1
|
Diao S, Ma W, Wang Y, Zhao X, Zhang F, Lei X. Synergistic effects of Ca-bentonite and in-situ layered double hydroxide formation in ameliorating saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179084. [PMID: 40081077 DOI: 10.1016/j.scitotenv.2025.179084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Improving saline-alkali soil requires cost-efficient and stable technologies. In this study, a novel technology combining in-situ super-stable mineralization with Ca-bentonite was successfully applied to ameliorate saline-alkali soil. A simulation experiment was conducted on Ca-bentonite in solution to validate its feasibility, and in-situ mineralization using humic acid, Fe(NO3)3·9H2O, and Ca-bentonite was performed to treat saline-alkali soil. Additionally, climate modeling and field experiments were employed to investigate the effects of this technology on soil physicochemical properties, crop growth, and crop yield. Under natural conditions, Ca-bentonite can transform into Na-bentonite via cation exchange with Na+. The results from the in-situ mineralization experiment showed that the soil pH, total content of CO32- and HCO3-, Na+ content, electrical conductivity, and bulk density decreased from approximately 10.30 to below 9.00, 7.81 to 1.53 g/kg, 7.20 to 1.51 g/kg, 2741 to 552 μS/cm, and 1.63 to 1.24 g/cm3, respectively. Furthermore, the germination rate of corn increased from 0 % to 83.3 % in climate simulation experiments. Field trials conducted in Inner Mongolia and Jilin, China, further demonstrated significant improvements in soil properties. The seedling emergence rates for corn and oats significantly increased, rising from 0 % to over 85 % and 95 %, respectively. Correspondingly, crop yields reached 323 kg/hm2 for corn and 182 kg/hm2 for oats. Together, our study introduces a novel, cost-effective, and efficient technology to enhance crop growth by mitigating soil salinity and alkalinity. This approach provides a new perspective for alleviating salt-alkali stress and contributes to the advancement of healthy and sustainable agricultural practices.
Collapse
Affiliation(s)
- Shuteng Diao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenqing Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China.
| | - Xuhui Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
2
|
Ghaedi S, Rajabi H, Hadi Mosleh M, Spencer BF, Sedighi M. Assessing the efficiency and reusability of zirconium-based MOF-biochar composite for the removal of Pb (II) and Cd (II) in single and multi-ionic systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125122. [PMID: 40138932 DOI: 10.1016/j.jenvman.2025.125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Recent studies have highlighted the promising properties of metal-organic frameworks (MOF) and biochar composites as cost effective adsorbents. Although MOF-biochar composites have shown significant potential for contaminant removal in aquatic environments, further research is needed for their scalable performance in removing a wide range of emerging contaminants from wastewater. In this paper, we introduce a novel UiO67-biochar composite (MBC) for the first time, synthesised via an in-situ solvothermal method, as an innovative solution for removing heavy metals from water. The composite was characterised by various analytical techniques (SEM, TEM, XRD, FTIR, XPS, BET, and TGA) and the results demonstrated that the specific surface area of the composite (≈540 m2/g) elevated 28 times compared to the unmodified biochar (≈20 m2/g). The adsorption tests indicate remarkable adsorption capacity and removal efficiency in the range of 121.1 mg/g and 90.8 % as well as 59.7 mg/g and 89.5 % for Pb (II) and Cd (II), respectively, which sustained under impacts of co-existing ions. Kinetic studies demonstrated that the experimental data for both heavy metal ions were best described by the Pseudo-second order kinetic model, inferring that chemical interactions mainly control adsorption. The formulated material showed promising stability (retained crystallinity confirmed by XRD analysis) over reusability tests with approximately 87 % removal efficiency. The ion exchange, surface complexation, and electrostatic interactions were the main adsorption mechanisms of the heavy metal ions on the MBC composite. The formulated composite proposed in this study offers scalable, sustainable, and affordable material to treat heavy metal-polluted water and wastewater.
Collapse
Affiliation(s)
- Samaneh Ghaedi
- Department of Civil Engineering and Management, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | - Hamid Rajabi
- Department of Civil and Environmental Engineering, School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Mojgan Hadi Mosleh
- Department of Civil Engineering and Management, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Ben F Spencer
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Majid Sedighi
- Department of Civil Engineering and Management, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Li K, Ou Y, Wang Y, Zhang J, Zhou Y. Single-atom lead ion adsorption behavior on Ti 2CO 2 MXene under different electrode potentials. Phys Chem Chem Phys 2025; 27:3083-3088. [PMID: 39831347 DOI: 10.1039/d4cp04169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
First-principles calculations, particularly density functional theory (DFT) combined with D3 dispersion correction (DFT+D3), have proven to be valuable tools in simulating the adsorption of lead ions on Ti2CO2 surfaces. However, conventional theoretical models assume electrically neutral systems under vacuum conditions, neglecting the solvent environment and electrode potential's crucial effects. This study employed an implicit solvent model, treating the solvent as a continuous and homogeneous medium to capture the influence of different solvents by varying their dielectric constants. Additionally, the role of electrode potential on the adsorption behavior of lead ions on Ti2CO2 surfaces was explored. The findings demonstrated that electrode potential significantly affected lead ion adsorption with adsorption strength increasing as the electrode potential decreases. This observation was supported by electronic structure analyses, such as the density of states, band structure and ICOHP. This study provides important insights into the influence of electrode potential on metal ion adsorption on MXene materials, offering a theoretical foundation for the design and optimization of MXene-based adsorbents for environmental applications.
Collapse
Affiliation(s)
- Kechen Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yang Ou
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yongzhi Wang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jianbo Zhang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yang Zhou
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
4
|
Zhang P, Xu L, Su J, Liu Y, Zhao B, Bai Y, Li X. Nano-Fe 3O 4/FeCO 3 modified red soil-based biofilter for simultaneous removal of nitrate, phosphate and heavy metals: Optimization, microbial community and possible mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136428. [PMID: 39522153 DOI: 10.1016/j.jhazmat.2024.136428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The pollution of nitrogen, phosphorus and heavy metals in surface water is becoming more and more serious, affecting the safety of water quality. In this study, three biofilters were constructed using iron-modified red soil-based filler carriers (RSC, nano-Fe3O4@RSC, and FeCO3@RSC) combined with strain Zoogloea sp. ZP7 to simultaneously remove nitrate (NO3--N), phosphate (PO43--P), copper (Cu2+), and zinc (Zn2+). The long-term operation results showed that the three groups of biofilters could remove 85.0 %, 90.0 %, and 89.8 % of NO3--N, respectively. Furthermore, the addition of iron compounds enhanced the removal of PO43--P and the resistance to the stress of Cu2+ and Zn2+ in the biofilter. The analysis illustrated that iron modification improved the redox activity and zeta potential of RSC surface. The secondary structure analysis of the protein showed that the microbial secreted proteins were more compact on the surface of the iron-modified RSC, which facilitated the formation of biofilm on the carrier surface. In addition, the iron-modified RSC-based biofilter also showed excellent NO3--N and PO43--P removal efficiency in the treatment of actual surface water. The microbial community analysis results showed that Zoogloea became the dominant species in the biofilter. On the other hand, the presence of iron-reducing bacteria and the expression iron cycle-related genes may contribute to denitrification under low nutrient conditions.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bolin Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
5
|
Li J, Wei Y, Zou L, Li S, Luo Y. Study on the Adsorption Mechanism of Cu 2+ by ZnAl-LDH-Containing Exchangeable Interlayer Chloride Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23754-23765. [PMID: 39474861 DOI: 10.1021/acs.langmuir.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Different Zn/Al ratios of Cl- intercalated ZnAl-layered double hydroxide (ZnAl-LDH) were prepared using the coprecipitation method, and their adsorption performance for Cu2+ in aqueous solution was evaluated. The factors affecting adsorption properties, such as dosage, reaction time, and pH, were determined by adsorption experiments. Then, the adsorption kinetics and isotherm models were fitted to evaluate the adsorption mechanism. The results show that the Zn/Al ratio has a great influence on the adsorption effect, the best adsorption effect is obtained when the Zn/Al ratio is 4:1, and the maximum adsorption capacity of Cu2+ is 213 mg/g. The mechanism study shows that the adsorption of Cu2+ by ZnAl-LDH is mainly an isomorphic substitution. Additionally, during the adsorption of CuSO4, the presence of SO42- undergoes interlayer anion exchange with Cl-, and the process of SO42- entering the interlayer facilitates the isomorphic substitution of Cu2+ and Zn2+. X-ray diffraction (XRD) analysis shows that as the Zn/Al ratio increases, the interlayer spacing of ZnAl-LDH increases, and the crystallinity decreases. The adsorption process conforms to the pseudo-second-order kinetic process and the Langmuir isotherm adsorption model. Therefore, the adsorption type of ZnAl-LDH for Cu2+ is monolayer chemical adsorption. The adsorption thermodynamic results indicate that the adsorption of Cu2+ is a spontaneous endothermic process. The research results revealed the mechanism of ZnAl-LDH adsorbing Cu2+, providing ideas for removing and recovering copper-containing electroplating wastewater.
