degrade SMX increased with the increasing pyrolysis temperature. The degradation of SMX by the SBCs/PI systems was highly dependent on the initial pH of the solution and the dosage of SBCs. Mechanistic studies indicated that the degradation of SMX by the SBCs/PI system was mainly based on an electron-mediated transfer mechanism. Additionally, the electron transfer capacity of the SBCs affected the defects and the degree of graphitization. The contribution of free radicals to SMX degradation decreases with increasing pyrolysis temperature. Toxicity experiments demonstrated that the toxic elimination of SMX by the SBCs/PI system was enhanced with increasing pyrolysis temperature.
Collapse
|
26
|
Chen X, Li D, Liu H, Zheng Y, Li L. Theoretical Study on the Degradation Mechanism of Sulfonamide Catalyzed by Titanium Dioxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202202825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin‐Rui Chen
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Dong‐Heng Li
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Hu‐Qiong Liu
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Yan Zheng
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Lai‐Cai Li
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| |
Collapse
|
27
|
Zaouak A, Chouchane H, Jelassi H. Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl. ENVIRONMENTAL TECHNOLOGY 2022; 43:4147-4155. [PMID: 34182888 DOI: 10.1080/09593330.2021.1944325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-ethyl (QPE) was explored under different experimental conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, respectively, in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favour of a pseudo-first-order kinetic of QPE degradation. The resulting apparent rate constant value is approximately kapp = (0.012 ± 0.001) min-1. Finally, several by-products such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatography-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the molecule involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| |
Collapse
|
28
|
Zhang H, Xiao S, Du Y, Song S, Hu K, Huang Y, Wang H, Wu Q. Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Hu W, Chen S, Hao H, Jiang H. Enhanced Photoreactivity of
MOFs
by Intercalating Interlayer Bands via Simultaneous −N=C=O and −
SCu
Modification. AIChE J 2022. [DOI: 10.1002/aic.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei‐Fei Hu
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Shuo Chen
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong‐Chao Hao
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong Jiang
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
30
|
Zaouak A, Jebali S, Chouchane H, Jelassi H. Impact of gamma-irradiation on the degradation and mineralization of hydroxychloroquine aqueous solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:6815-6824. [PMID: 35818409 PMCID: PMC9261233 DOI: 10.1007/s13762-022-04360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 05/24/2023]
Abstract
In this work, the effect of gamma irradiation emitted by Cobalt 60 source has been investigated for the degradation of hydroxychloroquine (HCQ). The monitoring of the gamma irradiation treatment of HCQ aqueous solutions was followed by UV-visible, chemical oxygen demand, total organic carbon (TOC) and LC/MS analyses. Effects of several important parameters such as concentration, dose rate and pH on the degradation efficiency were studied then evaluated. Achieved results showed that % TOC removal efficiency of 98.5 was obtained after 8 kGy absorbed dose which warrants HCQ mineralization. The process was found to be more efficient when the initial pollutant concentration was low, with higher dose rate and at neutral pH. Furthermore, HCQ degradation kinetic study revealed a pseudo-first-order kinetic. Additionally, based on by-products identified by LC/MS, a degradation mechanistic schema mediated through hydroxyl radicals generated by water radiolysis has been proposed. Finally, in order to check the potential industrial application viability the energy consuming was evaluated.
