1
|
Sun J, Yan M, Tao G, Su R, Xiao X, Wu Q, Chen F, Wu XL, Lin H. A single-atom manganese nanozyme mediated membrane reactor for water decontamination. WATER RESEARCH 2024; 268:122627. [PMID: 39423782 DOI: 10.1016/j.watres.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Single-atom nanozymes possess high catalytic activity and selectivity, and are emerging as advanced heterogeneous catalysts for environmental applications. Herein, we present the innovative synthesis and characterization of a single-atom manganese-doped carbon nitride (SA-Mn-CN) nanozyme, integrated into a polyvinylidene fluoride (PVDF) membrane for advanced water treatment applications. The SA-Mn-CN nanozyme demonstrates high peroxidase-like activity, efficiently catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and generating reactive oxygen species (ROS) for effective antibacterial action. Notably, the SA-Mn-CN/PVDF membrane showcases enhanced water permeability, superior antifouling properties, and ultra-fast degradation kinetics of organic pollutants. Mechanistic studies reveal that the nanozyme selectively generates Mn(IV)-oxo species via peroxymonosulfate (PMS) activation, crucial for the efficient oxidation processes. Our integrated membrane system effectively removes (within 1 min, > 92 % removal) a variety of organic micropollutants in continuous-flow operations, demonstrating excellent stability and minimal manganese leaching. Compared to conventional advanced oxidation process (AOPs)/membrane system, the SA-Mn-CN/PVDF/PMS system holds the advantages of high catalytic activity and selectivity for generation of reactive species, wide working pH range (pH3-11) and excellent stability and reusability under the backwashing conditions. The developed device-scale AOPs/membrane system was proven to be effective in bacterial inactivation and pollutants degradation, verifying the vast application potential of the SA-Mn-CN/PVDF membrane for practical water decontamination. This work pioneers the development of enzyme-mimicking nanozyme membranes, offering a sustainable and high-performance solution for wastewater treatment, and sets a new benchmark for the design of nanozyme-based catalytic membranes in environmental applications.
Collapse
Affiliation(s)
- Jiahao Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Minjia Yan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Guangdong Tao
- Zhejiang Hisun Pharmaceutical Co., Ltd., Waisha Road No.46, Taizhou, China.
| | - Runbin Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xuanming Xiao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Zhou H, Timalsina H, Tang S, Circenis S, Kandume J, Cooke R, Si B, Bhattarai R, Zheng W. Simultaneous removal of nutrients and pharmaceuticals and personal care products using two-stage woodchip bioreactor-biochar treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135882. [PMID: 39298967 DOI: 10.1016/j.jhazmat.2024.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The co-occurrence of nutrients and pharmaceuticals and personal care products (PPCPs) in sewage effluent can degrade water quality of the receiving watersheds. This study investigated the simultaneous removal of excess nutrients and PPCP contaminants by developing a novel woodchip bioreactor and biochar (B2) treatment system. The result revealed that woodchip bioreactors could effectively remove nitrate via a denitrification process and adsorb some PPCPs. Biochar as a secondary treatment system significantly reduced the concentrations of PPCPs and dissolved reactive phosphorus (DRP) (p < 0.05), compared to the woodchip bioreactor. The removal efficiencies of all targeted contaminants by the B2 system were evaluated using various hydraulic retention times (HRTs) and biochar types (pelletized versus granular biochar). Longer HRTs and smaller biochar particles (granular biochar) could enhance the removal efficiencies of targeted contaminants. Average contaminant removals were 77.25 % for nitrate-N, 99.03 % for DRP, 69.51 % for ibuprofen, 73.65 % for naproxen, 91.09 % for sitagliptin, and 96.96 % for estrone, with woodchip bioreactor HRTs of 12 ± 1.4 h and granular biochar HRTs of 2.1 ± 0.1 h. Notably, the second-stage biochar systems effectively mitigated by-products leaching from woodchip bioreactors. The presence of PPCPs in the woodchip bioreactors enriched certain species, such as Methylophilus (69.6 %), while inhibiting other microorganisms and reducing microbial community diversity. Furthermore, a scaled-up B2 system was analyzed and assessed, indicating that the proposed engineering treatment system could provide decades of service in real-world applications. Overall, this study suggests that the B2 system has promising applications for addressing emerging and conventional contaminants.
Collapse
Affiliation(s)
- Hongxu Zhou
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Haribansha Timalsina
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Shuai Tang
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Sophie Circenis
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jason Kandume
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Richard Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Buchun Si
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA.
| | - Wei Zheng
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
3
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Ma Y, Xu S, Huang Y, Du J, Wang J, Gao B, Song J, Ma S, Jia H, Zhan S. The mechanism differences between sulfadiazine degradation and antibiotic resistant bacteria inactivation by iron-based graphitic biochar and peroxydisulfate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134907. [PMID: 38878442 DOI: 10.1016/j.jhazmat.2024.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.