Collapse
Affiliation(s)
- Jinhui Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China
| | - Yuming Wei
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China
| | - Laixi Zou
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China
| | - Shuaidong Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China
| | - Yue Luo
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China
| |
Collapse
|
6
|
Rasheed U, Ain QU, Liu B. Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil. CHEMOSPHERE 2024; 367:143424. [PMID: 39368492 DOI: 10.1016/j.chemosphere.2024.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China.
| |
Collapse
|
7
|
Li M, Prévot V, You Z, Forano C. Highly selective and efficient Pb 2+ capture using PO 4-loaded 3D-NiFe layer double hydroxides derived from MIL-88A. CHEMOSPHERE 2024; 364:143070. [PMID: 39142393 DOI: 10.1016/j.chemosphere.2024.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 μm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Collapse
Affiliation(s)
- Mengwei Li
- School of Resource and Environmental Sciences, Wuhan University, China; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, China.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Sun J, Hu R, Zhao X, Liu T, Bai Z. A novel chitosan/cellulose phosphonate composite hydrogel for ultrafast and efficient removal of Pb(II) and Cu(II) from wastewater. Carbohydr Polym 2024; 336:122104. [PMID: 38670774 DOI: 10.1016/j.carbpol.2024.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Developing green and high-performance adsorbents to separate heavy metals from wastewater is a challenging task. Biomass hydrogel has the advantages of low cost, renewability, and biodegradability, but it has the problem of low adsorption efficiency. Herein, a novel chitosan/cellulose phosphonate composite hydrogel(CS/MCCP) is fabricated by two steps of reactions including the Phosphorylation reaction and the Mannich reaction. As an excellent chelating group, the phosphonate group greatly enhances the adsorption efficiency of the biomass hydrogel. The CS/MCCP shows ultrafast adsorption rate and excellent adsorption capacity for Pb(II) and Cu(II). The saturated adsorption capacity of Pb(II) and Cu(II) is 211.42 and 74.29 mg·g-1, respectively. The adsorption equilibration time is only 10 min. The adsorption performance of the CS/MCCP is superior to that of the reported cellulose/chitosan hydrogels. Besides, an in-depth analysis of the adsorption mechanism is conducted using X-ray photoelectron spectroscopy(XPS) combined with Density Functional Theory(DFT) calculation. The results reveal that the adsorption mechanism is electrostatic attraction and surface complexation, and there is a synergistic coordination between the phosphonate groups and the amino groups.
Collapse
Affiliation(s)
- Junhua Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China
| | - Riming Hu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiuxian Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China.
| | - Teng Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China.
| | - Zhushuang Bai
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China.
| |
Collapse
|
9
|
Rasheed U, Ain QU, Ali A, Liu B. One stone two birds: Recycling of an agri-waste to synthesize laccase-immobilized hierarchically porous magnetic biochar for efficient degradation of aflatoxin B 1 in aqueous solutions and corn oil. Int J Biol Macromol 2024; 273:133115. [PMID: 38871108 DOI: 10.1016/j.ijbiomac.2024.133115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Aflatoxin B1 (AFB1) contamination of oils is a serious concern for the safety of edible oil consumers. Enzyme-assisted detoxification of AFB1 is an efficient and safe method for decontaminating oils, but pristine enzymes are unstable in oils and require modifications before use. Therefore, we designed a novel and magnetically separable laccase-carrying biocatalyst containing spent-mushroom-substrate (SMS)-derived biochar (BF). Laccase was immobilized on NH2-activated magnetic biochar (BF-NH2) through covalent crosslinking, which provided physicochemical stability to the immobilized enzyme. After 30 days of storage at 4 °C, the immobilized laccase (product named "BF-NH2-Lac") retained ~95 % of its initial activity, while after five repeated cycles of ABTS oxidation, ~85 % activity retention was observed. BF-NH2-Lac was investigated for the oxidative degradation of AFB1, which exhibited superior performance compared to free laccase. Among many tested natural compounds as mediators, p-coumaric acid proved the most efficient in activating laccase for AFB1 degradation. BF-NH2-Lac demonstrated >90 % removal of AFB1 within 5.0 h, while the observed degradation efficiency in corn oil and buffer was comparable. An insight into the adsorptive and degradative removal of AFB1 revealed that AFB1 removal was governed mainly by degradation. The coexistence of multi-mycotoxins did not significantly affect the AFB1 degradation capability of BF-NH2-Lac. Investigation of the degradation products revealed the transformation of AFB1 into non-toxic AFQ1, while corn oil quality remained unaffected after BF-NH2-Lac treatment. Hence, this study holds practical importance for the research, knowledge-base and industrial application of newly proposed immobilized enzyme products.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Asad Ali
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
10
|
Rohit RC, Roy SC, Alam R, Islam SM. Metal-sulfide/polysulfide functionalized layered double hydroxides - recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions. Dalton Trans 2024; 53:10037-10049. [PMID: 38775042 DOI: 10.1039/d4dt00883a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (Sx, x = 2-5), Mo-S, and Sn-S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.
Collapse
Affiliation(s)
- R C Rohit
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
11
|
Fan D, Peng Y, He X, Ouyang J, Fu L, Yang H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1037. [PMID: 38921913 PMCID: PMC11206449 DOI: 10.3390/nano14121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
With the processes of industrialization and urbanization, heavy metal ion pollution has become a thorny problem in water systems. Among the various technologies developed for the removal of heavy metal ions, the adsorption method is widely studied by researchers and various nanomaterials with good adsorption performances have been prepared during the past decades. In this paper, a variety of novel nanomaterials with excellent adsorption performances for Pb(II) and Cu(II) reported in recent years are reviewed, such as carbon-based materials, clay mineral materials, zero-valent iron and their derivatives, MOFs, nanocomposites, etc. The novel nanomaterials with extremely high adsorption capacity, selectivity and particular nanostructures are summarized and introduced, along with their advantages and disadvantages. And, some future research priorities for the treatment of wastewater are also prospected.
Collapse
Affiliation(s)
- Dikang Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
| | - Yang Peng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Xi He
- Changsha Industrial Technology Research Institute (Environmental Protection) Co., Ltd., Changsha 410083, China;
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410083, China
| | - Jing Ouyang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
| | - Liangjie Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Kandel DR, Poudel MB, Radoor S, Chang S, Lee J. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. CHEMOSPHERE 2024; 357:141757. [PMID: 38583537 DOI: 10.1016/j.chemosphere.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.