Collapse
Affiliation(s)
- A. Zaouak
- Research Laboratory On Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technology, Sidi Thabet Technopark, 2020 Ariana, Tunisia
| | - S. Jebali
- Laboratoire National de Contrôle Des Médicaments, 11 Bis Rue Jebel Lakhdar Bab Saadoun, 1006 Tunis, Tunisia
| | - H. Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - H. Jelassi
- Research Laboratory On Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technology, Sidi Thabet Technopark, 2020 Ariana, Tunisia
| |
Collapse
|
31
|
Segalin J, Arsand JB, Jank L, Schwalm CS, Streit L, Pizzolato TM. In silico toxicity evaluation for transformation products of antimicrobials, from aqueous photolysis degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154109. [PMID: 35247405 DOI: 10.1016/j.scitotenv.2022.154109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigates degradation processes of three antimicrobials in water (norfloxacin, ciprofloxacin, and sulfamethoxazole) by photolysis, focusing on the prediction of toxicity endpoints via in silico quantitative structure-activity relationship (QSAR) of their transformation products (TPs). Photolysis experiments were conducted in distilled water with individual solutions at 10 mg L-1 for each compound. Identification of TPs was performed by means of LC-TOF-MS, employing a method based on retention time, exact mass fragmentation pattern, and peak intensity. Ten main compounds were identified for sulfamethoxazole, fifteen for ciprofloxacin, and fifteen for norfloxacin. Out of 40 identified TPs, 6 have not been reported in the literature. Based on new data found in this work, and TPs already reported in the literature, we have proposed degradation pathways for all three antimicrobials, providing reasoning for the identified TPs. QSAR risk assessment was carried out for 74 structures of possible isomers. QSAR predictions showed that all 19 possible structures of sulfamethoxazole TPs are non-mutagenic, whereas 16 are toxicant, 18 carcinogenic, and 14 non-readily biodegradable. For ciprofloxacin, 28 out of the 30 possible structures for the TPs are mutagenic and non-readily biodegradable, and all structures are toxicant and carcinogenic. All 25 possible norfloxacin TPs were predicted mutagenic, toxicant, carcinogenic, and non-readily biodegradable. Results obtained from in silico QSAR models evince the need of performing risk assessment for TPs as well as for the parent antimicrobial. An expert analysis of QSAR predictions using different models and degradation pathways is imperative, for a large variety of structures was found for the TPs.
Collapse
Affiliation(s)
- Jeferson Segalin
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Juliana Bazzan Arsand
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Louise Jank
- Laboratório Federal de Defesa Agropecuária, Estr. Retiro da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Cristiane Storck Schwalm
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rod. Dourados/Itahum, km 12, PC 364, Dourados, MS, Brazil
| | - Livia Streit
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Tânia Mara Pizzolato
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Li W, Ye Q, Xia T, Zhao L, Yang M. Degradation of Organic Dyes Using the Ionizing Irradiation Process in the Presence of the CN/CD 3/Fe 6 Composite: Mechanistic Studies. ACS OMEGA 2022; 7:21418-21432. [PMID: 35785285 PMCID: PMC9244913 DOI: 10.1021/acsomega.2c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Organic dyes are ubiquitous pollutants in various aquatic environments as they are produced in abundance and used widely. In the present work, the degradation and mineralization of various organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB), following the electron beam irradiation method in the presence of a graphitic carbon nitride/carbon nanodots/Fe(II) (CN/CD3/Fe6) composite, were studied. The removal efficiency of MB reached 81.7% under conditions of electron beam irradiation (EBI) when the total irradiation dose was 5 kGy. This increased to 91.2% in the presence of the CN/CD3/Fe6 composite. The mineralization efficiency increased from 30.1 to 47.3% when the composite was added, and the total irradiation dose was 20 kGy. The removal efficiency of organic dyes was not significantly affected in the pH range of 3-11. Results from cyclic experiments conducted using MB degradation indicated that the CN/CD3/Fe6 composite exhibited good stability and reusability even after five irradiation cycles. Results from scavenging experiments revealed that •OH was the predominant reactive species during the MB degradation process. Intermediates produced in the synergistic system (EBI&CN/CD3/Fe6 system) consisting of the CN/CD3/Fe6 composite and EBI were detected using the liquid chromatography-mass spectrometry (LC-MS) technique. Based on the results, the possible degradation mechanism and pathways for MB were proposed.