Collapse
Affiliation(s)
- Yanbing Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yan Huang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jingzhen Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Boqiang Gao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest, A&F University, Yangling 712100, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Deng J, Dong H, Zhang S, Zhao Q, Cheng L, Zhang H, Xiao S, Huang D. Insights into the pH-dependent mechanism of peracetic acid activation by biochar-supported zero-valent iron/cobalt bimetallic nanoparticles: The shift of reactive sites and the dual role of hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135207. [PMID: 39013319 DOI: 10.1016/j.jhazmat.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
The peracetic acid (PAA)-based water purification process is often controlled by the solution pH. Herein, we explored the usage of biochar (BC) supported zero-valent iron/cobalt nanoparticles (Fe/Co@BC) for triggering PAA oxidation of sulfamethazine (SMT), and discovered the PAA activation mechanisms at different pHs. Fe/Co@BC exhibited extraordinary PAA activation efficiency over the pH range of 3.0-8.2, effectively broadening the working pH of the zero-valent iron nanoparticles (NZVI)-PAA process. Specifically, the SMT removal efficiency increased by 8.3 times in Fe/Co@BC-PAA system compared to the NZVI-PAA system at pH 8.2. Besides, the leaching and recycling experiments indicated the improved stability and reusability of the materials. For the mechanism study, the main reactive species was •OH under acidic conditions and R-O•/Fe(IV) under neutral/alkaline conditions. More interestingly, the reactive sites on Fe/Co@BC shifted from Fe species to Co species as pH increased, and the role of H2O2 in this reaction system also shifted from a radical precursor to a radical scavenger with increasing pH. This study highlights the distinct mechanism of PAA activation by bimetallic composites under different pH conditions and provides a new efficient approach for PAA activation to degrade organic contaminants.
Collapse
Affiliation(s)
- Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Siqi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Quanling Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Longjie Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
6
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Du Y, Ye X, Hui Z, Jiao D, Xie Y, Chen S, Ding J. Synergistic effect of adsorption-photocatalytic reduction of Cr(VI) in wastewater with biochar/TiO 2 composite under simulated sunlight illumination. Phys Chem Chem Phys 2024; 26:15891-15901. [PMID: 38805238 DOI: 10.1039/d4cp01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalysis, which is an alternative technology to conventional methods, utilizes solar energy as the driving force to address environmental concerns and has attracted widespread attention from chemists worldwide. In this study, a series of photocatalytic materials composed of agricultural waste and titanium dioxide (TiO2) nanomaterial was prepared for the synergistic adsorption-photocatalytic reduction of hexavalent chromium in wastewater under mild conditions. The results showed that the TiO2 nanomaterial exhibited a higher photogenerated carrier separation efficiency and performance for the adsorption-photocatalytic reduction of Cr(VI) after loading straw biochar (BC). When the loading amount of BC was 0.025 g (i.e., TBC-3), the removal efficiency of Cr(VI) was as high as 99.9% under sunlight irradiation for 25 min, which was 2.9 and 3.5 times higher than that of pure TiO2 and BC samples, respectively. Additionally, after four cycles of experiments, the removal efficiency of Cr(VI) by TBC-3 remained at about 93.0%, proving its good chemical ability in our reaction system. Its excellent adsorption-photocatalytic performance is mainly attributed to the synergistic effect of the strong adsorption of BC and the outstanding photocatalytic performance of TiO2. Finally, the possible mechanism for the synergistic adsorption-photocatalytic reduction on BC/TiO2 to remove the highly toxic Cr(VI) in wastewater was proposed.
Collapse
Affiliation(s)
- Yadong Du
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, P. R. China.
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, P. R. China.
| | - Xiangju Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, P. R. China.
| | - Zhenzhen Hui
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, P. R. China.
| | - Die Jiao
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, P. R. China.
| | - Yue Xie
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, P. R. China.
| | - Shifu Chen
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.
| | - Jun Ding
- Anhui Haohong Biotechnology Co., Ltd, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Xu Y, Chen J. Activity and recyclability enhancement of pH-dependent Fe 0@BC-mediated heterogeneous sodium percarbonate (SPC)-reducing agents (RA) system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120596. [PMID: 38520858 DOI: 10.1016/j.jenvman.2024.