Collapse
Affiliation(s)
- Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Milan Babu Poudel
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Li H, Li Y, Chen X, Wu Y. Synthesis of WS 42- Intercalated NiZnAl LDHs as Effective Adsorbents to Remove Copper Ions from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5701-5714. [PMID: 38501266 DOI: 10.1021/acs.langmuir.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A series of WS42- intercalated NiZnAl ternary-layered double-hydroxides (LDHs) with various Ni/Zn ratios were synthesized by an ion-exchange method and used as adsorbents to remove Cu2+ from water. The introduction of Zn produced ZnS on the surface of LDHs. The LDH with the Ni/Zn/Al molar ratio of 0.1/1.9/1 showed the best adsorption ability. Cu2+ ions are removed via three routes: forming [Cu-WS4]n- complexes via soft acid-soft base interaction between WS42- and Cu2+, isomorphic substitution of Zn2+ in sheets by Cu2+, and cation exchange of Cu2+, with ZnS on the surface of LDHs. With the increased Cu2+ concentration, the complexes dominated the adsorption because polynuclear [Cu-WS4]n- complexes with high Cu/W ratios (2-6) may be formed. Cu+ is present in such complexes, which is produced by the internal redox. Even at Cu2+ concentration up to 600 mg·L-1, neither amorphous CuWS4 nor decreased interlayer distance was observed. Contrarily, the interlayer distance was slightly enlarged due to forming bigger [Cu-WS4]n- complexes. The adsorption followed the pseudo-second-order kinetics and Langmuir isotherm model. The experimental maximum adsorption capacity reached 555.4 mg·g-1.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Hongli Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yang Li
- Petrochemical Research Institute, PetroChina Co. Ltd., Beijing 102206, China
| | - Xingjian Chen
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yan Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
14
|
Zhang D, Zhong Z, Liu Z, He S, Lin J, Lv Y, Lü T, Pan Y, Shi H, Zhao H. Sorption of cadmium by layered double hydroxides: Performance, structure-related mechanisms, and sequestration stability assessment. CHEMOSPHERE 2024; 352:141399. [PMID: 38331263 DOI: 10.1016/j.chemosphere.2024.141399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs) have been recognized to have great potential for the treatment of heavy metals in wastewater and soil through various mechanisms. Isomorphic substitution is an important mechanism for the sorption of heavy metal cations with LDH reconstruction and highly stable product formation. However, sorption performance, structure-related relationships, and, more importantly, stability are still poorly understood. In this study, a series of LDHs with different structures were synthesized to evaluate their cadmium (Cd) sorption performance and stability concerning the isomorphic substitution mechanism. Divalent cation types in the LDH lattice determined the Cd sorption capacity as well as the isomorphic substitution possibility, following the order of hydroxide solubility of divalent cations (MII): Ca2+>Mg2+>(Cd2+) > Ni2+>Zn2+. In addition, CaAl-LDH exhibited a super-high Cd sorption capacity of 625.0 mg g-1. Cd sorption by LDHs with different interlayer anion types and divalent/trivalent cation molar ratios varied due to crystallite size-related MII release through cation-exchange/isomorphic substitution. Coexisting cations (e.g., Zn2+, Ni2+, Mg2+) influence the sorption performance of MII-LDH mainly through isomorphic substitution mechanism, largely depending on the solubility of MII(OH)2 with a trend of stable product formation. Furthermore, Mg2.9Cd0.1AlCl-LDH was fabricated, and limited Cd dissolution without destruction of the LDH structure was observed under various conditions. For example, only 7.69%, 2.16% and 0.96% of Cd was released from as-prepared Mg2.9Cd0.1AlCl-LDH in NaCl solution (0.02 mol L-1, pH 5), soil extract, and soil matrix, respectively. The very low leaching of Cd from Cd-containing LDHs indicated the high stability of LDH-sorbed Cd via isomorphic substitution and feasible practical application in Cd sequestration in wastewater treatment and soil remediation.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhishun Zhong
- Guangdong Jiandi Agriculture Technology Co. Ltd., Foshan, Guangdong, 528200, China
| | - Zilong Liu
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichong He
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yiyan Lv
- Zhejiang Huadong Construction Engineering Co. Ltd., Hangzhou, Zhejiang, 310030, China
| | - Ting Lü
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ying Pan
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hongting Zhao
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Alterary SS, Al-Alshaikh MA, Elhadi AM, Cao W. Design, Synthesis, and Evaluation of Novel Magnetic Nanoparticles Combined with Thiophene Derivatives for the Removal of Cr(VI) from an Aqueous Solution. ACS OMEGA 2024; 9:7835-7849. [PMID: 38405514 PMCID: PMC10883020 DOI: 10.1021/acsomega.3c07517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Most heavy metals are harmful to human health and the environment, even at extremely low concentrations. In natural waters, they are usually found only in trace amounts. Researchers are paying great attention to nanotechnology and nanomaterials as viable solutions to the problem of water pollution. This research focuses on the synthesis of organic thiophene derivatives that can be used as grafted ligands on the surface of silica-coated iron oxide nanoparticles to remove Cr(VI) chromium ions from water. The Vilsmeier-Haack reaction allows the formation of aldehyde groups in thiophene derivatives, and the resulting products were characterized by the FT-IR, NMR, and GC-MS. Schiff base is used as a binder between organic compounds and nanoparticles by the reaction of aldehyde groups in thiophene derivatives and amine groups on the surface of coated iron oxide nanoparticles. Schiff base functionalized Fe3O4 composites (MNPs@SiO2-SB-THCA) and (MNPs@SiO2-SB-THCTA) were successfully synthesized by homogeneous and heterogeneous methods and characterized by a combination of FT-IR, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The adsorption studies, kinetic modeling, adsorption isotherms, and thermodynamics of the two materials, MNPs@SiO2-SB-THCA and MNPs@SiO2-SB-THCTA, were investigated for the removal of Cr(VI) from water at room temperature and at 50 mg/L. The high adsorption capacity at pH 6 for MNPs@SiO2-SB-THCTA was 15.53 mg/g, and for MNPs@SiO2-SB-THCA, it was 14.31 mg/g.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Monirah A. Al-Alshaikh
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Athar M. Elhadi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Wenjie Cao
- Scientific
Design Company Incorporated, 49 Industrial Avenue, Little Ferry, 07643 New Jersey, United States
| |
Collapse
|
16
|
Wang Q, Peng Y, Chen M, Xu M, Ding J, Yao Q, Lu S. Synthesis of layered double hydroxides from municipal solid waste incineration fly ash for heavy metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169482. [PMID: 38135065 DOI: 10.1016/j.scitotenv.2023.169482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The process of urbanization has resulted in a continuous growth of the production of municipal solid waste, consequently leading to the increase of municipal solid waste incineration fly ash (MSWI FA) over time. This has prompted the need for effective disposal and value-added utilization strategies for MSWI FA. In this study, a hydrothermal method was employed to synthesize CaAl layered double hydroxides (LDHs) using MSWI FA as the raw material. The main objective was to investigate how different synthesis parameters affect the crystallinity of the layered bimetallic hydroxides. Subsequently, the synthesized LDHs were characterized using various techniques such as BET, SEM, XRD, FT-IR, and XPS. The results revealed the presence of calcium and aluminum cations in the interlayer region of the synthesized material, with chloride ions, sulfate ions, and acetate ions being the predominant anions. Moreover, the formation of LDHs presents an effective approach for the self-purification of leachates derived from MSWI FA. The LDHs exhibited excellent adsorption capacity for Cd2+ and Cu2+ in wastewater, with maximum values of 730 mg·g-1 and 446 mg·g-1, respectively. The adsorption mechanisms involved isomorphous substitution, complexation, as well as the precipitation of hydroxides or interlayer anions. This method presents a novel approach for effectively utilizing MSWI FA to produce environmentally friendly value-added adsorbents.