Collapse
Affiliation(s)
- Wen Li
- School
of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Ye
- State
Key Laboratory of Advanced Electromagnetic Engineering and Technology,
School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Xia
- School
of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Long Zhao
- State
Key Laboratory of Advanced Electromagnetic Engineering and Technology,
School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao Yang
- School
of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
33
|
Shokri A, Sanavi Fard M. Employing electro-peroxone process for industrial wastewater treatment: a critical review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Ecotoxicological Consequences of the Abatement of Contaminants of Emerging Concern by Ozonation—Does Mixture Complexity Matter? WATER 2022. [DOI: 10.3390/w14111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ozonation has been used to degrade persistent water contaminants, namely, pharmaceuticals and personal care products (PPCPs). However, ozonation can lead to by-products that can be more toxic than the parent compounds. This work aims to assess whether the ecotoxicological effects of ozonation are modified as the initial matrix being treated increases in complexity, considering mixtures of 2, 3, 4 and 5 PPCPs. The following PPCPs were used: two parabens (metylparaben (MP) and propylparaben (PP)), paracetamol (PCT), sulfamethoxazole (SMX) and carbamazepine (CBZ). The following model species were used to assess toxicity: the crustacean Daphnia magna, the microalgae Raphidocelis subcapitata, the macrophyte Lemna minor and the watercress Lepidium sativum. There was a trend of increased toxicity with increasing mixture complexity of the untreated samples, except for D. magna. The same was observed after ozonation with the exception of the mixture MP+PP, which showed high toxicity to all the tested species, namely 100% immobilization of D. magna. The toxicity of SMX to the primary producers decreased pronouncedly after ozonation, except for L. minor. This study highlights the importance of considering the complexity of the matrix being treated and of using an ecotoxicological test battery with a wide diversity of species for assessing ozonation efficiency.
Collapse
|
35
|
Wang Z, Bao J, Du J, Luo L, Xiao G, Zhou T. Sulfamethoxazole degradation by alpha-MnO 2/periodate oxidative system: Role of MnO 2 crystalline and reactive oxygen species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44732-44745. [PMID: 35138534 DOI: 10.1007/s11356-022-18901-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Pollutant degradation via periodate ([Formula: see text]) and transitional metal oxides provides an economical, energy-efficient way for chemical oxidation process in environmental remediation. However, catalytic activation of periodate by manganese dioxide and the associated mechanism were barely investigated. In this study, four MnO2 polymorphs (α-, β-, γ- and δ-MnO2) were synthesized and tested to activate [Formula: see text] for the degradation of sulfamethoxazole (SMX). The reactivity of different MnO2 structures followed the order of α-MnO2 > β-MnO2 > γ-MnO2 > δ-MnO2, suggesting that the particular crystalline structure in α-MnO2 would exhibit higher activities via [Formula: see text] activation. Herein, in α-MnO2/[Formula: see text] system, 91.1% of SMX was eliminated within 30 min with degradation rate constant of 0.0649 min-1, and the neutral pH exhibited higher efficiency in SMX degradation compared with acidic and alkaline conditions. Singlet oxygen (1O2) was unveiled to be the dominant ROS according to the results of electron paramagnetic resonance, chemical probes and radical quenching experiments, whereas [Formula: see text] and •OH were mainly acted as a free-radical precursor. Six oxidation products were identified by LC-MS, and the elimination of sulfonamide bond, hydroxylation and direct oxidation were found to be the important oxidation pathways. The study dedicates to the mechanistic study into periodate activation over alpha-MnO2 and provides a novel catalytic activation for selective removal in aqueous contaminants.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jianguo Bao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jiangkun Du
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Liting Luo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Guangfeng Xiao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Ting Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
36
|
