1
|
Liu H, Pang H, Yang X, Guo W, Xi H, Ji X, Li L, Meng F. Efficient solar-driven freshwater generation through an inner hierarchical porous metal-carbon layer bridging synergistic photothermal evaporation and adsorption photodegradation. MATERIALS HORIZONS 2024; 11:5740-5751. [PMID: 39259046 DOI: 10.1039/d4mh00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Solar-driven interfacial evaporation has emerged as a promising avenue for clean water production, leveraging solar energy to extract water vapor from salty and polluted water sources. However, a critical challenge remains, during the photothermal evaporation process, organic pollutants and small water-soluble molecules can transfer into distilled steam, degrading the purity of the collected water. Herein, we develop a multifunctional clean water generation system that integrates photothermal conversion, adsorptive filtration and subsequent photocatalytic purification within a unified platform. This system features an inner hierarchical porous metal-carbon layer derived from ZIF-67 carbonization, seamlessly bridging a wood carbon scaffold and BiOBr nanosheets (BiOBr@ZCW) to smoothly facilitate synergistic actions between photothermal evaporation and adsorption-photodegradation processes. This BiOBr@ZCW configuration not only minimizes thermal dissipation, facilitating a high evaporation rate of 1.67 kg m-2 h-1 and an efficiency of 85% under standard solar irradiation but also enhances the photocatalytic degradation of the rhodamine B organic pollutant with a remarkable 98.43% degradation rate within just 20 minutes. This integrated system offers a robust solution to the challenges of water purification by ensuring both high efficiency in solar steam generation and effective pollutant degradation.
Collapse
Affiliation(s)
- Haoyu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Huaipeng Pang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Xinyu Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Wenhao Guo
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Hongyan Xi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Xueli Ji
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Fanlu Meng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Li Y, Peng H, Li H, Ma Q, Zhang X, Chen Q, Li JR. Elimination of Trace Tetracycline with Alkyl Modified MIL-101 in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405436. [PMID: 39221638 DOI: 10.1002/smll.202405436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The overuse of antibiotics poses a serious threat to human health and ecosystems. Therefore, the development of high-performance antibiotic removal materials has attracted increasing attention. However, the adsorption and removal of trace amounts of antibiotics in aqueous systems still face significant challenges. Taking tetracycline (TC) as a representative antibiotic and based on its structural characteristics, a series of TC adsorbents are prepared by grafting alkyl groups to the framework of MIL-101(Cr). The adsorptive capacity of the modified materials for tetracycline markedly surpasses that of MIL-101(Cr), with MIL-101-dod achieving the best adsorption performance. MIL-101-dod demonstrated an outstanding ability to adsorb tetracycline at low concentrations, where a 5.0 mg sample of MIL-101-dod can reduce the concentration of a 90 mL 5 ppm tetracycline solution to below 1 ppb, significantly superior to other sorbents. XPS and IR tests indicate that MIL-101-dod has multiple weak interactions with tetracycline molecules, including C─H…O and C─H…π. This work provides theoretical and experimental support for the development of adsorbents for low-concentration antibiotics.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haoxin Peng
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Heming Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qianhui Ma
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
3
|
Qiao Z, Liu Y, Hou S, Bai Y, Zhen S, Yang S, Xu H. Spherical fluorinated covalent organic polymer for highly efficient and selective extraction of fipronil and its metabolites in soil. Talanta 2024; 274:126033. [PMID: 38581855 DOI: 10.1016/j.talanta.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 μm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel μ-matrix cartridge extraction-online-μ-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.
Collapse
Affiliation(s)
- Zhaoyu Qiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Zhen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Quan X, Yan B. In situ construction of covalent-organic framework on hydrogen-bond organic framework: Fluorescence detection and removal of 4-nitrophenol and metamitron in aqueous media. J Colloid Interface Sci 2024; 674:862-872. [PMID: 38955017 DOI: 10.1016/j.jcis.2024.06.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
A multifunctional COF@HOF (ETTA-DFP@TCBP-HOF) composite is prepared by adding red-fluorescent ETTA-DFP COF to the blue-fluorescent TCBP-HOF preparation system through molecular hydrogen bonding or π - π stacking interactions in situ one-pot synthesis. ETTA-DFP@TCBP-HOF is a multifunctional material for the quantitative detection and simultaneous adsorption of 4-nitrophenol (4-NP) and metamitron (MET) in aqueous solution. As a dual-emission fluorescent sensor, the ETTA-DFP@TCBP-HOF has both fluorescence of TCBP-HOF at 474 nm and ETTA-DFP COF at 592 nm, which shows a ratiometric response to 4-NP and MET with high selectivity, good sensitivity, good anti-interference performance and fast response. As a adsorbent, ETTA-DFP@TCBP-HOF displays rapid adsorption kinetics, and acceptable adsorption capacity for 4-NP and MET. In conclusion, this work constructs a novel multifunctional hybrid material with dual-emission center of HOF and COF, which can not only be used as a ratiometric fluorescent probe for detection, but also for removal of hazardous pollutants, suggesting a new strategy for environmental remediation and human health.