Collapse
Affiliation(s)
- Qionghao Wang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Min Chen
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| | - Mengxia Xu
- Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiamin Ding
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| | - Qi Yao
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| |
Collapse
|
17
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
18
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Sun J, Zhao X, Hu R, Sun G, Zhao H, Liu W, Bai Z, Jiang X, Cui Y. Cellulose phosphonate/polyethyleneimine nano-porous composite remove toxic Pb(II) and Cu(II) from water in a short time. Int J Biol Macromol 2023; 253:127110. [PMID: 37783249 DOI: 10.1016/j.ijbiomac.2023.127110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Current cellulose-based adsorbents suffer from the drawbacks of low adsorption capacity or slow adsorption rate for heavy metal ions. It is imperative to prepare new cellulose-based materials to improve the adsorption ability. In this work, we aim to introduce phosphonate groups to improve the adsorption ability of cellulose and select polyethyleneimine (PEI) for synergistic adsorption. A novel cellulose phosphonate/polyethyleneimine composite (MCCP-PEI) is prepared via the Mannich reaction. The structure and composition of MCCP-PEI are characterized by various advanced microscopy and spectroscopy techniques, and the results show that MCCP-PEI possesses abundant nano-porous structure, strong chelating sites, and excellent hydrophilicity. Besides, the adsorption behavior of MCCP-PEI for heavy metals has been systematically investigated. The results show that the adsorbent can quickly remove toxic Cu(II) and Pb(II) from water within 15 min and 20 min, respectively. The saturated adsorption capacity for Cu(II) and Pb(II) is 250.0 and 534.7 mg·g-1, respectively. X-ray photoelectron spectroscopy analysis combined with Density Functional Theory calculations reveal that the adsorption mechanism is chemical complexation and electrostatic attraction, and the phosphonate group plays a key role in the adsorption process.
Collapse
Affiliation(s)
- Junhua Sun
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Xiuxian Zhao
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China
| | - Riming Hu
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China
| | - Heng Zhao
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China
| | - Wenshuo Liu
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China
| | - Zhushuang Bai
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Xuchuan Jiang
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yu Cui
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
20
|
Zhu J, Li P, Yang B, Lan S, Chen W, Zhu D. Facile fabrication of Fe 3O 4@Mg(OH) 2 magnetic composites and their application in Cu(ii) ion removal. RSC Adv 2023; 13:33403-33412. [PMID: 38025863 PMCID: PMC10644123 DOI: 10.1039/d3ra05961h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we fabricated magnetic Fe3O4@Mg(OH)2 composites through the seed deposition technique to achieve Cu(ii) ion removal from aqueous solutions. As indicated by the characterization results, three-dimensional flower-like spheres composed of external Mg(OH)2 were formed, with nano-Fe3O4 particles uniformly embedded in the "flower petals" of the spheres. The efficacy of Fe3O4@Mg(OH)2-3 in Cu(ii) ion removal was examined through batch experiments. The impact of solution pH on removal efficiency was examined, and the pseudo-second-order model and the Langmuir model provided good fits to the adsorption kinetics and isotherm data, respectively. Remarkably, Fe3O4@Mg(OH)2-3 exhibited a significant removal capacity of 1051.65 mg g-1 for Cu(ii) ions. Additionally, the composite displayed a notable saturation magnetization value of 17.3 emu g-1, facilitating isolation from sample solutions through external magnetic fields after Cu(ii) ion absorption. At the solid-liquid interface, a mechanism involving ion exchange between Mg(ii) and Cu(ii) cations was realized as the mode of Cu(ii) ion removal. The composites' effective adsorption properties and rapid magnetic separation highlighted their suitability for use in treating copper-contaminated water.
Collapse
Affiliation(s)
- Jiachen Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Bowen Yang
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Shengjie Lan
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Weiyuan Chen
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| |
Collapse
|
21
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
22
|
Xu Y, Li Y, Ding Z. Network-Polymer-Modified Superparamagnetic Magnetic Silica Nanoparticles for the Adsorption and Regeneration of Heavy Metal Ions. Molecules 2023; 28:7385. [PMID: 37959804 PMCID: PMC10649225 DOI: 10.3390/molecules28217385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Superparamagnetic magnetic nanoparticles (MNPs, Fe3O4) were first synthesized based on a chemical co-precipitation method, and the core-shell magnetic silica nanoparticles (MSNPs, Fe3O4@SiO2) were obtained via hydrolysis and the condensation of tetraethyl orthosilicate onto Fe3O4 seed using a sol-gel process. Following that, MSNPs were immobilized using a three-step grafting strategy, where 8-hloroacetyl-aminoquinoline (CAAQ) was employed as a metal ion affinity ligand for trapping specific heavy metal ions, and a macromolecular polymer (polyethylenimine (PEI)) was selected as a bridge between the surface hydroxyl group and CAAQ to fabricate a network of organic networks onto the MSNPs' surface. The as-synthesized MSNPs-CAAQ nanocomposites possessed abundant active functional groups and thus contained excellent removal features for heavy metal ions. Specifically, the maximum adsorption capacities at room temperature and without adjusting pH were 324.7, 306.8, and 293.3 mg/g for Fe3+, Cu2+, and Cr3+ ions, respectively, according to Langmuir linear fitting. The adsorption-desorption experiment results indicated that Na2EDTA proved to be more suitable as a desorbing agent for Cr3+ desorption on the MSNPs-CAAQ surface than HCl and HNO3. MSNPs-CAAQ exhibited a satisfactory adsorption capacity toward Cr3+ ions even after six consecutive adsorption-desorption cycles; the adsorption efficiency for Cr3+ ions was still 88.8% with 0.1 mol/L Na2EDTA as the desorbing agent. Furthermore, the MSNPs-CAAQ nanosorbent displayed a strong magnetic response with a saturated magnetization of 24.0 emu/g, and they could be easily separated from the aqueous medium under the attraction of a magnet, which could facilitate the sustainable removal of Cr3+ ions in practical applications.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China;
- Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Yuting Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Lin W, Zhou J, Sun S. Cadmium and lead removal by Mg/Fe bimetallic oxide-loaded sludge-derived biochar: batch adsorption, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86866-86878. [PMID: 37410325 DOI: 10.1007/s11356-023-28574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch adsorption experiments for the removal of Pb(II) and Cd(II) were performed to evaluate the removal efficiency of Mg/Fe layer bimetallic oxide-loaded sludge-derived biochar ((Mg/Fe)LDO-ASB). The physicochemical properties of (Mg/Fe)LDO-ASB and corresponding adsorption mechanisms were studied. The maximum adsorption capacities of (Mg/Fe)LDO-ASB for Pb(II) and Cd(II), which were calculated by isotherm model, were 408.31 and 270.41 mg/g, respectively. Adsorption kinetics and isotherms analysis showed that the dominant adsorption process of Pb(II) and Cd(II) uptake by (Mg/Fe)LDO-ASB was spontaneous chemisorption and heterogeneous multilayer adsorption, and film diffusion was the rate-limiting step. SEM-EDS, FTIR, XRD, and XPS analyses revealed that the Pb and Cd adsorption processes of (Mg/Fe)LDO-ASB involved oxygen-containing functional group complexation, mineral precipitation, electron-π-metal interactions, and ion exchange. The order of their contribution was as follows: mineral precipitation (Pb: 87.92% and Cd: 79.91%) > ion exchange (Pb: 9.84% and Cd: 16.45%) > metal-π interaction (Pb: 0.85% and Cd: 0.73%) > oxygen-containing functional group complexation (Pb: 1.39% and Cd: 2.91%). Mineral precipitation was the main adsorption mechanism, and ion exchange played a crucial role in Pb and Cd adsorption.