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Dyes pose great threats to the aquatic environment and human health. Fe0-based Fenton-like systems have been widely employed for the degradation of organic dyes. However, the regulation of degradability and recyclability was still unclear. In this study, Rhodamine B (RhB) was served as the model pollutant, hydroxylamine hydrochloride was selected as the RA, the natural photocatalysis system demonstrated stable operation. RA, as performance enhancement agent, was firstly reported in micro/nano-Zero-Valent Iron@Biochar (m/nZVI@BC) based SPC-RA system. Carrier size-fractionated m/nZVI@BC was fabricated by one-step carbothermal method. As a result, RA synergistically interacted with SPC, and the reaction time reduced from 15 min to 4 min. In the 0.010 g m/nZVI@BC-mediated SPC-RA system, over 95% of RhB (100 mg·L-1, 1041.667 mg·g-1) was successfully degraded. The maximum degradation ability could still exceed 1g·g-1 via 5 times repeated applications. Meanwhile, the loss of degradability, caused by halving SPC concentration could be compensated by RA dosage measurement. The entire degradation process was predominantly dominated by free radicals (•OH> 1O2> •O2-> •CO3-). Reactive oxidizing species (ROSs) were primarily excited by α-Fe0, Fe3C and N sites of biochar (BC). Light and BC carrier dedicated slight influence. These discoveries shed a light on the activity and recyclability regulation of catalytic material, aligning with the principles of green chemistry and cleaner production. This study demonstrates a novel approach to efficient management of solid waste disposal, reuse of waste biomass, advanced treatment of dye-containing wastewater, pollution control in aquatic environments.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
9
|
El-Qelish M, Maged A, Elwakeel KZ, Bhatnagar A, Elgarahy AM. Dual valorization of coastal biowastes for tetracycline remediation and biomethane production: A composite assisted anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133143. [PMID: 38056261 DOI: 10.1016/j.jhazmat.2023.133143] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Harnessing coastal biowaste for dual valorization in water treatment and biofuel production holds paramount importance for sustainability and resource challenges. This study investigated the potential of engineered composite (CABC) derived from coastal biowaste-based materials for tetracycline (TC) removal and biomethane production. High-yield calcium carbonate (CaCO3; 95.65%; bivalve shells) and biochar (GA-BC; 41.50%; green macroalgae) were produced and used as precursors for CABC. The characterization results revealed presence of β-CaCO3 and ν2-CO3 aragonite in CaCO3, and composite homogeneity was achieved. The CABC exhibited a maximum TC sorption capacity of 342.26 mg/g via synergistic sorption mechanisms (i.e., surface/pore filling, electrostatic attraction, calcium ion exchange, and chelation). Supplementation of anaerobic digestion process with GA-BC, CaCO3, and CABC was investigated via three consecutive cycles. Biochemical methane potential of glucose as a sole substrate was increased from 157.50 to 217.00, 187.00, and 259.00 mL-CH4, while dual substrate (glucose+TC) treatment was increased from 94.5 to 146.5, 129.0, and 153.00 mL-CH4 for GA-BC, CaCO3, and CABC, respectively. Moreover, system stability and TC removal were increased with the addition of GA-BC (40.90%), CaCO3 (16.30%), and CABC (53.70%). Therefore, this study exemplifies the circular bioeconomy approach, demonstrating the sustainable use of biowaste-derived composite for water treatment and biofuel production.
Collapse
Affiliation(s)
- Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622 Cairo, Egypt
| | - Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Geology, Faculty of Science, Suez University, P.O. Box 43221, Suez, Egypt; Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| |
Collapse
|
10
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Zhao S, Liu J, Miao D, Sun H, Zhang P, Jia H. Activation of persulfate for the degradation of ethyl-parathion in soil: Combined effects of microwave with biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119930. [PMID: 38160544 DOI: 10.1016/j.jenvman.2023.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Sulfate radical (SO4•-), formed by persulfate (PS) activation during advanced oxidation process (AOPs), can be used for the remediation of organic contaminated soil. However, the role of biochar and microwave (MW) in the activation of PS is not fully understood, especially the corresponding mechanism. Herein, biochar combined with MW was used to activate PS for the remediation of ethyl-parathion (PTH)-polluted soil. The dynamic evolutions of PTH under different conditions, such as biochar content, particle size, reaction temperature, and the degradation mechanisms of PTH were also systematically investigated. Significant enhancement performance on PTH removal was observed after adding biochar, which was 88.78% within 80 min. Meanwhile, activating temperature exhibited remarkable abilities to activate PS for PTH removal. The higher content of adsorption sites in nano-biochar facilitated the removal of PTH. Furthermore, chemical probe tests coupled with quenching experiments confirmed that the decomposition of PS into active species, such as SO4•-, •OH, O2•- and 1O2, contributed to the removal of PTH in biochar combined with MW system, which could oxidize PTH into oxidative products, including paraoxon, 4-ethylphenol, and hydroquinone. The results of this study provide valuable insights into the synergistic effects of biochar and MW in the PS activation, which is helpful for the potential application of biochar materials combined with MW-activated PS in the remediation of pesticide-polluted soils.
Collapse
Affiliation(s)
- Song Zhao
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, 830046, PR China.
| | - Jinbo Liu
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China
| | - Duo Miao
- Department of Science and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongwen Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Peng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China.