Collapse
Affiliation(s)
- Xueping Quan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
5
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Sharma P, Naithani S, Yadav V, Sangeeta, Guchhait B, Kumar S, Goswami T. Indium nanocubes based recyclable fluorescent chemosensor for sustainable environmental monitoring: pH-induced fluorescence transition and selective detection of Pd(II) ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171043. [PMID: 38369158 DOI: 10.1016/j.scitotenv.2024.171043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Rapid modern industrialization and urbanization have escalated heavy metal pollution, with palladium (Pd2+) raising significant concerns due to its extensive usage in catalysis, hydrogen storage, and electronics, thereby imposing substantial risks on the environment and human health. In this study, we report a highly fluorescent indium nanocubes based chemosensor (InNCs) functionalized with perylene tetracarboxylic acid (PTCA) and 4-(pyridyl)ethenyl benzene (PEB). The InNCs exhibited emission maximum at 415 nm (λex ∼ 350 nm) with robust chemical and photo-stability, and acted as a fluorogenic probe for selective recognition of Pd2+ in aqueous medium. The fluorescence sensing properties of InNCs were thoroughly assessed via different techniques including steady-state absorption, emission and time-resolved emission spectroscopic methods. Among the various competitive analytes, only Pd2+ could induce a significant fluorescence quenching in the probe. This "turn-off" fluorescence sensing demonstrated a remarkably low LoD of ∼65 nM. Notably, with the addition of EDTA, the probe displayed good recyclability upto 4 cycles. The sensory probe was successfully employed as a reusable platform to estimate Pd(II) in different real water and soil samples with considerable accuracy (∼ 5-10 % error). Moreover, the probe exhibited a pH-induced fluorescence transition, indicating its potential to be applied as a pH sensor. The Pd(II) binding and pH-sensing mechanisms have also been elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Vikas Yadav
- Nanoscopic Imaging and Sensing Lab, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sangeeta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sushil Kumar
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
7
|
Yang X, Zeng P, Zhou Y, Wang Q, Zuo J, Duan H, Hu Y. High-performance, large-area flexible SERS substrates prepared by reactive ion etching for molecular detection. NANOTECHNOLOGY 2024; 35:245301. [PMID: 38478979 DOI: 10.1088/1361-6528/ad3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
In the realm of molecular detection, the surface-enhanced Raman scattering (SERS) technique has garnered increasing attention due to its rapid detection, high sensitivity, and non-destructive characteristics. However, conventional rigid SERS substrates are either costly to fabricate and challenging to prepare over a large area, or they exhibit poor uniformity and repeatability, making them unsuitable for inspecting curved object surfaces. In this work, we present a flexible SERS substrate with high sensitivity as well as good uniformity and repeatability. First, the flexible polydimethylsiloxane (PDMS) substrate is manually formulated and cured. SiO2/Ag layer on the substrate can be obtained in a single process by using ion beam sputtering. Then, reactive ion etching is used to etch the upper SiO2layer of the film, which directly leads to the desired densely packed nanostructure. Finally, a layer of precious metal is deposited on the densely packed nanostructure by thermal evaporation. In our proposed system, the densely packed nanostructure obtained by etching the SiO2layer directly determines the SERS ability of the substrate. The bottom layer of silver mirror can reflect the penetrative incident light, the spacer layer of SiO2and the top layer of silver thin film can further localize the light in the system, which can realize the excellent absorption of Raman laser light, thus enhancing SERS ability. In the tests, the prepared substrates show excellent SERS performance in detecting crystalline violet with a detection limit of 10-11M. The development of this SERS substrate is anticipated to offer a highly effective and convenient method for molecular substance detection.
Collapse
Affiliation(s)
- Xing Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Qingyu Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jiankun Zuo
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| |
Collapse
|
8
|
Gong C, Chen B, Xing Y, Zhao H. Metal-pyrimidine nanocubes immobilized enzymes with pH-switchable multienzyme-like activity for broad-pH-responsive sensing assay for organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132849. [PMID: 37898085 DOI: 10.1016/j.jhazmat.2023.132849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Peroxidase (POD)-like can only function in acidic environments and the pH mismatch restricts the application of enzyme-nanozyme cascade catalytic sensing platforms in the broad-pH-responsive assay for organophosphorus pesticides (OPs). Herein, the metal-pyrimidine nanocubes (MPNCs) with intrinsic pH-switchable POD-like and catalase (CAT)-like properties were synthesized via the coordination of pyrimidin-2-ol with Cu2+. Meanwhile, acetylcholinesterase (AChE) and choline oxidase (CHO) were simultaneously encapsulated in MPNCs to construct an enzyme-nanozyme cascade catalytic platform (AChE/CHO@MPNCs). AChE/CHO@MPNCs could catalyze the hydrolysis of acetylcholine to choline, which was subsequently converted to H2O2. The POD-like activity of MPNCs was dominant under acidic conditions, while the CAT-like activity prevailed under neutral and alkaline conditions, which could catalyze H2O2 to •OH and O2, respectively, then oxidizing dopamine (DA) to polydopamine quantum dots (PDA QDs) with different fluorescence characteristics. Consequently, OPs could be detected in a linear range from 0.05 to 1000 nM with a LOD of 0.015 nM in acidic environments and a linear range from 0.05 to 500 nM with a LOD of 0.023 nM in alkaline environments. Overall, our work expands the horizon of constructing enzyme@MOFs composites with high catalytic activity. Meanwhile, the intrinsic pH-switchable multienzyme-like property opens avenues to construct sensing platforms with broad-pH-responsive for OPs and other analytes detection.
Collapse
Affiliation(s)
- Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yifei Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Navia Mendoza JM, Rivadeneira Mendoza BF, Cevallos Mendoza J, Balu AM, Luque R, Zambrano Intriago LA, Rodríguez-Díaz JM. MIL-53(Al)@HC nanohybrid for bicomponent adsorption of ibuprofen and metsulfuron-methyl: Application of macro- and microscopic models and competition between contaminants. ENVIRONMENTAL RESEARCH 2024; 240:117492. [PMID: 37944690 DOI: 10.1016/j.envres.2023.117492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
In this work, a hybrid was synthesized by hydrothermal treatment, metal-organic framework functionalized with hydrochar (MIL-53(Al)@HC) for the adsorption of two organic molecules Ibuprofen sodium salt and Metsulfuron-methyl, in binary system. The hybrid is composed of 71 wt% biomass and 29 wt% MOF. TGA, BET, FTIR, XRD and XPS characterization techniques were used to verify the hybridization of MIL-53(Al)@HC. The MIL-53(Al)@HC hybrid showed in situ MIL-53(Al) crystal growth capability. Batch adsorption experiments were carried out to study the effect of pH, adsorbent dosage, adsorbate concentration, contact time and temperature effect. The results obtained under extreme conditions demonstrate that MIL-53(Al)@HC is an adsorbent capable of removing >98% of IBU and MTM in mixture at a concentration of 0.3 mM (68 ppm IBU and 115 ppm MTM). The pseudo-second order model adequately described the adsorption kinetics and equilibrium using the Sips and Freundlich models. The physico-statistical microscopic model (2-layer) corroborated the hypothesis of a multilayer adsorption proposed by the macroscopic Freundlich model. In the competition study between IBU and MTM, both antagonistic and synergistic effects were observed. In the thermodynamic study, positive values of (ΔH°) indicate that adsorption is endothermic in nature and that the dominant mechanism is physisorption. A mechanism of adsorption by hydrogen bridging and non-covalent π*-π adsorbate-adsorbate and adsorbate-adsorbate-adsorbate interactions was proposed. The desorption study shows that in 5 washing cycles MIL-53(Al)@HC is a recoverable material.