Collapse
Affiliation(s)
- Weixiong Lin
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiali Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| |
Collapse
|
24
|
Chen T, Wen X, Li X, He J, Yan B, Fang Z, Zhao L, Liu Z, Han L. Single/co-adsorption and mechanism of methylene blue and lead by β-cyclodextrin modified magnetic alginate/biochar. BIORESOURCE TECHNOLOGY 2023; 381:129130. [PMID: 37149268 DOI: 10.1016/j.biortech.2023.129130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Due to the high biological toxicity, the concurrent elimination of lead (Pb (II)) and methylene blue (MB) has become a challenging problem. Therefore, a newly β-cyclodextrin (β-CD) modified magnetic alginate/biochar (β-CD@MBCP) material was developed. Comprehensive characterizations proved the successful coating of β-CD onto MBCP surface by microwave-aided fabrication. The β-CD@MBCP achieved high-efficiency uptake for contaminants under a wide pH scope. In the dual system, Pb (II) elimination was facilitated with the presence of MB, due to the active sites provided by MB. In the presence of Pb (II), MB uptake was inhibited due to the electrostatic repulsion between positively charged MB and Pb (II). Electrostatic attraction and complexation contributed to capturing Pb (II), while π-π interactions, host-guest effect, and H-bonding were important in MB elimination. After four cycles, β-CD@MBCP maintained comparatively good renewability. Findings demonstrated that β-CD@MBCP could be an effective remediation material for Pb (II)/MB adsorption from aqueous environments.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiehong He
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanqiang Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingzhi Zhao
- GuangDong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Baghersad MH, Maleki A, Khodabakhshi MR. Design and development of novel magnetic Lentinan/PVA nanocomposite for removal of diazinon, malathion, and diclofenac contaminants. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104193. [PMID: 37229922 DOI: 10.1016/j.jconhyd.2023.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Increasing population growth and rapid expansion of the industrialization of the world society have caused severe environmental pollution to the planet. This study was carried out in order to investigate the synthesis of biopolymeric texture nano adsorbent based on the Lentinan (LENT), Poly Vinyl Alcohol (PVA) and Iron Oxide nanoparticles for the removal of environmental pollutants. The spherical structural morphology of Fe3O4@LENT/PVA nanocomposite has been determined by FE-SEM analyses. According to the obtained results from FTIR analyses, all absorption bands of the Fe3O4, LENT, and PVA, had been existed in nanocomposite and approved the successful formation of it. From EDS analysis, it has been revealed that 57.21 wt% Fe, 17.56 wt% C and 25.23 wt% O. Also, the XRD pattern of the nanocomposite, approved the presence of polymeric and magnetic parts with card no. JCPDS, 01-075-0033. The BET analysis has defined specific surface area (47 m2/g) and total pore volume (0.15 cm3/g). Moreover, high heterogeneity and structural stability of the fabricated Fe3O4@LENT/PVA nanocomposite have been proven by TGA. Besides, VSM analysis measured great magnetic property of the nanocomposite (48 emu/g). Also, the Fe3O4@LENT/PVA nanocomposite potential for effective removal of malathion (MA), Diazinon (DA), and Diclofenac (DF) from watery solution has studied by an experiment based on the efficacy of adsorbent dosage, pH, and temperature. The adsorption kinetics of three pollutants had investigated using pseudo-first-order (PFO), pseudo-second-order (PSO) and intra-particle diffusion (IPD) velocity equations, the results showed that the kinetics followed PSO velocity equations. Also, the Langmuir, Freundlich, Dubbin-Radushkevich (D-R) and Temkin isotherm models had investigated, and the adsorption isotherm was adopted from the Langmuir model. The results demonstrated that in the presence of Fe3O4@LENT/PVA nanocomposite, at the optimal conditions (contact time = 180 min, pH = 5, nanocomposite dosage = 0.20 g/L and temperature of 298 K) the maximum adsorption capacity of MA, DF, and DA were 101.57, 153.28, and 102.75 mg/g, respectively. The antibacterial features of the Fe3O4@LENT/PVA nanocomposite, had evaluated by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, but the result did not show any antibacterial activity.
Collapse
Affiliation(s)
- Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Square, Mollasadra Ave, P.O. Box 19945-546, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran.
| | - Mohammad Reza Khodabakhshi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Square, Mollasadra Ave, P.O. Box 19945-546, Tehran, Iran.
| |
Collapse
|
26
|
Chen YJ, Uan JY. The Effect of Lithium Ion Leaching from Calcined Li-Al Hydrotalcite on the Rapid Removal of Ni 2+/Cu 2+ from Contaminated Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091477. [PMID: 37177022 PMCID: PMC10180396 DOI: 10.3390/nano13091477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
A layered double hydroxide (LDH) calcined-framework adsorbent was investigated for the rapid removal of heavy metal cations from plating wastewater. Li-Al-CO3 LDH was synthesized on an aluminum lathe waste frame surface to prepare the sorbent. The calcination treatment modified the LDH surface properties, such as the hydrophilicity and the surface pH. The change in surface functional groups and the leaching of lithium ions affected the surface properties and the adsorption capacity of the heavy metal cations. A zeta potential analysis confirmed that the 400 °C calcination changed the LDH surface from positively charged (+10 mV) to negatively charged (-17 mV). This negatively charged surface contributed to the sorbent instantly bonding with heavy metal cations in large quantities, as occurs during contact with wastewater. The adsorption isotherms could be fitted using the Freundlich model. The pseudo-second-order model and the rate-controlled liquid-film diffusion model successfully simulated the adsorption kinetics, suggesting that the critical adsorption step was a heterogeneous surface reaction. This study also confirmed that the recovered nickel and/or copper species could be converted into supported metal nanoparticles with a high-temperature hydrogen reduction treatment, which could be reused as catalysts.
Collapse
Affiliation(s)
- Yu-Jia Chen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Jun-Yen Uan
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Industrial and Intelligent Technology Degree Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
27
|
Sanei A, Dashtian K, Yousefi Seyf J, Seidi F, Kolvari E. Biomass derived reduced-graphene-oxide supported α-Fe 2O 3/ZnO S-scheme heterostructure: Robust photocatalytic wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117377. [PMID: 36739771 DOI: 10.1016/j.jenvman.2023.117377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The emergence of new diseases and the unplanned industrialization of cities have led to new diseases and the subsequent use of antibiotics. Hence the remediation of wastewater containing antibiotics and their severe pollution has raised serious concerns in recent years. Herein coral-shaped α-Fe2O3/ZnO/reduced graphene oxide (r-GO)-like carbon heterojunction in-situ were prepared from basil seed as a sustainable biomass resource and applied for the photodegradation of the oxytetracycline (OTC) as a typical antibiotic in a helical plug flow photoreactor (HPFPR) via persulfate activation under visible light irradiation. Spectroscopy and electrochemical results confirmed the tunable band structure and quick light absorption, superior charge separation and transfer, satisfactory charge carrier lifetime, and long-term stability for the prepared photocatalyst. The 98% degradation efficiency was achieved for OTC within 90 min fitted by a first-order kinetic model with the rate constant of 0.1248 min-1. The finding proves that HPFPR exhibited a higher degradation rate of OTC by 2.3 times compared to the batch reactor. The 3D computational fluid dynamics (CFD) model confirmed the outstanding performance of the HPFPR. Scavenging experiments integrated with mott Schottky and DRS results revealed that rGO intensifies the S-scheme charge carrier transfer and built-in electric field and reduces the recombination. Finally, this work has substantial potential for the in-situ synthesis of environmental-friendly and large-scale metal oxide heterojunctions in natural carbon supports as well as scale-up and gives novel insights from molecular and engineering points of view into the wastewater remediation processes and clean water production.