| |
Collapse
|
12
|
Kuang Y, Zhou S, Liu Y, Feng X, Chen L, Zheng J, Ouyang G. Nanoscale-controlled organicinorganic hybrid spheres for comprehensive enrichment of ultratrace chlorobenzenes in marine and fresh water. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133541. [PMID: 38286049 DOI: 10.1016/j.jhazmat.2024.133541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The size of the adsorbent has the potential to influence extraction performance, but the size effect at the nanoscale is still poorly understood. In this study, organic-inorganic hybrid nanospheres (OIHNs) with controllable nanoscale sizes of 30, 50, and 100 nm were successfully prepared. These materials were further fabricated as solid phase microextraction (SPME) coatings with similar thicknesses, and coupled with gas chromatography-mass spectrometry (GC-MS) to investigate their extraction performance. The results showed that the extraction capacities of OIHNs for chlorobenzenes (CBs) and polycyclic aromatic hydrocarbons (PAHs) were much better than those of their corresponding derived carbon materials, despite the smaller specific surface areas and lower porosities of them. In addition, the enrichment performance increased significantly with decreasing particle size, and the OIHN-30 coating demonstrated the best performance, with enrichment factors ranging from 1098 to 6853 for CBs. Finally, a highly sensitive and practical analytical method was established with a wide linear range of 0.5-5000 ng·L-1, and the limits of quantification (LOQs) were 0.43-1.7 ng·L-1. The determinations of ultratrace CBs in five marine water samples and five fresh water samples were realized successfully. This study is expected to contribute to a deep understanding of the environmental effects of nanoparticles and the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
13
|
Yu H, Zhang Y, Wang L, Tuo Y, Yan S, Ma J, Zhang X, Shen Y, Guo H, Han L. Experimental and DFT insights into the adsorption mechanism of methylene blue by alkali-modified corn straw biochar. RSC Adv 2024; 14:1854-1865. [PMID: 38192323 PMCID: PMC10773387 DOI: 10.1039/d3ra05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
As an efficient and cost-effective adsorbent, biochar has been widely used in the adsorption and removal of dyes. In this study, a simple NaOH-modified biochar with the pyrolysis temperature of 300 °C (NaCBC300) was synthesized, characterized, and investigated for the adsorption performances and mechanisms of methylene blue (MB). NaCBC300 exhibited excellent MB adsorption performance with maximum removal efficiency and adsorption capacity of 99.98% and 290.71 mg g-1, which were three and four times higher than biochar without modification, respectively. This might be attributed to the increased content of -OH and the formation of irregular flakes after NaOH modification. The Freundlich isotherm suggested multilayer adsorption between NaCBC300 and MB. Spectroscopic characterizations demonstrated that multiple mechanisms including π-π interaction, H-bonding, and pore-filling were involved in the adsorption. According to density functional theory (DFT) calculations, electrostatic interaction between NaCBC300 and MB was verified. The highest possibility of the attraction between NaCBC300 and MB was between -COOH in NaCBC300 and R-N(CH3)2 in MB. This work improved our understanding of the mechanism for MB adsorption by modified biochar and provided practical and theoretical guidance for adsorbent preparation with high adsorption ability for dyes.
Collapse
Affiliation(s)
- Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment Beijing 100006 China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Junling Ma
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Xue Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yu Shen
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| |
Collapse
|
14
|
Liu X, Wang X, Xue Q, Tian Y, Feng Y. Inhalation bioaccessibility and risk assessment for PM-bound organic components: Co-effects of component physicochemical properties, PM properties, and sources. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132291. [PMID: 37591173 DOI: 10.1016/j.jhazmat.2023.132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Inhalation bioaccessibility and deposition in respiratory tracts of organic components in atmospheric particulate matter (PM) are key factors for accurately estimating health risks and understanding human exposures. This study evaluated the in-vitro inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives, phthalic acid esters (PAEs), polychlorinated biphenyls (PCBs), and organophosphate flame retardants (OPFRs) in size-resolved PM from a Chinese megacity. The bioaccessibility ranged from 0.2% to 77.8% in the heating period (HP), and from 0.7% to 94.2% in the non-heating period (NHP). Result suggests that less hydrophobic organics might be more bioaccessible. Bioaccessibility of medium logKow organics in sizes > 0.65 µm was significantly inhibited by high carbon fractions, indicating the co-effects. Then, this is the first study to explore effects of sources on inhalation bioaccessibility of organics. Coal and biomass combustion in HP and traffic emission in NHP negatively correlated with bioaccessibility. Secondary particles also negatively correlated with bioaccessibility of medium logKow organics. Incremental lifetime cancer risk (ILCR) and non-cancer risk (HQ) for all measured components in PM10 were estimated after considering the bioaccessibility and deposition efficiencies and the HQ and ILCR were within the acceptable range. BaP and DEHP were strong contributors to HQ and ILCR, respectively.