Collapse
Affiliation(s)
- Jennifer María Navia Mendoza
- Facultad de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Bryan Fernando Rivadeneira Mendoza
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Jaime Cevallos Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Alina M Balu
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Rafael Luque
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation
| | - Luis Angel Zambrano Intriago
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
10
|
Li L, Zhang T, Zhang L, Li W, Xu T, Wang L, Liu C, Li W, Li J, Lu R. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram. NANOTECHNOLOGY 2023; 35:105601. [PMID: 38035399 DOI: 10.1088/1361-6528/ad115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The surface-enhanced Raman scattering (SERS) is an effective spectral technology based on Raman scattering, but in practice, the commonly used SERS substrates suffer from low sensitivity and poor stability. In order to overcome these limitations, the SERS substrates were prepared from hydrophobic modification of dodecanethiol (C12) coupled with a flexible substrate, which was then used for pesticides detection in water. A flexible PA@Ag-C12 substrate with surface functionalization has been obtained. This work aims to investigate the self-assembly of Ag NPs modified with C12 onto polyamide (PA) membranes. Initially, transmission electron microscopy and scanning electron microscopy were used to analyze the substrate's morphology. Then with the help of an energy-dispersive spectrometer, sulfur content of C12-modified Ag NPs was analyzed. In order to determine the hydrophobicity of the modified Ag NPs, the contact angle was used. The results indicate that the gap between Ag NPs on PA membrane can be effectively controlled in order to prevent Ag NPs from aggregating. Furthermore, the finite-difference time-domain analysis indicated that the PA@Ag-C12 substrate exhibited a stronger electromagnetic enhancement effect than the PA@Ag substrate. By reducing NPs gaps on the PA membrane, the number of 'hot spots' increased, and the SERS performance of the substrate was improved as a result. According to the results of this study, this method can greatly reduce the manufacturing costs and time costs of the SERS substrate while maintaining the original uniformity. The SERS performance of PA@Ag-C12 was found to be three orders of magnitude better than that of PA@Ag direct self-assembled substrate, and the detection limit for Rhodamine 6G (R6G) was approximately 8.47 × 10-14M. On the basis of the PA@Ag-C12 substrate, thiram is detectable at a detection limit of 5.88 × 10-11M with a high degree of sensitivity and repeatability.
Collapse
Affiliation(s)
- Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wei Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tao Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
11
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
12
|
Zeng P, Zheng M, Chen H, Chen G, Shu Z, Chen L, Liang H, Zhou Y, Zhao Q, Duan H. Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111733. [PMID: 37299638 DOI: 10.3390/nano13111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Seeking sensitive, large-scale, and low-cost substrates is highly important for practical applications of surface-enhanced Raman scattering (SERS) technology. Noble metallic plasmonic nanostructures with dense hot spots are considered an effective construction to enable sensitive, uniform, and stable SERS performance and thus have attracted wide attention in recent years. In this work, we reported a simple fabrication method to achieve wafer-scale ultradense tilted and staggered plasmonic metallic nanopillars filled with numerous nanogaps (hot spots). By adjusting the etching time of the PMMA (polymethyl methacrylate) layer, the optimal SERS substrate with the densest metallic nanopillars was obtained, which possessed a detection limit down to 10-13 M by using crystal violet as the detected molecules and exhibited excellent reproducibility and long-term stability. Furthermore, the proposed fabrication approach was further used to prepare flexible substrates; for example, a SERS flexible substrate was proven to be an ideal platform for analyzing low-concentration pesticide residues on curved fruit surfaces with significantly enhanced sensitivity. This type of SERS substrate possesses potential in real-life applications as low-cost and high-performance sensors.
Collapse
Affiliation(s)
- Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Hao Chen
- Jihua Laboratory, Foshan 528000, China
| | | | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Beijing 100084, China
| | - Qian Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| |
Collapse
|
13
|
Qi Y, Zheng C, Cai Z, Cheng Z, Yu T, Li XX, Fan S, Feng YS. 3D Lanthanide Neodymium Porphyrin Metal-Organic Framework for Photocatalytic Oxidation of Styrene. Inorg Chem 2023; 62:8315-8325. [PMID: 37192403 DOI: 10.1021/acs.inorgchem.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel three-dimensional lanthanide porphyrin-based MOF (Nd-PMOFs) was synthesized by using tetracarboxyphenyl porphyrin as the ligand and the lanthanide Nd as the coordination metal. Its specific crystal structure information was obtained by single-crystal diffraction with the space group C2/c and the empirical formula C72H45N6Nd2O15.25. This new Nd porphyrin-based MOF with an organic framework formed by a unique coordination method enables the effective separation of photogenerated electrons and holes under photoluminescence, giving it excellent photocatalytic property which could be verified by the characterization data. The photocatalytic performance was examined by taking tert-butyl hydroperoxide as the oxidant and Nd-PMOFs as the catalyst for photocatalytic oxidation of styrene to benzaldehyde with 91.4% conversion and 81.2% benzaldehyde selectivity under optimal reactions, which surpasses most of the results reported in the literature. Several styrenes with other substituents were screened to explore the general applicability of Nd-PMOF for photocatalysis of styrene, among which Nd-PMOFs also exhibited excellent photocatalytic performance. This work offers the possibility to apply lanthanide organometallic frameworks, which are widely used in fluorescent materials, to photocatalysis. In addition, it also provides a new method for the catalytic generation of benzaldehyde from styrene that is consistent with the needs of modern green development.
Collapse
Affiliation(s)
- Yuxuan Qi
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Chenglong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhiquan Cai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhifei Cheng
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Tinghao Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
14
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
15
|
Liang N, Hu X, Zhang X, Li W, Guo Z, Huang X, Li Z, Zhang R, Shen T, Zou X, Shi J. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal-Organic Frameworks as Response Signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7584-7592. [PMID: 37139942 DOI: 10.1021/acs.jafc.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel ratiometric sensor using an electrochemically active metal-organic framework of Mo@MOF-808 and NH2-UiO-66 as response signals was developed to detect tetracycline (TET) in ultratrace quantities. To achieve the dual-response strategy, Mo@MOF-808, with a reduction peak at -1.06 V, and NH2-UiO-66, with an oxidation peak at 0.724 V, were used as signal probes directly. Concretely, Mo@MOF-808, single-stranded DNA (ssDNA), and complex system (Apt@NH2-UiO-66) of aptamer (Apt) and NH2-UiO-66 were sequentially immobilized on the electrode. With the addition of TET, Apt was hybridized with TET and Apt@NH2-UiO-66 was detached from the electrode, resulting in an increase in the current at -1.06 V and a decrease in the current at 0.724 V. Through this strategy, the sensor achieved a wide linear range (0.1-10000 nM) and a low limit of detection (0.009792 nM) for TET. Moreover, the ratiometric sensor exhibited better sensitivity, reproducibility, and stability than a single-signal sensor. Furthermore, the constructed sensor was successfully applied to detect TET in milk samples, suggesting excellent application prospects.