Collapse
Affiliation(s)
- Armin Sanei
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran
| | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Jaber Yousefi Seyf
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Eskandar Kolvari
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| |
Collapse
|
28
|
Sajid M, Ihsanullah I. Magnetic layered double hydroxide-based composites as sustainable adsorbent materials for water treatment applications: Progress, challenges, and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163299. [PMID: 37030386 DOI: 10.1016/j.scitotenv.2023.163299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Layered double hydroxides (LDHs) have shown exciting applications in water treatment because of their unique physicochemical properties, which include high surface areas, tunable chemical composition, large interlayer spaces, exchangeable content in interlayer galleries, and ease of modification with other materials. Interestingly, their surface, as well as the intercalated materials within the layers, play a role in the adsorption of the contaminants. The surface area of LDH materials can be further enhanced by calcination. The calcined LDHs can reattain their structural features upon hydration through the "memory effect" and may uptake anionic species within their interlayer galleries. Besides, LDH layers are positively charged within the aqueous media and can interact with specific contaminants through electrostatic interactions. LDHs can be synthesized using various methods, allowing the incorporation of other materials within the layers or forming composites that can selectively capture target pollutants. They have been combined with magnetic nanoparticles to improve their separation after adsorption and enhance adsorptive features in many cases. LDHs are relatively greener materials because they are mostly composed of inorganic salts. Magnetic LDH-based composites have been widely employed for the purification of water contaminated with heavy metals, dyes, anions, organics, pharmaceuticals, and oil. Such materials have shown interesting applications for removing contaminants from real matrices. Moreover, they can be easily regenerated and used for several adsorption-desorption cycles. Magnetic LDHs can be regarded as greener and sustainable because of several green aspects in their synthesis and reusability. We have critically reviewed their synthesis, applications, factors affecting their adsorption performance, and related mechanisms in this review. In the end, some challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Ihsanullah Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
29
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B, Li H, Cao Y, Liu B. Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117163. [PMID: 36603255 DOI: 10.1016/j.jenvman.2022.117163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional groups (such as Fe-O, and Fe-OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of 0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58 mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III) showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution and mine soil.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade, 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
30
|
Li J, Shu Y, Li C, Jiang Z. Highly catalytic nanoenzyme of covalent organic framework loaded starch- surface-enhanced Raman scattering/absorption bi-mode peptide as biosensor for ultratrace determination of cadmium. Front Nutr 2023; 9:1075296. [PMID: 36698455 PMCID: PMC9870315 DOI: 10.3389/fnut.2022.1075296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
High affinity peptides (PTs) have been used in nanoanalysis, but there are no reports which combine PTs with a liquid crystal (LC) covalent organic framework (COF) supported soluble starch (SS) catalytic amplification system as a biosensor recognition element. In this study, a new, highly sensitive and selective bi-mode molecular biosensor has been developed for the determination of cadmium ion (Cd2+). Specifically, a highly catalytic and stable COF supported SS nanosol catalyst was fabricated such that a nanocatalytic indicator reaction system for HAuCl4-sodium formate was established based on surface-enhanced Raman scattering (SERS). The Au nanoparticles produced exhibited a surface plasmon resonance (SPR) absorption peak at 535 nm and a SERS peak at 1,615 cm-1. Combining the nanocatalytic amplification indicator system with the specific PTs reaction permitted a sensitive and selective SERS/absorption bi-mode platform to be developed for the determination of cadmium in rice. The linear range for SERS determination was 0.025-0.95 nmol/L and the detection limit (DL) was 0.012 nmol/L.
Collapse
Affiliation(s)
- Jingjing Li
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
| | - Yiyi Shu
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
| | - Zhiliang Jiang
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
| |
Collapse
|
31
|
Surface magnetized MgAl-LDHs and MgAl-LDO with excellent adsorption capacity and convenient recovery for the removal of U(VI). J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
A graphene-based porous composite hydrogel for efficient heavy metal ions removal from wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
A spiral shape microfluidic photoreactor with MOF(NiFe)-derived NiSe-Fe3O4/C heterostructure for photodegradation of tetracycline: Mechanism conception and DFT calculation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Agarwal M, Singh K. Simultaneous removal of heavy metals and dye from wastewater: modelling and experimental study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:193-217. [PMID: 36640032 DOI: 10.2166/wst.2022.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, heavy metals were removed simultaneously using wheat bran as an adsorbent. For batch experiments, the Box-Behnken design of response surface methodology was used and the effect of dye on metal removal was analysed. It has been observed that the presence of dye has reduced the removal of each metal in the range of 100-20% with no appreciable reduction in dye adsorption. The optimum pH, temperature, and adsorbent dose were found to be 7.59, 33.23 °C, and 2.90 g/L, respectively, for 79.70% chromium, 99.9% cadmium and 87.27% copper removal. It was found that Langmuir isotherm fits well with the experimental data (RMSE value up to 0.033). The maximum adsorption capacity obtained for copper, chromium, cadmium and dye were 2.17 mg/g, 1.76 mg/g, 1.52 mg/g and 3.215 mg/g, respectively. The continuous study was performed for parameters, i.e. bed height (0.15-0.45 m), flow rate (5-15 mL/min) and initial metal concentration (100-500 mg/L). In continuous study, dye acted as an interfering species and as a result breakthrough and exhaustion time decreased. The modelling and simulation of continuous adsorption process were performed. A dynamic mathematical model was developed for continuous fixed bed adsorption column to compare the breakthrough curve with experimental results.
Collapse
Affiliation(s)
- Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, India E-mail:
| | - Kailash Singh
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, India E-mail:
| |
Collapse
|
35
|
Cai D, Li R, Wu Q, Ye J, Guo M, Xu H, Wang D. Fabrication of a waste cotton fabrics-based nanosystem for simultaneous removal of Cu(II) and Pb(II). CHEMOSPHERE 2022; 309:136601. [PMID: 36170924 DOI: 10.1016/j.chemosphere.2022.136601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Herein, a waste cotton fabrics-based nanosystem was fabricated to simultaneously remove copper (Cu(II)) and lead ions (Pb(II)) from water and soil. Therein, carboxyl-functionalized zinc oxide microsphere (ZnO-COOH) with peanut shape was carried by cotton fabric (CF) to get CF/ZnO-COOH nanosystem. CF/ZnO-COOH with a good foldable property possessed a high removal capacity for Cu(II) and Pb(II) via electrostatic attraction and chelation. The result indicated that their removal efficiencies of CF/ZnO-COOH could reach over 95% after 2 h. The adsorption process was consistent with Langmuir (R2 = 0.9905 of Cu(II) and R2 = 0.9846 of Pb(II)) and pseudo-second-order kinetic models (R2 = 0.9999 of Cu(II) and R2 = 0.9999 of Pb(II)). The thermodynamic data showed that the adsorption process was spontaneous and exothermic. Additionally, CF/ZnO-COOH also possessed a high fixation ability for Cu(II) and Pb(II) in sand-soil column, especially for Pb(II) (15 cm, 0.4 μg kg-1). Therefore, this wok provides an environmentally friendly and efficient way to remove Cu(II) and Pb(II) from water and soil concurrently.