Collapse
Affiliation(s)
- Xinyi Liu
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoning Wang
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qianqian Xue
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Yinchang Feng
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| |
Collapse
|
15
|
Yu P, Baker MC, Crump AR, Vogler M, Strawn DG, Möller G. Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO 2 e: Process operation and mechanism. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10926. [PMID: 37696540 DOI: 10.1002/wer.10926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Biochar (BC) use in water treatment is a promising approach that can simultaneously help address societal needs of clean water, food security, and climate change mitigation. However, novel BC water treatment technology approaches require operational testing in field pilot-scale scenarios to advance their technology readiness assessment. Therefore, the objective of this study is to evaluate the system performance of BC integrated into hydrous ferric oxide reactive filtration (Fe-BC-RF) with and without catalytic ozonation (CatOx) process in laboratory and field pilot-scale scenarios. For this investigation, Fe-BC-RF and Fe-CatOx-BC-RF pilot-scale trials were conducted on synthetic lake water variants and at three municipal water resource recovery facilities (WRRFs) at process flows of 0.05 and 0.6 L/s, respectively. Three native and two iron-modified BCs were used in these studies. The commercially available reactive filtration process (Fe-RF without BC) had 96%-98% total phosphorus (TP) removal from 0.075- and 0.22-mg/L TP, as orthophosphate process influent in these trials. With BC integration, phosphorus removal yielded 94%-98% with the same process-influent conditions. In WRRF field pilot-scale studies, the Fe-CatOx-BC-RF process removed 84%-99% of influent total phosphorus concentrations that varied from 0.12 to 8.1 mg/L. Nutrient analysis on BC showed that the recovered BC used in the pilot-scale studies had an increase in TP from its native concentration, with the Fe-amended BC showing better P recovery at 110% than its unmodified state, which was 16%. Lastly, the field WRRF Fe-CatOx-BC-RF process studies showed successful destructive removals at >90% for more than 20 detected micropollutants, thus addressing a critical human health and environmental water quality concern. The research demonstrated that integration of BC into Fe-CatOx-RF for micropollutant removal, disinfection, and nutrient recovery is an encouraging tertiary water treatment technology that can address sustainable phosphorus recycling needs and the potential for carbon-negative operation. PRACTITIONER POINTS: A pilot-scale hydrous ferric oxide reactive sand filtration process integrating biochar injection typically yields >90% total phosphorus removal to ultralow levels. Biochar, modified with iron, recovers phosphorus from wastewater, creating a P/N nutrient upcycled soil amendment. Addition of ozone to the process stream enables biochar-iron-ozone catalytic oxidation demonstrating typically excellent (>90%) micropollutant destructive removals for the compounds tested. A companion paper to this work explores life cycle assessment (LCA) and techno-economic analysis (TEA) to explore biochar water treatment integrated reactive filtration impacts, costs, and readiness. Biochar use can aid in long-term carbon sequestration by reducing the carbon footprint of advanced water treatment in a dose-dependent manner, including enabling an overall carbon-negative process.
Collapse
Affiliation(s)
- Paulo Yu
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Martin C Baker
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Alex R Crump
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Michael Vogler
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Daniel G Strawn
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Gregory Möller
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
16
|
Ma J, Xie M, Zhao N, Wang Y, Lin Q, Zhu Y, Chao Y, Ni Z, Qiu R. Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbon‑iron materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162720. [PMID: 36931519 DOI: 10.1016/j.scitotenv.2023.162720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 05/13/2023]
Abstract
Trichloroethylene (TCE) is one of the most prevalent contaminants with long-term persistence and a strong carcinogenic risk. Biological dechlorination has gradually become the mainstream method due to its advantages of low treatment cost and high environmental friendliness. However, microorganisms are easily restricted by environmental factors, such as an insufficient energy supply and a slow biological dechlorination process. This study focused on the coupled degradation of TCE with the combination of microorganisms and assistant materials (biochar, nZVI, nZVI modified biochar, HPO3 modified biochar), and set up microorganisms (alone) and materials (alone) as separate controls. Biochar provided nutrients, increased contact with pollutants, and promoted electron transfer to improve TCE degradation, although it did not change the pathway of degradation. The coupled treatment with anaerobic microorganisms (Micro) and 1 g/L unmodified biochar (BC) had the strongest degradation capacity. Compared with microorganisms alone, the addition of biochar resulted in the complete removal of TCE within 4 days. The influence of ambient temperature was mainly related to microbial activity, and 35 °C showed better degradation than 20 °C. Under 20 °C, 1 g/L of nZVI significantly promoted microbial dechlorination. As the dosage increased to 2 g/L and 4 g/L, nZVI showed a strong toxic effect. After 16 days, TCE was completely converted to ethylene by Micro-BC with C3H5O3Na, while 4.40 μmol dichloroethane (DCE) and 1.48 μmol vinyl chloride (VC) remained in the treatment with Micro-BC alone. As an electron acceptor, NaNO3 directly competed with TCE in the reduction process, which decreased the reduction efficiency of TCE. These findings provide a better understanding of the mechanism of the chemical materials coupling microbial dechlorination process and an optimal treatment method for trichloroethylene degradation.
Collapse
Affiliation(s)
- Jing Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural, Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Manxi Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural, Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural, Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural, Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural, Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Cong M, Hu Y, Sun X, Yan H, Yu G, Tang G, Chen S, Xu W, Jia H. Long-term effects of biochar application on the growth and physiological characteristics of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1172425. [PMID: 37409290 PMCID: PMC10319354 DOI: 10.3389/fpls.2023.1172425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
Biochar, as a soil conditioner, has been widely used to promote the growth of maize, but most of the current research is short-term experiments, which limits the research on the long-term effects of biochar, especially the physiological mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here, we set up two groups of pot experiments, respectively after the new biochar application and one-time biochar application seven years ago (CK: 0 t ha-1, C1: 15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with maize. Subsequently, samples were collected at different periods to explore the effect of biochar on maize growth physiology and its after-effect. Results showed that the plant height, biomass, and yield of maize showed the highest rates of increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in biomass and 8.46% increase in yield compared with control under the new application treatment. Meanwhile, the plant height and biomass of maize increased gradually with the increase of biochar application under the one-time biochar application seven years ago treatment (increased by 4.13%-14.91% and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD value (leaf greenness), soluble sugar and soluble protein contents in maize leaves corresponded with the trend of maize growth. Conversely, the changes of malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) manifested an opposite trend to the growth of maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of maize by inducing changes in its physiological and biochemical characteristics, but excessive biochar application rates ranging from 63.00-126.00 t ha-1 inhibited the growth of maize. After seven years of field aging, the inhibitory effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and changed to promoting effect.