Collapse
Affiliation(s)
- Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Roujia Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Instrumental Analysis Center, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
16
|
Zhao W, Feng K, Zhang H, Han L, He Q, Huang F, Yu W, Guo F, Wang W. Sustainable green conversion of coal gangue waste into cost-effective porous multimetallic silicate adsorbent enables superefficient removal of Cd(II) and dye. CHEMOSPHERE 2023; 324:138287. [PMID: 36871800 DOI: 10.1016/j.chemosphere.2023.138287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Converting solid wastes into new materials for wastewater decontamination is a feasible "one stone, three birds" strategy to achieve sustainable value-added utilization of resources and minimize waste emissions, but significant challenges remain. In response to this, we proposed an efficient "mineral gene reconstruction" method to synchronously transform coal gangue (CG) into a green porous silicate adsorbent without using any harmful chemicals (i.e., surfactants, organic solvents). The one of the synthesized adsorbents with a high specific surface area (582.28 m2/g) and multimetallic active centres shows outstanding adsorption performance (adsorption capacities: 168.92 mg/g for Cd(II), 234.19 mg/g for methylene blue (MB); removal rate: 99.04% for Cd(II) and 99.9% for MB). The adsorbent can also reach a high removal rate of 99.05%∼99.46% and 89.23%∼99.32% for MB and Cd(II) in real water samples (i.e., Yangtze River, Yellow River, seawater and tap water), respectively. After 5 adsorption-desorption cycles, the adsorption efficiency remained above 90%. The adsorbents mainly adsorbed Cd(II) by electrostatic attraction, surface complexation and partial ion exchange and MB by electrostatic and hydrogen bonding interactions. This study provides a sustainable and promising platform for developing a new-generation cost-efficient adsorbent from waste for clean water production.
Collapse
Affiliation(s)
- Wenting Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ke Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fei Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wenmeng Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
17
|
Wang CY, Qin JC, Yang YW. Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37037783 DOI: 10.1021/acs.jafc.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytopathogen, pest, weed, and nutrient deficiency cause severe losses to global crop yields every year. As the core engine, agrochemicals drive the continuous development of modern agriculture to meet the demand for agricultural productivity and increase the environmental burden due to inefficient use. With new advances in nanotechnology, introducing nanomaterials into agriculture to realize agrochemical accurate and targeted delivery has brought new opportunities to support the sustainable development of green agriculture. Metal-Organic frameworks (MOFs), which weave metal ions/clusters and organic ligands into porous frameworks, have exhibited significant advantages in constructing biotic/abiotic stimuli-responsive nanoplatforms for controlled agrochemical delivery. This review emphasizes the recent developments of MOF-based nanoplatforms for crop protection, including phytopathogen, pest, and weed control, and crop growth promotion, including fertilizer/plant hormone delivery. Finally, forward-looking perspectives and challenges on MOF-based nanoplatforms for future applications in crop protection and growth promotion are also discussed.
Collapse
Affiliation(s)
- Chao-Yi Wang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jian-Chun Qin
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
18
|
Wang X, Zhu X, Tao Y, Zhang E, Ren X. ZnO nanorods decorated with Ag nanoflowers as a recyclable SERS substrate for rapid detection of pesticide residue in multiple-scenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122277. [PMID: 36592591 DOI: 10.1016/j.saa.2022.122277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pesticide residues threaten the ecological environment and human health. Therefore, developing high performance SERS substrate to achieve highly sensitive detection of pesticide residues is meaningful. In this study, based on the strategy of combining "hot spots" engineering and material hybridization, we construct a novel hybrid SERS substrate by depositing Ag nanoflowers (NFs) on ZnO nanorods (NRs). Benefiting from the synergistic effect of electromagnetic enhancement and charge transfer effect, the Ag NFs@ZnO NRs substrate exhibits a low detection limit (10-13 M) for crystal violet molecules. This SERS substrate has good uniformity with a relative standard deviation of 7.463 %. Besides, owning to the photocatalytic property of ZnO NRs, the hybrid substrate can degrade probe molecules after SERS detection and realize recyclability. As a demonstration, we employed our SERS substrate for the trace detection of pesticide residues on apple surface and in river water. This study provides a new idea for improving the SERS performance of hybrid substrates.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Erjin Zhang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
19
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
20
|
Wang J, Zhang J, Song Y, Xu X, Cai M, Li P, Yuan W, Xiahou Y. Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43950-43961. [PMID: 36680722 DOI: 10.1007/s11356-023-25420-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the present research work, a highly recyclable catalyst of Ag-based agarose (HRC-Ag/Agar) hydrogel was successfully fabricated through a simple and efficient in situ reduction method without the aid of additional surface active agent. The interaction between the rich hydroxyl functional (-OH) groups in agarose and Ag can effectively control the growth and dispersion of Ag nanoparticles (NPs) in the HRC-Ag/Agar hydrogel and keep Ag NPs free from chemical contamination, which also guarantees the reusability of HRC-Ag/Agar hydrogel as catalysts. HRC-Ag/Agar hydrogel without freeze drying and calcination was investigated for their potential applications as highly active/recyclable catalysts in reducing aromatic organic pollutants (p-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (RhB)) by KBH4. The optimal HRC-Ag/Agar-1.9 hydrogel can complete the catalytic reduction of 4-NP within 11 min. Moreover, HRC-Ag/Agar-1.9 hydrogel achieves the high conversion rate (> 99%) through ten catalytic runs. Similarly, HRC-Ag/Agar-1.9 hydrogel was able to achieve a reduction efficiency of RhB at 98% within 17 min and that of MB at 95% within 40 min. The advantages of simple synthetic procedure, no secondary pollution, strong stability and easily separated make the HRC-Ag/Agar hydrogel have great potential prospect for environmental applications.