Collapse
Affiliation(s)
- Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ruohan Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Minxue Guo
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
36
|
Liang Q, Pan Y, Zhang D, Lü T, Zhao H, Zhang Y. Preparation of bichar/layered double hydroxide@alginate aerogel as a highly efficient adsorbent for
Cu
2+
and
Cd
2+
. J Appl Polym Sci 2022. [DOI: 10.1002/app.53361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qianyong Liang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Ying Pan
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Dong Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Hongting Zhao
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
- School of Environmental and Chemical Engineering Foshan University Foshan People's Republic of China
| | - Yan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco‐Dyeing & Finishing of Textiles Zhejiang Sci‐Tech University Hangzhou People's Republic of China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province Lishui People's Republic of China
| |
Collapse
|
37
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Wang D, Repo E, He F, Zhang X, Xiang H, Yang W, Min X, Zhao F. Dual functional sites strategies toward enhanced heavy metal remediation: Interlayer expanded Mg-Al layered double hydroxide by intercalation with L-cysteine. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129693. [PMID: 36104925 DOI: 10.1016/j.jhazmat.2022.129693] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The discharge of toxic heavy metals poses a serious threat to human health and environment. The existing water purification systems are lack of promising materials for rapid, efficient, and cost-efficient remediation of numerous toxic heavy metals. Herein, we report on the development of L-cysteine (Cys) intercalated Mg-Al layered double hydroxide (MgAl-LDH/Cys) with a loose lamellar porous architecture as an efficient and economically viable adsorbent for Pb(II) and Cd(II) removal. The intercalation with Cys creates dual functionality, i.e., the interlayer expansion accelerates the diffusion of heavy metals, while Cys acts as additional capture sites for heavy metals. Therefore, remarkable high maximum sorption capacities of 279.58 and 135.68 mg g-1 for Pb(II) and Cd(II) were obtained for MgAl-LDH/Cys compared to those for pristine MgAl-LDH (30.15 and 36.77 mg g-1). MgAl-LDH/Cys exhibits also much faster sorption kinetics in comparison with MgAl-LDH. Such enhancements are attributed to the intercalation of the chelating agent Cys in the MgAl-LDH interlayer channels. Moreover, it is proposed that the adsorption mechanisms involve the isomorphous replacement of Mg sites by Cd(II) forming CdAl-LDH, the precipitation of PbS and CdS, and the chelation of sulfhydryl, carboxyl and amine groups toward Cd(II). Altogether, its facile and environmentally friendly fabrication, ultrahigh sorption efficiencies, and rapid kinetics demonstrate that MgAl-LDH/Cys has potential for practical applications in heavy metal remediation.
Collapse
Affiliation(s)
- Danyang Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, FI-53850, Finland
| | - Fangshu He
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaowei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
39
|
High Selectivity and Stability Structure of Layered Double Hydroxide-Biochar for Removal Cd(II). BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.3.14288.520-532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Composite M2+/Al-BC (Ca/Al-BC, Cu/Al-BC, and Ni/Al-BC) have been successfully synthesized. Composite and pristine materials were used as adsorbents of cadmium(II) [Cd(II)] in an aqueous solution. Firstly the performance of composite and pristine materials was evaluated by reusability properties until five cycles adsorption process followed with a determination of isotherms and adsorption thermodynamic properties. The results show composite has ten-fold surface area properties than starting materials. The adsorption capacities of CaAl-BC, CuAl-BC, and NiAl-BC at a temperature of 333 K were 156.250 mg/g, 149.254 mg/g, and 208.333 mg/g, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
40
|
Dong L, Shan C, Liu Y, Sun H, Yao B, Gong G, Jin X, Wang S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711123. [PMID: 36078835 PMCID: PMC9517823 DOI: 10.3390/ijerph191711123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 05/06/2023]
Abstract
A simple method was used to synthesize magnetic xanthate-modified chitosan/polyacrylic acid hydrogels that were used to remove heavy metal ions from an aqueous solution. Xanthate modification of chitosan significantly improved adsorption performance: individual adsorption capacities of the hydrogel for Cu(II), Cd(II), Pb(II), and Co(II) ions were 206, 178, 168, and 140 mg g-1, respectively. The magnetic hydrogels had good regeneration ability and were effectively separated from the solution by use of a magnet. Adsorption kinetic data showed that the removal mechanism of heavy metal ions from the solution by magnetic hydrogels occurs mainly by chemical adsorption. The equilibrium adsorption isotherms were well-described by the Freundlich and Langmuir equations. Positive values were found for the Gibbs standard free energy and enthalpy, indicating an increase in the disorder at the solid-liquid interface during adsorption. Magnetic xanthate-modified chitosan-based hydrogels that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Liming Dong
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Chengyang Shan
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yuan Liu
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hua Sun
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bing Yao
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Guizhen Gong
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiaodong Jin
- Department of Forensic Science and Technology, Jiangsu Police Institute, Nanjing 210031, China
- Correspondence: (X.J.); (S.W.)
| | - Shifan Wang
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
- Correspondence: (X.J.); (S.W.)
| |
Collapse
|
41
|
Zhang X, Zheng J, Jin P, Xu D, Yuan S, Zhao R, Depuydt S, Gao Y, Xu ZL, Van der Bruggen B. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129010. [PMID: 35500345 DOI: 10.1016/j.jhazmat.2022.129010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal ions in drinking water severely threaten public health in various places worldwide. Nanofiltration (NF) membrane technology is an attractive option for heavy metal ions removal; however, improving NF membrane filtration performance is required to make their industrial application viable. In this study, a positively charged THPC/PEI-TMC NF membrane was designed via simple one-step incorporation of Tetrakis (hydroxymethyl) phosphonium chloride (THPC) biocide on the surface of PEI-TMC membranes, significantly optimizing surface morphology, roughness, hydrophilicity, and zeta potential of PEI-TMC membranes. It was found that the pure water permeability (11.6 Lm-2h-1bar-1) of the THPC modified membrane was three times larger than that of the original PEI-TMC membrane (3.4 Lm-2h-1bar-1) while maintaining a high level of ion rejections (around 95% for Zn2+, Cd2+, Ni2+, Cu2+ and about 90% for Pb2+). Additionally, the incorporation of the THPC on the original PEI-TMC membrane surface also conferred good antibacterial properties, which protect the organic membrane from bacterial growth and prolong the lifespan of the membrane.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Daliang Xu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin, 1550090, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Stef Depuydt
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yujie Gao
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
42
|
Sun Z, Ge J, Li C, Wang Y, Zhang F, Lei X. Enhanced improvement of soda saline-alkali soil by in-situ formation of super-stable mineralization structure based on CaFe layered double hydroxide and its large-scale application. CHEMOSPHERE 2022; 300:134543. [PMID: 35405195 DOI: 10.1016/j.chemosphere.2022.134543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
In-situ super-stable mineralization technology with mineralizers (CaSO4, Fe2(SO4)3) and attapulgite (ATP) clay were applied to improve soda saline-alkali soil. The addition of mineralizers and the existence of OH and CO32- in soil resulted in the formation of CaFe-layered double hydroxide (CaFe-LDH) with super-stable mineralization structure (Ksp = 1.512 × 10-61), which was confirmed by the characterization of physicochemical properties and density functional theory (DFT) calculation. The fixation of OH- and CO32- during the formation process of CaFe-LDH led to the transformation of the existing forms of OH- and CO32- in soil from free to stable state, resulting in the permanent decrease of soil pH and CO32- concentration. The effect of ATP clay on the decrease of soluble Na ions in soil through electrostatic attraction and cation exchange was also indicated. Furthermore, mineralizers (1.2 t/ha CaSO4 and 0.75 t/ha Fe2(SO4)3) and ATP clay (1.2 t/ha) were applied to 1.33 ha soda saline-alkali land, and Rumex patientia L. was seeded meanwhile for the identification of improved performance. After five months of improvement, the physical and chemical properties of soil were improved that pH, electrical conductivity (EC), the concentration of CO32- and soluble Na ions, and soil bulk density decreased significantly. In addition, the emergence rate of Rumex patientia L. increased from 0% to 98.3%. All above indicated that in-situ super-stable mineralization technology with the properties of high efficiency, long-term and cost-effective (234.88 $/ha) displays excellent potential in the improvement of soda saline-alkali soil.