Zou Y, Qi H, Sun Z. In-situ catalytic degradation of sulfamethoxazole with efficient CuCo-O@CNTs/NF cathode in a neutral electro-Fenton-like system. CHEMOSPHERE 2022; 296:134072. [PMID: 35216983 DOI: 10.1016/j.chemosphere.2022.134072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a CuCo-O@CNTs/NF electrode was successfully prepared and used for in-situ degradation of sulfamethoxazole (SMX) in an electro-Fenton-like system. Carbon nanotubes (CNTs) and coral-like copper-cobalt oxides were successively loaded on nickel foam (NF). CNTs contributed to improving the dispersibility and stability of copper-cobalt oxides, and the coral-like copper-cobalt oxide catalyst was anchored on CNTs without any adhesive. In the electro-Fenton-like system, dissolved oxygen can be reduced to superoxide anions in a one-electron step, which could be further transformed into hydrogen peroxide and then reacted with the active components on the electrode to generate reactive oxygen species (ROS) to participate in the degradation of SMX. Almost 100% SMX removal was obtained within 60 min in a wide near-neutral pH range (5.6-9.0), and the electrode could still achieve a 90.4% removal rate after ten recycle runs. Radical-quenching results showed that superoxide anions were the main species in the degradation of SMX. In addition, a possible degradation pathway of SMX was proposed. According to the result of toxicological simulations, the toxicity of the pollutant solution during the degradation process exhibited a decreasing trend. This study provides new insights for in-situ catalysis of electrodes with bimetallic active components to generate ROS for high-efficiency degradation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yelong Zou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
37
|
Cheng Z, Chen Q, Liu S, Liu Y, Ren Y, Zhang X, Shen Z. The investigation of influencing factors on the degradation of sulfonamide antibiotics in iron-impregnated biochar-activated urea-hydrogen peroxide system: A QSAR study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128269. [PMID: 35158249 DOI: 10.1016/j.jhazmat.2022.128269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Iron-impregnated biochar-activated urea-hydrogen peroxide (FB-activated UHP) is a potential in-situ technology for simultaneously reducing soil sulfonamide antibiotic contaminants and improving soil fertility. To better understand the degradation of sulfonamide antibiotics by FB-activated UHP, a two-dimensional quantitative structure-activity relationship (2D-QSAR) model based on quantum chemical parameters and a three-dimensional QSAR (3D-QSAR) model based on molecular force field were developed to investigate the factors influencing the removal efficiencies (Re%). The optimal 2D-QSAR model was Re%= 0.858-8.930 E-5 EB3LYP-0.175 f(+)x with the evaluation indices of R2= 0.732, q2= 0.571, and Qext2= 0.673. The given 2D-QSAR model indicated that the molecular size (EB3LYP) and Fukui index with respect to nucleophilic attack (f(+)) were intrinsic factors influencing Re%. Three degradation pathways were subsequently proposed based on the f(+) distribution. Compared to the 2D-QSAR model, the developed 3D-QSAR model exhibited a better predictive ability, with the evaluation indices of R2= 0.989, q2= 0.696, and SEE= 0.001. The analysis of field contribution rates suggested that electrostatic field (48.2%), hydrophobic field (25.3%), and hydrogen-bond acceptor field (12.7%) were the main factors influencing Re%. These findings generated critical information for evaluating the degradation mechanisms/rules and provided theoretical bases for initially estimating the Re% of sulfonamide antibiotics undergoing FB-activated UHP process.
Collapse
Affiliation(s)
- Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shiqiang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, PR China.
| |
Collapse
|
38
|
Lien E, Sahu RS, Chen WL, Shih YH. Effective photocatalytic degradation of sulfamethoxazole using tunable CaCu 3Ti 4O 7 perovskite. CHEMOSPHERE 2022; 294:133744. [PMID: 35093422 DOI: 10.1016/j.chemosphere.2022.133744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Sulfamethoxazole (SMX) is largely prescribed for bacterial infections but raises a major concern over generation of antibiotic-resistant bacteria in the environment. This study employed various perovskite-type photocatalysts, made by two-step synthesis procedures, to remove SMX. The as-synthesized CaCu3Ti4O7 (CCTO) perovskites were characterized by XRD, SEM-EDX, and DLS. Complete degradation (∼99%; kobs = 0.0279 min-1) of SMX was recorded under UV-light irradiation for 90 min in the presence of CCTO. SMX removal rate was investigated under various reaction conditions including pH, catalyst dose, electrolyte (NaCl and NaBr). The astonishing rate of SMX removal (kobs = 0.0614 min-1) was observed with the addition of 50 mM NaBr electrolytes in the reaction, which might imply that the appearance of halogen reactive species. CCTO-MS particles were aggregated in traces when the electrolytes concentration increases, resulting in reduced rate of SMX. The SMX concentration abatement and the formation of possible intermediates during photocatalytic reaction were analyzed. The upshot of this study reveals that the inexpensive and environmentally benign CCTO perovskite photocatalyst could be applied for the treatments of emerging contaminants in the future.