Collapse
Affiliation(s)
- Jin Wang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China.
| | - Jihui Zhang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Yahui Song
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Xianmang Xu
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Mengyun Cai
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Wenpeng Yuan
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Yujiao Xiahou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
21
|
Decheng S, Zhandeng S, Zhiming X, Shi W, Weiwei S, Qiuling D, Xia F, Peilong W. Enrichment and determination of nine nitrofurans in aquaculture water and aquatic feed by using metal-organic framework NDO-Zn. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
22
|
Tang Y, Liu Y, Wang J, Wang J, Liu Z. In Vivo Tracking of Persistent Organic Pollutants via a Coaxially Integrated and Implanted Photofuel Microsensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2826-2836. [PMID: 36775915 DOI: 10.1021/acs.est.2c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vivo tracking of persistent organic pollutants (POPs) is of great significance for assessing their risks to the ecological environment and human health. However, existing in vivo POPs detection methods are limited by the lethal sampling of living organisms, complex sample preparation processes, or bulky testing equipment. Photoelectrochemical (PEC) sensing with the merits of high sensitivity and simple equipment is a fast-developed method for in vivo analysis. A major obstacle for in vivo PEC sensors is the separated implantation of multiple electrodes and a light source, which raises concerns like multielectrode biofouling and electroactive molecules interference in the complex environment, uncertain electrode implant distance, and multiple insertion operations. Here, a coaxially implanted photofuel microsensor was developed by hiding the optical fiber-based photoanode inside the glass capillary-based biocathode, and the model target PCB77 can be detected with an ultralow detection limit (2.8 fg/mL). This unique photoanode-biocathode-light source integrated structure ensures excellent selectivity, good antifouling ability and biocompatibility, high accuracy, and less implant mechanical damage. Combined with a handheld pH meter, our sensor achieved convenient and direct tracking of the bioaccumulation levels of PCB77 in freely swimming fish.
Collapse
Affiliation(s)
- Ying Tang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Jinmiao Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Solanki S, Prakash Nair P, Saxena R, Singh R. Recent Advances in Metal‐Organic‐Framework‐Based Composites for Efficient Sequestration of Organophosphorus Pesticides (OPPs). ChemistrySelect 2023. [DOI: 10.1002/slct.202203450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology Amity University Uttar Pradesh, Sector 125 Noida Uttar Pradesh 201313 India
| | - Pravesh Prakash Nair
- Department of Chemistry Kirori Mal College University of Delhi Delhi India- 110007
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi India- 110007
| | - Rachana Singh
- Amity Institute of Biotechnology Amity University Uttar Pradesh, Sector 125 Noida Uttar Pradesh 201313 India
| |
Collapse
|
24
|
Anchoring Au on UiO-66 surface with thioglycolic acid for simultaneous SERS detection of paraquat and diquat residues in cabbage. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
25
|
Synthesis and Characterization of Terbium-Based Metal Organic Framework for Environmental Remediation Application. Catalysts 2023. [DOI: 10.3390/catal13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present study, terbium-based metal-organic frameworks (MOFs) based on fcu topology, fcu-Tb- FTZB-MOF, was synthesized using 2-fluoro-4-(1H-tetrazol-5-yl)benzoic acid (FTZB) as a linear ligand, and then was characterized using powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) analysis and to study the texture properties of the Tb-FTZB-MOF. The characterization results confirmed the successful synthesis of the high surface area Tb-FTZB-MOF (1220 m2/g). The synthesized Tb-FTZB-MOF was then applied as a catalytic adsorbent to remove direct violet 31 (DV31) dye as an example of organic pollutants, from a model and real solution. The effect of various operational parameters such as adsorbent loading, contact time, initial DV31 dye concentration, initial solution pH, different water matrix, temperature, and ionic strength have also been evaluated. Solution pH and temperature significantly influenced the adsorption of DV31 dye using Tb-FTZB-MOF, and the results should efficiently remove the DV31 dye at ambient temperature, and at pH value of 8.0 using 35 mg Tb-FTZB-MOF, within few minutes. The process was studied kinetically and found to follow the pseudo-second-order kinetic model, and thermodynamically the process was spontaneous, endothermic, with a positive entropy. Finally, the result showed that Tb-FTZB-MOF was able to adsorb a high percentage of DV31 dye and maintained reasonable efficiency even after five cycles, indicating that Tb-FTZB-MOF could be a promising adsorbent in wastewater remediation.
Collapse
|
26
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
27
|
Zheng X, Rehman S, Zhang P. Room temperature synthesis of monolithic MIL-100(Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129998. [PMID: 36152540 DOI: 10.1016/j.jhazmat.2022.129998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The removal and recovery of volatile organic compounds (VOCs) are widely used in many industrials. Unfortunately, most conventional porous materials not only have low VOCs uptake, but also need to be regenerated at relatively high temperature. Metal-organic frameworks (MOFs) have great potential for the removal and recovery of VOCs as their record-breaking gas adsorption capacity, easy regeneration, tunable pore structure and functional groups. Whereas, powdered MOFs are hardly implemented in industrial fields owing to their low bulk density and high pressure drop. Exploring a green method to prepare granular MOFs for the removal and recovery of VOCs is still a challenge. Herein, we report the room temperature green synthesis of a stable Fe-based MOF monolith by using water as the solvent without applying high pressure and chemical binders. The static and dynamic experiments show that the optimized centimeter-scale monolith has high porosity and mechanical strength, and exhibits much better adsorption performance for representative aromatic VOCs (benzene, toluene and p-xylene), than commercial activated carbon and activated carbon fiber under the same conditions. Remarkably, as-synthesized monolith can be rapidly regenerated at lower temperature. These results clearly demonstrate the advantages of MOF monoliths in removing and recovering VOCs, and also provide new insight into the effects of drying temperature, washing and centrifugation procedures on MOF shaping.