Collapse
Affiliation(s)
- Mengfei Cong
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Xia Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
| | - Han Yan
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangling Yu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangmu Tang
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Shuhuang Chen
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wanli Xu
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| |
Collapse
|
18
|
Abolfazli Behrooz B, Oustan S, Mirseyed Hosseini H, Etesami H, Padoan E, Magnacca G, Marsan FA. The importance of presoaking to improve the efficiency of MgCl 2-modified and non-modified biochar in the adsorption of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114932. [PMID: 37080130 DOI: 10.1016/j.ecoenv.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Investigating the effect of presoaking, as one of the most important physical factors affecting the adsorption behavior of biochar, on the adsorption of heavy metals by modified or non-modified biochar and presoaking mechanism is still an open issue. In this study, the water presoaking effect on the kinetics of cadmium (Cd) adsorption by rice husk biochar (produced at 450 °C, B1, and at 600 °C, B2) and the rice husk biochar modified with magnesium chloride (B1 modified with MgCl2, MB1, and B2 modified with MgCl2, MB2) was investigated. Furthermore, the effect of pH (2, 5, and 6), temperature (15, 25, and 35 °C), and biochar particle size (100 and 500 µm) on the kinetics of Cd adsorption was also investigated. Results revealed that the content of Cd adsorbed by the presoaked biochar was significantly higher than that by the non-presoaked biochar. The highest Cd adsorption capacity of MB2 and MB1 was 98.4 and 97.6 mg g-1, respectively, which was much better than that of B1 (7.6 mg g-1) and B2 (7.5 mg g-1). The modeling of kinetics results showed that in all cases pseudo-second-order model was well-fitted (R2>0.99) with Cd adsorption data. The results also indicated that the highest Cd adsorption values were observed at pH 6 in presoaked MB1 with size of 100 µm as well as at the temperature of 35 °C in presoaked MB2, indicating the optimum conditions for this process. The presoaking process was not affected by biochar size and pH, and the difference in adsorbed Cd content between presoaked biochars and non-presoaked ones was also similar. However, the temperature had a negative effect on presoaking. The presoaking process decreased micropores (<10 µm) in the biochars but had no effect on biochar hydrophobicity. Therefore, presoaking, which could significantly increase Cd adsorption and reduce equilibrium time by reducing the micropores of biochars, is suggested as an effective strategy for improving the efficiency of modified biochars or non-modified ones in the adsorption of contaminants (Cd) from aquatic media.
Collapse
Affiliation(s)
- Bahram Abolfazli Behrooz
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Shahin Oustan
- Soil Science Department, Agricultural Faculty, University of Tabriz, Iran
| | - Hossein Mirseyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Elio Padoan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| | - Giuliana Magnacca
- Dipartimento di chimica, Università degli Studi di Torino, Torino, Italy
| | - Franco Ajmone Marsan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| |
Collapse
|
19
|
Wei Z, Hou C, Gao Z, Wang L, Yang C, Li Y, Liu K, Sun Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO 3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023; 28:molecules28073188. [PMID: 37049949 PMCID: PMC10096365 DOI: 10.3390/molecules28073188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The effective removal of oxytetracycline hydrochloride (OTC) from the water environment is of great importance. Adsorption as a simple, stable, and cost-effective technology is regarded as an important method for removing OTC. Herein, a low-cost biochar with a developed mesoporous structure was synthesized via pyrolysis of poplar leaf with potassium bicarbonate (KHCO3) as the activator. KHCO3 can endow biochar with abundant mesopores, but excessive KHCO3 cannot continuously promote the formation of mesoporous structures. In comparison with all of the prepared biochars, PKC-4 (biochar with a poplar leaf to KHCO3 mass ratio of 5:4) shows the highest adsorption performance for OTC as it has the largest surface area and richest mesoporous structure. The pseudo-second-order kinetic model and the Freundlich equilibrium model are more consistent with the experimental data, which implies that the adsorption process is multi-mechanism and multi-layered. In addition, the maximum adsorption capacities of biochar are slightly affected by pH changes, different metal ions, and different water matrices. Moreover, the biochar can be regenerated by pyrolysis, and its adsorption capacity only decreases by approximately 6% after four cycles. The adsorption of biochar for OTC is mainly controlled by pore filling, though electrostatic interactions, hydrogen bonding, and π-π interaction are also involved. This study realizes biomass waste recycling and highlights the potential of poplar leaf-based biochar for the adsorption of antibiotics.