Collapse
Affiliation(s)
- En Lien
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Rama Shanker Sahu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Wen-Ling Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC; Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan, ROC; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
39
|
Li S, Tong Y, Dong H, Lu J, Niu J. Formation of stable imine intermediates in the coexistence of sulfamethoxazole and humic acid by electrochemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128166. [PMID: 34996000 DOI: 10.1016/j.jhazmat.2021.128166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical degradation performance of sulfamethoxazole (SMX) was studied in the presence of humic acid (HA) by using a Ti/Ti4O7/β-PbO2 anode. The electrochemical degradation efficiency of SMX decreased from 93.4% to 45.8% in 50 min after the addition of 25 mg L-1 HA. The pseudo-first-order kinetic rate constant decreased by 71.4%, and the EEO value increased from 63.8 Wh L-1 to 90.9 Wh L-1. HA and its degradation intermediates could compete for free radicals, especially for ·OH, with SMX. The analytical results obtained using UPLC-ESI-Q-TOF-MS showed that 18 degradation intermediates were identified in the coexistence of SMX and HA. Four imine intermediates were formed through the reactions between the aniline moieties of SMX and quinone groups in the HA structure through covalent bonds. Furthermore, the relative abundances of the intermediates demonstrated that the imine intermediates were complex and stable during electrochemical degradation.
Collapse
Affiliation(s)
- Suxin Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
40
|
Wang Y, Huang J, Guo H, Puyang C, Han J, Li Y, Ruan Y. Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Harnessing Paenarthrobacter ureafaciens YL1 and Pseudomonas koreensis YL2 Interactions to Improve Degradation of Sulfamethoxazole. Microorganisms 2022; 10:microorganisms10030648. [PMID: 35336223 PMCID: PMC8953276 DOI: 10.3390/microorganisms10030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Sulfamethoxazole (SMX) is a widespread and persistent pollutant in the environment. Although the screening and analysis of SMX-degrading bacteria have been documented, the interaction mechanisms of functional microorganisms are still poorly understood. This study constructed a consortium with strain YL1 and YL2 supplied with SMX as the sole carbon and energy source. The coexisting mechanism and the removal of SMX of the consortium were investigated. The total oxidizable carbon (TOC) removal rate of the combined bacterial system was 38.94% compared to 29.45% for the single bacterial system at the same biomass. The mixed bacterial consortium was able to resist SMX at concentrations up to 400 mg/L and maintained a stable microbial structure at different culture conditions. The optimum conditions found for SMX degradation were 30 °C, pH 7.0, a shaking speed of 160 r·min−1, and an initial SMX concentration of 200 mg·L−1. The degradation of SMX was accelerated by the addition of YL2 for its ability to metabolize the key intermediate, 4-aminophenol. The removal rate of 4-aminophenol by strain YL2 reached 19.54% after 5 days. Genome analysis revealed that adding riboflavin and enhancing the reducing capacity might contribute to the degradation of SMX. These results indicated that it is important for the bioremediation of antibiotic-contaminated aquatic systems to understand the metabolism of bacterial communities.
Collapse
|
42
|
Zaouak A, Chouchane H, Jelassi H. Gamma irradiation-induced degradation and mineralization of methocarbamol in aqueous solution. ENVIRONMENTAL TECHNOLOGY 2022:1-8. [PMID: 35200109 DOI: 10.1080/09593330.2022.2046646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Gamma irradiation degradation of the extensively used muscle relaxant in the world methocarbamol (MET) was studied. MET aqueous solutions were irradiated by gamma rays emitted by a Cobalt 60 source at doses of 1-4 kGy. Our findings demonstrated that gamma irradiation degraded more than 98.5% of MET. Absorption spectra analysis revealed that when increased irradiation dose, the absorption bands declined with complete disappearance at 4 kGy dose. Additionally, the most radiolytic degradation rate was recorded at neutral pH, marked by Total Organic Carbon (TOC) removal rate of 98% reflecting the total mineralization of MET at 4 kGy. In-depth spectrophotometric analyses advocated a pseudo-first-order type of MET degradation kinetics. The obtained apparent rate constant value was kapp, MET = (0.02167 ± 0.0006) min-1. Gas chromatography-mass spectrometry (GC-MS) allowed the detection of 3-(o-methoxyphenoxy)-1,2 propanediol,2-methoxyphenol, 1,2,3 propanetriol, 1,2-dihydroxybenzene and 1,2,4 benzentriol identified as by-products generated during radiolytic degradation. Finally, an outline of the degradation mechanism was suggested according to the obtained by-products.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| | - Habib Chouchane
- University Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| |
Collapse
|
43
|
Abstract
The increasing consumption of pharmaceutical and personal care products (PPCPs) by humankind has been causing an accumulation of contaminants (commonly referred to as contaminants of emerging concern), in effluents and water resources. Ozonation can be used to improve the removal of these contaminants during water treatment to alleviate this burden. In this work, the degradation of methyl (MP), propylparaben (PP), paracetamol (PCT), sulfamethoxazole (SMX), and carbamazepine (CBZ) by ozonation was assessed both for individual compounds and for mixtures with increasing complexity (two to five compounds). Ozonation was performed at pH3 to gain an insight on the exclusive action of molecular ozone as oxidizing agent. The degradation of contaminants was described as a function of time and transferred ozone dose, and the corresponding pseudo-first order kinetic rate constants (k’) were determined. PPCPs were degraded individually within 1.5 to 10 min. CBZ was the most quickly degraded (k’ = 1.25 min−1) and MP the most resistant to ozone (k’ = 0.25 min−1). When in the mixture, the degradation rate of the contaminants was slower. For parabens, the increase of the number of compounds in the mixture led to an exponential decrease of the k’ values. Moreover, the presence of more PPCPs within the mixture increased energy consumption associated with the treatment, thereby reflecting higher economic costs.