Collapse
Affiliation(s)
- Xianming Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environment and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Sadia Rehman
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| |
Collapse
|
28
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
29
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4263. [PMID: 36500886 PMCID: PMC9738636 DOI: 10.3390/nano12234263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
Collapse
Affiliation(s)
- Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
- Mining Engineering Department, Faculty of Physical and Mathematical Sciences (FCFM), Universidad de Chile, Av. Tupper 2069, Santiago 8370451, Chile
| | - Bárbara Rodríguez
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8320000, Chile;
| | - Maibelin Rosales
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Yurieth M. Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Paula G. Saiz
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Ander Reizabal
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Celaya-Azcoaga
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Valverde
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| |
Collapse
|
31
|
Fabrication of a novel Ti3C2-modified Sb-SnO2 porous electrode for electrochemical oxidation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
A novel 3D Co/Mo co-catalyzed graphene sponge-mediated peroxymonosulfate activation for the highly efficient pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Budetić M, Samardžić M, Bubnjar K, Dandić A, Živković P, Széchenyi A, Kiss L. A new sensor for direct potentiometric determination of thiabendazole in fruit peels using the Gran method. Food Chem 2022; 392:133290. [PMID: 35660977 DOI: 10.1016/j.foodchem.2022.133290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
A new sensor for direct potentiometric determination of thiabendazole (TBZ) was prepared. The ionic pair of TBZ cation and the 5-sulfosalicylate anion was used as the new sensor material incorporated in liquid type of ion-selective electrode membrane for TBZ determination. For optimization of the membrane of the sensor for TBZ determination, six different plasticizers and the content of the sensor material in the membrane were varied. The chosen sensor with dibutyl sebacate (DS) as plasticizer and 1% of sensor material in the membrane was characterized with Nernstian response towards TBZ (62.2 mV/decade of activity), a wide working range (8.6∙10-7-1.0∙10-3 M), and a low limit of detection (3.2·10-7 M). Also, it proved to be an accurate and reliable sensor for TBZ determination in pure and real samples (peel of oranges, lemons and bananas) where it was determined using direct potentiometry and Gran method.
Collapse
Affiliation(s)
- Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Karlo Bubnjar
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Pavo Živković
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - László Kiss
- Department of Organic and Pharmacological Chemistry, University of Pécs, Honvéd street 1, H-7624 Pécs, Hungary; János Szentágothai Research Center, Ifjúság street 20, H-7624 Pécs, Hungary.
| |
Collapse
|
34
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
35
|
Huang J, Li C, Hao H, Li L, Zhu B, Chen X, Tao H. Photocatalytic degradation of tetracycline antibiotic over a flower-like S-doped BiOBr: Performance, mechanism insight and toxicity assessment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1023489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new catalyst of S-BiOBr flower-like morphology was synthesized by simple pyrolysis and further used for photocatalytic degradation of TC. Phase structure analysis, elemental analysis and micromorphological analysis confirmed that S doping has a reinforcing effect on the polarization between the [Bi2O2S]2+ and [Br2]2- layers and is conducive to interlayer polarization and rapid charge transfer. In addition, its unique petal morphology is more favorable to the adsorption of contaminants on its surface and accelerates the reaction of catalyst surfactant with contaminants. It was also found that S-BiOBr degrades TC significantly better than single BiOBr@HCs, with up to 99.1% in 60 min illumination. In addition, the S-BiOBr catalyst has good reusability in antibiotic degradation. The results of photocatalytic mechanism analysis show that free radical O2− plays a major role in the photodegradation of organic model pollutants. Intermediates in TC degradation were identified, and their potential degradation pathways were prospected, and the toxicity development of TC in the degradation process was analyzed by toxicity assessment software. The S-BiOBr photocatalytic system developed in this paper provides a new idea for effective modification of bismuth-based semiconductors and has important guiding significance for future water purification.
Collapse
|
36
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Luo X, Wang C, Huang G, Tan Y, Tang W, Kong J, Li Z. Bio-inspired chitosan aerogel decorated with MOF-on-COF heterostructure hybrid as recyclable scavenger of herbicides in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Li X, Xu C, Yan L, Feng Y, Li H, Ye C, Zhang M, Jiang C, Li J, Wu Y. A plasmonic AgNP decorated heterostructure substrate for synergetic surface-enhanced Raman scattering identification and quantification of pesticide residues in real samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3250-3259. [PMID: 35993252 DOI: 10.1039/d2ay01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid and on-site Raman spectroscopic identification and quantification of pesticide residues have been restricted to the low instrumental sensitivity of a portable Raman instrument, and no ideal platforms have been reported for analyzing pesticides on real sample surfaces. An efficient method to improve the detection sensitivity is to fabricate a highly sensitive surface-enhanced Raman scattering (SERS) substrate. Here, we present a MOF-derived ZnO@TiO2 heterostructure combined with plasmonic AgNPs as a SERS sensor to achieve synergetic EM and CM enhancement, exhibiting high sensitivity, excellent signal reproducibility (RSD < 5.9%) and superior stability for analysis of model molecules. The SERS sensor achieved a low detection concentration of 10-8 M for both CV and R6G molecular solutions on a portable Raman device. As a proof of concept, we modelled a pesticide residue on real samples of dendrobium leaves. Thiram, triazophos and fonofos solutions were selected as analytes for mimicking the function of on-site analysis. The SERS analytical platform showed not only high sensitivity for single- and multi-component identification, but also quantitative detection of pesticide residues on dendrobium leaves. These preliminary investigations indicate that this SERS analytical platform will allow the development and potential applications in rapid and on-site pesticide analysis.