Collapse
Affiliation(s)
- Zewen Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
43
|
Liu J, Zhou J, Wu Z, Tian X, An X, Zhang Y, Zhang G, Deng F, Meng X, Qu J. Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β-cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128758. [PMID: 35395706 DOI: 10.1016/j.jhazmat.2022.128758] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Coexistence of heavy metals and endocrine disrupting compounds in polluted water with competitive adsorption behavior necessitates design of tailored adsorbents. In this work, β-cyclodextrin modified magnetic rice husk-derived cellulose (β-CD@MRHC) which can provide independent functional sites for effectively binding the above two types of contaminants was synthesized and used for Pb(II) and BPA elimination in both unit and multivariate systems. Characterizations results confirmed successful β-CD grafting and Fe3O4 loading, and the β-CD@MRHC had excellent magnetic property for its effectively recovery from water, which was not affected by the adsorption of pollutants. The β-CD@MRHC possessed superior adsorption performance with maximal Pb(II)/BPA uptake of 266.2 or 412.8 mg/g, severally, and the adsorption equilibrium was fleetly reached in 30 and 7.5 min. Moreover, the β-CD@MRHC could accomplish synergetic Pb(II) and BPA elimination through averting their competitive behaviors owing to diverse capture mechanisms for Pb(II) (ion exchange, complexation and electrostatic attraction) and BPA (hydrogen bonding and host-guest inclusion). Furthermore, after three cycles of step-wise desorption, the binding of Pb(II) as well as BPA byβ-CD@MRHC dropped slightly in dualistic condition. In summary, β-CD@MRHC was a promising tailored adsorbent to practical application for simultaneously removing heavy metals and organic matters from wastewater with high-performance magnetic recovery.
Collapse
Affiliation(s)
- Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianlin Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianhua Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
44
|
Alboghbeish M, Larki A, Saghanezhad SJ. Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology. Sci Rep 2022; 12:9658. [PMID: 35688868 PMCID: PMC9187642 DOI: 10.1038/s41598-022-13959-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
In this research, the piperazine-modified magnetic graphene oxide (Pip@MGO) nanocomposite was synthesized and utilized as a nano-adsorbent for the removal of Pb(II) ions from environmental water and wastewater samples. The physicochemical properties of Pip@MGO nanocomposite was characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDAX), Thermo-gravimetric analysis (TGA), Vibrating Sample Magnetometery (VSM) and Fourier-transform infrared spectroscopy (FT-IR) analysis. In this method, the batch removal process were designed by response surface methodology (RSM) based on a central composite design (CCD) model. The results indicated that the highest efficiency of Pb(II) removal was obtained from the quadratic model under optimum conditions of prominent parameters (initial pH 6.0, adsorbent dosage 7 mg, initial concentration of lead 15 mg L−1 and contact time 27.5 min). Adsorption data showed that lead ions uptake on Pip@MGO nanocomposite followed the Langmuir isotherm model equation and pseudo-second order kinetic model. High adsorption capacity (558.2 mg g−1) and easy magnetic separation capability showed that the synthesized Pip@MGO nanocomposite has great potential for the removal of Pb(II) ions from contaminated wastewaters.
Collapse
Affiliation(s)
- Mousa Alboghbeish
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | | |
Collapse
|
45
|
Shu Y, Zhi S, Li S, Liang A, Jiang Z. A new peptide-mediated COF nanocatalytic amplification SERS quantitative assay for ultratrace Cu2+. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Chen M, Yu M, Kang R, Sun H, Zhang W, Wang S, Wang N, Wang J. Removal of Pb (II) and V (V) from aqueous solution by glutaraldehyde crosslinked chitosan and nanocomposites. CHEMOSPHERE 2022; 297:134084. [PMID: 35219708 DOI: 10.1016/j.chemosphere.2022.134084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
In this paper, new adsorbents with high mechanical strength chitosan-graphene oxide (CS-GO) and chitosan-titanium dioxide (CS-TiO2) were synthesized by using glutaraldehyde as crosslinking agent, and the adsorption behavior of Pb (II) and V (V) on them were investigated. The materials were characterized by scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial metal ion concentration and contact time on the removal of V (V) and Pb (II) by CS-GO and CS-TiO2 were investigated. Characterization results showed that the hydroxyl group of GO/TiO2 reacted with the amino group of chitosan. A comparison of the kinetic models against experimental data showed that the kinetics react system was best described by the pseudo-second-order model. indicating that chemical adsorption was the main adsorption force. the Langmuir adsorption model and Freundlich model agreed well with the experimental data. The removal capacity of Pb (II) by CS-GO and CS-TiO2 were lower than those of V (V). The uncross-linked -OH and CO were the main adsorptive sites for Pb (II) removal, while uncross-linked -OH and -NH2 played an important role in removing V (V). These findings provided insights on the removing lead and vanadium pollution.
Collapse
Affiliation(s)
- Menghua Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Mengdie Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Runfeng Kang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, PR China.
| | - Wang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Tianjin, 300191, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an, Shandong, 271000, PR China
| |
Collapse
|
48
|
Bilgiç A, Karapınar HS. APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions. Heliyon 2022; 8:e09645. [PMID: 35706942 PMCID: PMC9189893 DOI: 10.1016/j.heliyon.2022.e09645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/17/2023] Open
Abstract
Fe3O4@SiO2-3-aminopropyltrimethoxysilane-1,8-bis (3-chloropropoxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The structure of the adsorbent was characterized by FTIR, XRD, SEM, EDX, and TEM analysis. Optimum conditions for Cu(II) adsorption were determined as adsorbent dose 0.04 g, pH 5.0, contact time 120 min, and beginning concentration of 30 mg/L in the adsorption process. The adsorption capacity for Cu(II) ions was 43.67 mg/g and the removal efficiency was 84.72 percent. The Langmuir isotherm and the pseudo-second-order model fit the experimental data better. Adsorption was a spontaneous and endothermic process based on the obtained thermodynamic properties such as ΔG°, ΔH°, and ΔS°. The results showed that the sorbent has good selectivity in the presence of competing ions. The method was determined to be accurate and effective using real water samples and CRM. Magnetic Fe3O4@SiO2-3-aminopropyl-trimethoxysilane-1,8-bis(3-chloropro-poxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The results showed that the presence of competitor ions did not have a significant effect on the sorption of Cu(II) ion and the sorbent had good selectivity. Using real water samples and CRM, the method was found to be accurate and effective.
Collapse
Affiliation(s)
- Ali Bilgiç
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
49
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
50
|
Sasidharan R, Kumar A. Magnetic adsorbent developed with alkali-thermal pretreated biogas slurry solids for the removal of heavy metals: optimization, kinetic, and equilibrium study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30217-30232. [PMID: 35000179 DOI: 10.1007/s11356-021-18485-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Discharge of effluents containing heavy metal without adequate treatment causes contamination of water resources and creates environmental and health issues. Adsorption could be applied to remediate heavy metals from wastewater effectively. In this study, a low-cost adsorbent was prepared by magnetic modification of pretreated biogas slurry solids (BSS) to remove heavy metals such as Cu2+, Cd2+, and Pb2+. The temperature (423 K) and time (1.5 h) of pretreatment, the BSS to KOH ratio (1:10 w/v), and the ratio of magnetic iron nanoparticle (MIN) to pretreated BSS (PSS) (1:2 w/w) were optimized for the preparation of adsorbent. The magnetically modified pretreated biogas slurry solid (MMPSS) adsorbent was characterized by BET isotherm, FTIR, XRD, FESEM, VSM, and EDX analysis. MMPSS attained equilibrium at 60 min and showed an adsorption capacity of 26.84 mg/g, 24.79 mg/g, and 23.86 mg/g with removal percentages 89.46%, 82.63%, and 79.54% for Cu2+, Cd2+, and Pb2+, respectively, at 310 K and pH 6 with an initial concentration of 150 mg/L. The adsorption process followed a pseudo second-order model with an R2 value above 0.9 for all metals with a well-approaching equilibrium pattern. The good fit of experimental data by the Langmuir isotherm model implied monolayer adsorption. The metal ions adsorbed onto MMPSS were able to desorb effectively in the presence of HCl and retained 83.01%, 84.66%, and 81.83% of the initial adsorption capacity for Cu2+, Cd2+, and Pb2+ respectively after 5 consecutive cycles.
Collapse
Affiliation(s)
- Roshini Sasidharan
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008.
| | - Arvind Kumar
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008
| |
Collapse
|