Collapse
|
44
|
Zhou T, Du J, Wang Z, Xiao G, Luo L, Faheem M, Ling H, Bao J. Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: Kinetics, synergistic effect and reaction mechanism. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Yang K, Feng X, Lin H, Xu J, Yang C, Du J, Cheng D, Lv S, Yang Z. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127239. [PMID: 34844357 DOI: 10.1016/j.jhazmat.2021.127239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we reported a tandem multilevel reactive electrochemical membrane (REM) system was promising for the rapid and complete removal of trace antibiotics from natural waters. Results indicate that a four-stage REM module-in-series system achieved steady over 98% removal of model antibiotic norfloxacin (NOR, 100 μg·L-1) from wastewater treatment plant final effluent and surface water with a residence time of 5.4 s, and the electric energy consumption was only around 0.007-0.011 kWh·m-3. As for the oxidation mechanism, direct electron transfer (DET) oxidation process played an important role in NOR rapid oxidation, enabling the REM system to tolerate various •OH scavenges in natural waters, including natural organic matters, Cl- and HCO3-, even at very high concentration levels. Meanwhile, •OH-mediated indirect oxidation process promotes the oxidation and mineralization of NOR. Although the DET-dominated oxidation mechanism makes the REM system cannot achieve the complete mineralization of NOR with residence times of few seconds, the antibacterial activity from NOR was completely eliminated. This REM system featured effective removal performance of trace contaminants with low energy cost and was tolerant to complex waster matrix, suggesting that it could be a powerful supplementary step for wastewater/water treatment.
Collapse
Affiliation(s)
- Kui Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xingwei Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Cao Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Juan Du
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
46
|
Dang Y, Bai Y, Zhang Y, Yang X, Sun X, Yu S, Zhou Y. Tannic acid reinforced electro-Fenton system based on GO-Fe 3O 4/NF cathode for the efficient catalytic degradation of PNP. CHEMOSPHERE 2022; 289:133046. [PMID: 34883130 DOI: 10.1016/j.chemosphere.2021.133046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In order to overcome the sluggish kinetics of the redox conversion between Fe3+ and Fe2+ in Fenton process, we established a novel electro-Fenton system based on GO-Fe3O4 cathode and tannic acid (TA) for the efficient degradation of p-nitrophenol (PNP). Under the optimal degradation parameters (including the initial PNP concentration of 20 mg L-1, pH = 5, current density of 30 mA cm-2 and feeding ratio of PNP: TA = 1:2), the TA reinforced GO-Fe3O4 electro-Fenton system exhibited the removal rate of PNP over 90.1 ± 0.2%, the COD removal rate of 69.5 ± 0.84% and satisfactory reusability (with the removal rate of ∼80% after 5 recycles). The excellent degradation performance of the proposed TA reinforced GO-Fe3O4 electro-Fenton system was partly attributed to the optimized morphology (with the particle size of Fe3O4 reduced to tens of nanometers, pore size decreased by ∼80% and pore volume increased by 24.3 times) and larger specific surface area (increased by 72.7 times) after compositing GO with Fe3O4, which exposed more active sites. In return, the electron transfer process, the two-electron oxygen reduction reaction (ORR) and the degradation efficiency were promoted in the cooperation of GO and Fe3O4. Moreover, the incorporated TA would form a TA-Fe(III) complex to promote the reduction reaction from Fe3+ to Fe2+, which strengthened the self-circulation of Fe2+ and Fe3+ and indirectly enhanced the conversion of H2O2 to ROS to decompose PNP into smaller organic fragments or mineralize into CO2, H2O, NO2- or NO3-, etc. Obviously, the incorporation of TA provided a promising strategy to improve the electro-Fenton efficiency and realize the efficient removal of PNP in wastewater.