Collapse
Affiliation(s)
- Xueting Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Chenyue Xu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Lan Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Yating Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Haoyue Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Cheng Ye
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Jianhua Li
- Anhui Topway Testing Services Co. Ltd, Xuancheng Economic and Technological Development Zone, 18 Rixin Road, 242000, China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| |
Collapse
|
39
|
Tao Y, Fang F, Lv Q, Qin W, He X, Zhang Y, Zhou Y, Li X, Li J. Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115301. [PMID: 35594825 DOI: 10.1016/j.jenvman.2022.115301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The selective removal of glyphosate (GP) from aqueous environments is crucial for ensuring human health and environmental sustainability. The preparation of hierarchical-pore MOFs and the reasonable regulation of the pore size are effective strategies for achieving selective removal. In this study, we applied hierarchical-pore UiO-66 analogues (HUiO-66s) synthesized by the template technique through a mild method for the removal of GP from water. The results showed that the maximum adsorption capacity of HUiO-66s was as high as 400 mg/g, which is higher than that of most reported adsorbents. Notably, HUiO-66s showed the highest adsorption rate and distribution coefficient for GP in a multivariate system containing different organophosphorus pesticides and antibiotics, exhibiting suitable selective adsorption performance for GP. Furthermore, GP adsorption onto HUiO-66-2 (prepared from 2 mL of MOF-5 template) did not affect the presence of competing anions and humic acids. Naturally occurring particles in the water body had an enhanced (i.e., Al2O3, sepiolite, and montmorillonite), reduced (i.e., illite and SiO2), or insignificant (i.e., kaolin) effect on the GP adsorption rate of HUiO-66-2. Further analysis based on the bulk adsorption results and microscopic characterisation indicated that the pore structure synergistically occurred with metal-ligand bonding, hydrogen bonding, and electrostatic interactions, which together determined the GP adsorption. Overall, the high adsorption and apparent adsorption selectivity of HUiO-66s facilitated the rapid separation and removal of GP in complex aqueous environments. Our findings provide insights into the transport and fate of MOFs and contaminants in natural aquatic systems.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Fei Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Quankun Lv
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Wenkai Qin
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yi Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| | - Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| |
Collapse
|
40
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
41
|
Su X, Chen Z, Wang H, Yuan L, Zheng K, Zhang W, Zou X. Ratiometric immunosensor with DNA tetrahedron nanostructure as high-performance carrier of reference signal and its applications in selective phoxim determination for vegetables. Food Chem 2022; 383:132445. [PMID: 35182867 DOI: 10.1016/j.foodchem.2022.132445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
A ratiometric electrochemical immunosensor, based on DNA tetrahedron nanostructure (DTNS), is introduced for vegetable phoxim determination. DTNS spontaneously adheres onto gold-nanoparticle-modified electrode and forms stable three-dimensional structure, providing plenty of binding sites to the built-in reference, methylene blue (MB). Monoclonal antibody (m-Ab) is vertically linked onto DTNS vertex, selectively responses antigenic phoxim, and promotes the target signal of IPHO. Thus, a ratiometric indicator, IPHO/IMB, is sensibly established with the target signal (IPHO) and the reference signal (IMB). Modifications, mechanisms and advances of the proposed method are subsequently examined with morphological methods and electrochemical experiments. This method brings considerable advances in analytical behaviors. The ratiometric signal presents better performance than solo system in repeatability and long-time stability. As-fabricated sensor presents wide dynamic range as 0.1∼30 μg/L, and limit of detection is well defined as 0.003 μg/L (S/N = 3). Finally, this method is verified with real-vegetable-sample analysis, certified HPLC and recovery test.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Zhiyu Chen
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Huan Wang
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, China.
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, China
| |
Collapse
|
42
|
Saravanan A, Kumar PS, Ramesh B, Srinivasan S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. CHEMOSPHERE 2022; 298:134341. [PMID: 35307383 DOI: 10.1016/j.chemosphere.2022.134341] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The direct release of industrial effluent into the water and other anthropogenic activities causes water pollution. Heavy metal ions are the primary contaminant in the industrial effluents which are exceptionally toxic at low concentrations, terribly disturb the endurance equilibrium of activities in the eco-system and be remarkably hazardous to human health. Different conventional treatment methodologies were utilized for the removal of toxic pollutants from the contaminated water which has several drawbacks such as cost-ineffective and lower efficiency. Recently, genetically modified micro-organisms (GMMs) stand-out for the removal of toxic heavy metals are viewed as an economically plausible and environmentally safe technique. GMMs are microorganisms whose genetic material has been changed utilizing genetic engineering techniques that exhibit enhanced removal efficiency in comparison with the other treatment methodologies. The present review comments the GMMs such as bacteria, algae and fungi and their potential for the removal of toxic heavy metals. This review provides current aspects of different advanced molecular tools which have been used to manipulate micro-organisms through genetic expression for the breakdown of metal compounds in polluted areas. The strategies, major limitations and challenges for genetic engineering of micro-organisms have been reviewed. The current review investigates the approaches working on utilizing genetically modified micro-organisms and effective removal techniques.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
43
|
Jie Z, Jiehu C, Ping L, Yichen J, Du X, Zehua W, Xiangping W. A new multifunction luminescent Zn(II) complex with selective sensing of ethanol, Fe 3+, and pH. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhu Jie
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| | - Cui Jiehu
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| | - Li Ping
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| | - Jiang Yichen
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| | - Xiuhong Du
- Clinical Laboratory Medicine, Henan Medical College, Zhengzhou, P.R. China
| | - Wang Zehua
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| | - Wang Xiangping
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, P.R. China
| |
Collapse
|
44
|
Liu L, Chen Q, Lv J, Li Y, Wang K, Li JR. Stable Metal-Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorg Chem 2022; 61:8015-8021. [PMID: 35544341 DOI: 10.1021/acs.inorgchem.2c00754] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid detection of antibiotics in agricultural products is of great significance. In this work, two stable fluorescent metal-organic frameworks (MOFs), BUT-178 and BUT-179, are synthesized and used to detect tetracycline antibiotics. Among them, BUT-179 exhibits better performance in the detection of different tetracycline antibiotics in water and eggs. The limits of detection of BUT-179 toward tetracycline, aureomycin, oxytetracycline, and doxycycline all reach the nanomolar level. Furthermore, the cycling tests confirm that BUT-179 can be easily recovered and repeatedly used without an obvious performance loss. This work demonstrates the excellent application potential of MOFs for food safety, especially the fluorescence detection of antibiotics in foods.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
45
|
Zhu A, Wang T, Jiang Y, Hu S, Tang W, Liu X, Guo X, Ying Y, Wu Y, Wen Y, Yang H. SERS determination of dopamine using metal-organic frameworks decorated with Ag/Au noble metal nanoparticle composite after azo derivatization with p-aminothiophenol. Mikrochim Acta 2022; 189:207. [PMID: 35501414 DOI: 10.1007/s00604-022-05292-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A specific surface-enhanced Raman scattering (SERS) assay for dopamine (DA) based on an azo derivatization reaction is proposed for the first time by preparation of p-aminothiophenol (PATP)-modified composite SERS substrate, composed of metal-organic framework (MIL-101) decorated with Au and Ag nanoparticles. As the result, the SERS method for detection of the azo reaction between PATP and DA exhibits superior sensitivity, selectivity, and stability. A reasonable linearity in the range 10-6 to 10-10 mol∙L-1 is achieved, and the limit of detection is 1.2 × 10-12 mol∙L-1. The reactive SERS assay is free from interference in complex physiological fluid. The feasibility of the proposed SERS method for the detection of DA levels in fetal bovine serum (FBS) samples and human serum samples is validated by HPLC-MS methods, displaying promising application potential in early disease diagnosis.