Collapse
Affiliation(s)
- Zhenhua Wei
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chao Hou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhishuo Gao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luolin Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chuansheng Yang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yudong Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yongbin Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
20
|
Pathy A, Pokharel P, Chen X, Balasubramanian P, Chang SX. Activation methods increase biochar's potential for heavy-metal adsorption and environmental remediation: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161252. [PMID: 36587691 DOI: 10.1016/j.scitotenv.2022.161252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Removal of heavy metals (HMs) by adsorption on biochar's surface has shown promising results in the remediation of contaminated soil and water. The adsorption capacity of biochar can be altered by pre- or post-pyrolysis activation; however, the effect of activation methods on biochar's adsorption capacity varies widely. Here, we conducted a meta-analysis to identify the most effective methods for activation to enhance HM removal by biochar using 321 paired observations from 50 published articles. Activation of biochar significantly improves the adsorption capacity and removal efficiency of HMs by 136 and 80 %, respectively. This study also attempts to find suitable feedstocks, pyrolysis conditions, and physicochemical properties of biochar for maximizing the effect of activation of biochar for HMs adsorption. Activation of agricultural wastes and under pyrolysis temperatures of 350-550 °C produces biochars that are the most effective for HM adsorption. Activation of biochars with a moderate particle size (0.25-0.80 mm), low N/C (<0.01) and H/C ratios (<0.03), and high surface area (> 100 m2 g-1) and pore volume (> 0.1 cm3 g-1) are the most desirable characteristics for enhancing HM adsorption. We conclude that pre-pyrolysis activation with metal salts/oxides was the most effective method of enhancing biochar's potential for adsorption and removal of a wide range of HMs. The results obtained from this study can be helpful in choosing appropriate methods of activations and the suitable choice of feedstocks and pyrolysis conditions. This will maximize HM adsorption on biochar surfaces, ultimately benefiting the remediation of contaminated environments.
Collapse
Affiliation(s)
- Abhijeet Pathy
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada; Land Reclamation International Graduate School, University of Alberta, Edmonton, Alberta, Canada
| | - Prem Pokharel
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Paramasivan Balasubramanian
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada; Land Reclamation International Graduate School, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Li S, Zhang Z, Zhang C, He Y, Yi X, Chen Z, Hassaan MA, Nemr AE, Huang M. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29143-29153. [PMID: 36414889 DOI: 10.1007/s11356-022-24131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitenpyram (NIT) is the most water-soluble neonicotinoid (NEO). It has been shown to pose a serious threat to human health and the environment but was always ignored due to its limited market share. There were few experts who studied NIT's transport behavior on biochar. In this study, two types of biochar were co-activated separately using zinc chloride combined with phosphoric acid and potassium hydroxide combined with acetic acid, marked as ZBC and KBC. Characterizations suggested that hydrophilic ZBC and KBC had more surface functional groups than unmodified biochar (BC), and specific surface areas of ZBC (456.406 m2·g-1) and KBC (750.588 m2·g-1) were significantly higher than of BC (67.181 m2·g-1). The pore structures of KBC and ZBC were hierarchical porous structures with different pore sizes and typical microporous structure, respectively. The adsorption performance of either NIT or IMI on KBC was better than that on ZBC. Only 0.4 g·L-1 of KBC can absorb 89.62% of NIT in just 5 min. The equilibrium adsorption amounts of NIT on ZBC and KBC were 17.995 mg·g-1 and 82.910 mg·g-1. Elovich and Langmuir models were used to evaluate the whole adsorption process, which was attributed to the chemisorption mechanism. In addition, removal rates of NIT were negatively correlated to NIT's initial concentration and positively correlated to the dose of biochar. pH had almost no effect on adsorption, but the presence of salt ions can inhibit the removal of NIT. Long-term stabilities of biochars were also acceptable. These findings will promote the development in the preparation of biochar fields and provide a positive reference value for NEO removal.
Collapse
Affiliation(s)
- Shangzhen Li
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhihong Zhang
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutian He
- BASIS International School, Guangzhou, 510663, People's Republic of China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhenguo Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
- SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan, 511517, People's Republic of China.
| |
Collapse
|
22
|
A novel multi-components hierarchical porous composite prepared from solid wastes for benzohydroxamic acid degradation. J Colloid Interface Sci 2023; 630:714-726. [PMID: 36347098 DOI: 10.1016/j.jcis.2022.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
In this study, a novel carbon-wrapped-iron hierarchical porous catalyst (Fe/C-Mn800) was prepared from electrolytic manganese residue (EMR) and sewage sludge (SS), which showed outstanding degradation ability toward benzohydroxamic acid (BHA, nearly 90 % was removed within 60 min) with low metal leaching rate. Mechanism exploration found transition metal ions (Fe and Mn) can serve as electron acceptors and facilitate the generation of persistent free radicals (PFRs). These transition metal ions and PFRs mainly participated in the single-electron pathway via activating PMS to generate a large amount of reactive oxygen species (ROS). While the electron negative graphitic N and CO groups not only improve the electronegatively of catalyst, but also acted as the electron sacrificers to favor the electron transfer and directly oxidized the absorbed BHA through the ternary activated outer-sphere complexes. Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) analysis further demonstrated the crucial role of pre-adsorption during the degradation process. This work provided a deep insight into the degradation mechanism of metal/carbon composite and promising opportunity widened the horizon of the high-value utilization of EMR and SS.