Collapse
Affiliation(s)
- Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yangyang Bai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaohan Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
47
|
Liu X, Yang Z, Zhu W, Yang Y, Li H. Catalytic ozonation of chloramphenicol with manganese-copper oxides/maghemite in solution: Empirical kinetics model, degradation pathway, catalytic mechanism, and antibacterial activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114043. [PMID: 34735833 DOI: 10.1016/j.jenvman.2021.114043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The composite material of manganese-copper oxide/maghemite (MnxCuyOz/γ-Fe2O3) was synthesized by the co-precipitation-calcination method. With the initial concentration of 0.2 g/L MnxCuyOz/γ-Fe2O3 and 10 mg/L O3, the chloramphenicol (CAP, 10 mg/L) could be completely degraded, which was about 2.22 times of that treated with ozonation alone. The contribution of O3 and hydroxyl radical (•OH) for CAP degradation in the catalytic process was 6.9% and 93.1%, respectively. According to the effects of catalyst dosage, ozone dosage, and pH on the catalytic performance of MnxCuyOz/γ-Fe2O3, a predictive empirical model was developed for the ozonation with the MnxCuyOz/γ-Fe2O3 system. The HCO3-/CO32- and phosphates in solution could inhibit the degradation of CAP with the inhibition ratios 8.45% and 13.8%, respectively. The HCO3-/CO32- could compete with CAP and react with •OH, and the phosphates were considered as poisons for catalysts by blocking the surface active sites to inhibit ozone decomposition. The intermediates and possible degradation pathways were detected and proposed. The catalytic ozonation could effectively control the toxicity of the treated solution, but the toxicity was still not negligible. Furthermore, MnxCuyOz/γ-Fe2O3 could be easily and efficiently separated from the reaction system with an external magnet, and it possessed excellent reusability and stability.
Collapse
Affiliation(s)
- Xinghao Liu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Wenxiu Zhu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Ying Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
48
|
Wu CH, Dong CD, Chen CW, Lin YL. Mineralization of sulfamethoxazole by ozone-based and Fenton/Fenton-like-based processes. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Wang W, Chen M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J Colloid Interface Sci 2022; 613:57-70. [PMID: 35032777 DOI: 10.1016/j.jcis.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen doping could improve the catalytic performance of carbon materials, in which the nitrogen configuration could be used as active sites for peroxymonosulfate (PMS) activation. Herein, this paper studied how to turn waste to "treasure" by agriculture waste pomelo peel to prepare nitrogen-doped biochar and successfully applied it to advanced oxidation field. The effects of the sodium bicarbonate (NaHCO3), melamine, and pyrolysis temperature on the catalytic activity of biochar for the removal of sulfamethoxazole (SMX) were investigated. The optimized nitrogen-doped biochar (C-N-M 1:3:4) possessed high specific surface area (SSA, 738 m2/g) and high level of nitrogen doping (nitrogen content 13.54 at%). Accordingly, it exhibited great catalytic performance for PMS activation to remove SMX antibiotic, and 95% of SMX was removed within 30 min. High catalytic activity of C-N-M 1:3:4 was attributed to rich defects, carbonyl group, high content of graphitic N and pyrrolic N, and large SSA, in which non-radical oxidation process based on singlet oxygen (1O2) and electron transfer contributed to the SMX degradation. The prepared nitrogen-doped biochar possessed high stability and reusability and the removal efficiency of SMX still reached 80% after four cycles. Additionally, the phytotoxicity assay indicated that the toxicity of degradation intermediates was obviously decreased in the PMS/ C-N-M 1:3:4 system.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
50
|
Pokkiladathu H, Farissi S, Muthukumar A, Muthuchamy M. A novel activated carbon-based nanocomposite for the removal of bisphenol-A from water via catalytic ozonation: Efficacy and mechanisms. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|