Collapse
Affiliation(s)
- Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tiansheng Wang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wanxin Tang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
46
|
Guo ZH, Zhang YD, Wang QQ, Wang Y, Zhang PF, Zhang WY, Yang GP, Wang YY. Highly Efficient I 2 Sorption, CO 2 Capture, and Catalytic Conversion by Introducing Nitrogen Donor Sites in a Microporous Co(II)-Based Metal-Organic Framework. Inorg Chem 2022; 61:7005-7016. [PMID: 35477263 DOI: 10.1021/acs.inorgchem.2c00383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, the development of porous absorbents for efficient CO2 and I2 capture has attracted considerable attention because of severe global climate change and environmental issues with the nuclear energy. Hence, a unique porous metal-organic framework (MOF), {[Co(L)]·DMF·2H2O}n (1, DMF = N,N-dimethylformamide) with uncoordinated N atoms was rationally constructed via using a heterofunctional 4,6-bis(4'-carboxyphenyl)pyrimidine (H2L) linker. Interestingly, 1 exhibits exceptional properties for I2 sorption, CO2 capture, and catalytic conversion. Particularly, I2 can be efficiently removed in both vapor and solution forms, and the adsorption amount can reach 676.25 and 345.28 mg g-1, respectively. Furthermore, complex 1 displays high adsorption capacity for CO2 (53.78 cm3 g-1, 273 K). Consequently, 1 is expected to be a promising and practical material for environmental purification due to its excellent adsorption properties.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yin-Di Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Qian-Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
47
|
The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022. [DOI: 10.3390/catal12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Semiconductors based on transition metal oxides represent an important class of materials used in emerging technologies. For this, the performance of these materials strongly depends on the size and morphology of particles, surface charge characteristics, and the presence of bulk and surface defects that are influenced by the synthesis method and the experimental conditions the materials are prepared. In this context, the present review aims to report the importance of choosing the synthesis methods and experimental conditions to modify structural, morphological, and electronic characteristics of semiconductors, more specifically, tin oxide (SnO2), since these parameters may be a determinant for better performance in various applications, including photocatalysis. SnO2 is an n-type semiconductor with a band gap between 3.6 and 4.0 eV, whose intrinsic characteristics are responsible for its electrical conductivity, good optical characteristics, high thermal stability, and other qualities. Such characteristics have provided excellent results in advanced oxidative processes, i.e., heterogeneous photocatalysis applications. This process involves semiconductors in the production of hydroxyl radicals via activation by light absorption, and it is considered as an emerging and promising technology for domestic-industrial wastewater treatment. In our review article, we focused on the photodegradation of different organic dyes and types of persistent organic pollutants using SnO2-based photocatalysts, and how the efficiency of these materials can be impacted by synthesis methods and experimental conditions employed to prepare them.
Collapse
|
48
|
Ghiasi F, Solaimany Nazar AR, Farhadian M, Tangestaninejad S, Emami N. Synthesis of aqueous media stable MIL101-OH/chitosan for diphenhydramine and metronidazole adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24286-24297. [PMID: 34825335 DOI: 10.1007/s11356-021-17739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, pristine MIL101(Cr) was modified to synthesize hydroxyl-functionalized (MIL101(Cr)-OH) and chitosan (CS)-coated (MIL101(Cr)-OH/CS) metal-organic frameworks (MOFs) to enhance adsorption capacity and reusability, respectively. The synthesized adsorbents were characterized by XRD, FTIR, and BET analyses. The kinetics behavior and the equilibrium adsorption of diphenhydramine (DPH) and metronidazole (MNZ) from aqueous solution on the synthesized adsorbents and a commercial activated carbon were compared at 25°C. The pH-dependent of the adsorption capacity and reusability of MIL101-OH/CS were investigated. The results showed that upon adding OH functional group and chitosan polymer, the adsorption capacity increased; the DPH adsorption capacity on MIL101-OH and MIL101-OH/CS was 634 and 573 mg/g, respectively. Also, the maximum adsorption capacity of MNZ on MIL101-OH/CS was 600 mg/g, which was twice the adsorption capacity of MIL101 and four times the adsorption capacity of the commercial activated carbon. The equilibrium and kinetics behavior results were in good agreement with Langmuir and the pseudo-second-order models, respectively. The DPH and MNZ adsorption mechanisms on MIL101-OH/CS were hydrogen bonding and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
49
|
Fouad OA, Ali AE, Mohamed GG, Mahmoud NF. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr(III) ion determination in centrum multivitamin and real water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Luo L, Ou Y, Yang Y, Liu G, Liang Q, Ai X, Yang S, Nian Y, Su L, Wang J. Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127253. [PMID: 34844365 DOI: 10.1016/j.jhazmat.2021.127253] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
While nanomaterials with enzyme-mimicking activities are emerging as promising candidates in the colorimetric detection of organophosphorus pesticides (OPs), the catalytic activities and recognition ability to analyte of most nanozymes are inherently deficient. In this work, we introduced manganese ions into a typical iron based MOF (Fe-MIL(53)) via a one-pot hydrothermal reaction strategy, which brought out a catalytically favorable bimetallic Mn/Fe-MIL(53) MOF nanozyme. The catalytic performance of Mn/Fe-MIL(53) is superior to that of pure Fe-MIL (53) and the mechanism for superior catalytic activity of material is revealed by active species scavenging experiments and X-ray photoelectron spectroscopy (XPS). Besides, the introduction of manganese endows the material with the characteristic of being specially destroyed by choline, which motivates the establishment of a simple, selective and sensitive colorimetric strategy for OPs detection. The proposed colorimetric strategy could quantify the methyl parathion and chlorpyrifos in the concentration range of 10-120 nM and 5-50 nM, respectively. The low detection limit of 2.8 nM for methyl parathion and 0.95 nM (3 S/N) for chlorpyrifos were achieved. Good recoveries were obtained when applied in the real sample detection. Our work paves the way to boost catalytic performance of MOF nanozymes, which will be useful in biosensing.
Collapse
Affiliation(s)
- Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Ou
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangqin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiuhong Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelian Ai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Silong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Nian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|