Collapse
|
23
|
Peng J, Kang X, Zhao S, Zhao P, Ragauskas AJ, Si C, Xu T, Song X. Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation. J Colloid Interface Sci 2023; 630:654-665. [DOI: 10.1016/j.jcis.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
24
|
Wang T, Ta M, Guo J, Liang LE, Bai C, Zhang J, Ding H. Insight into the synergy between rice shell biochar particle electrodes and peroxymonosulfate in a three-dimensional electrochemical reactor for norfloxacin degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Başar İA, Eskicioglu C, Perendeci NA. Biochar and wood ash amended anaerobic digestion of hydrothermally pretreated lignocellulosic biomass for biorefinery applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:350-360. [PMID: 36323224 DOI: 10.1016/j.wasman.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effect of biochar and wood ash amendment on the anaerobic digestion of hydrothermally pretreated lignocellulosic biomass. Hydrothermal pretreatment was performed on switchgrass at 200, 250, and 300 °C with 0, 30, and 60 min of retention times. The pretreatment method was optimized using the response surface method for enhanced methane production. At the optimum pretreatment (200 °C/0 min retention time), a specific methane yield of 256.9 mL CH4/g volatile solids (VS), corresponding to an increase of 32.8% with respect to the untreated substrate, was obtained. Hydrothermal pretreatment was beneficial for methane production at temperatures lower than 220 °C and retention times shorter than 20 min. At more severe pretreatment conditions than 220°-20 min, sugars were degraded into other products, causing a decrease in the methane yield. The hydrothermal degradation products, i.e., acetic acid, lactic acid, furfural, and hydroxymethylfurfural concentrations, were also measured and modeled. The addition of biochar and wood ash to BMP assays were tested at 2, 9, 16 g/g VSinoculum ratios and <63, 63-125, 125-250 μm particle sizes. A decline in methane production was observed for all tested doses and particle sizes of both additives. The decline in the methane potential was proportional to the doses and particle sizes. Kinetic modeling of BMP test results also supported that using the additives was not beneficial. Based on the result of this study, it was found that the use of biochar and wood ash in a pretreated lignocellulosic biomass processing biorefinery would not be beneficial.
Collapse
Affiliation(s)
- İbrahim Alper Başar
- Department of Environmental Engineering, Akdeniz University, Antalya, Turkey; UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | | |
Collapse
|
26
|
CHEN J, ZHANG Z, YU J, TANG S, CUI B, ZENG J. [Solid phase microextraction of benzenes in river water by pomelo peel biochar]. Se Pu 2022; 40:1031-1038. [PMID: 36351812 PMCID: PMC9654572 DOI: 10.3724/sp.j.1123.2022.02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Pomelo peel, as a by-product of pomelo consumption, is rich in various fiber and functional compounds. The utilization of the valuable components found in pomelo peel may mitigate environmental concerns. In this study, pomelo peel rich in lignin and oxygen-containing functional groups was used to prepare pomelo peel biochar (PPB) via temperature-programmed pyrolysis at different temperatures (800 ℃ and 1000 ℃). Their structures were investigated by N2 adsorption-desorption isotherms and BJH pore size distribution. The results showed that PPB1000 (pomelo peel biochar prepared at 1000 ℃) had a higher specific surface area (749.9 m2/g), larger pore volume (0.42 cm3/g), more concentrated pore size distribution (2-3 nm), and better adsorption performance than commercial activated carbon. PPB1000 exhibited excellent capability to capture benzenes (BTEX, including benzene (B), toluene (T), ethylbenzene (E), and xylene (X)) through hydrogen bonds, π-π, and electrostatic interactions. Additionally, their honeycomb porous structure could provide additional adsorption sites and material transport paths. PPB1000 was coated on iron wire using the sol-gel method to prepare chemically and mechanically stable solid phase microextraction (SPME) fibers. By combining PPB1000-based SPME analysis with gas chromatography-flame ionization detection (GC-FID), an effective method was developed for the extraction and determination of BTEX. The optimized method had low LODs (0.004-0.032 μg/L), wide linear range (1-100 μg/L), and good linear relationship (determination coefficients, r2≥0.9919). The RSDs of the intra-batch (n=6) and inter-batch (n=5) precisions were 1.04%-6.56% and 1.03%-12.42%, respectively. The method validation results showed that PPB1000 had good stability. Compared with the commercial reagent polydimethylsiloxane (7 μm), PPB1000 had a higher extraction efficiency. When applied to the analysis of BTEX in natural water samples, trace levels of ethylbenzene (4.80 μg/L), o-xylene (3. 00 μg/L), and m-xylene and p-xylene (2.46 μg/L) were detected. Recovery tests were performed to validate the reliability of the method, and recoveries were between 75.7% and 117.6%. This effective pretreatment process combined with GC-FID could realize the rapid detection of BTEX and is promising for the analysis of BTEX in complex matrixes in the future.
Collapse
|
27
|
Rapid effectual entrapment of pesticide pollutant by phosphorus-doped biochar: Effects and response sequence of functional groups. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Ma H, Zhao Y, Li X, Liao Q, Li Y, Xu D, Pan YX. Efficient Removal of Pb 2+ from Water by Bamboo-Derived Thin-Walled Hollow Ellipsoidal Carbon-Based Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12179-12188. [PMID: 36170049 DOI: 10.1021/acs.langmuir.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead ion (Pb2+) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m2 g-1. CPCs900 shows a capacity of 37.26 mg g-1 for adsorbing Pb2+ in water and an efficiency of 98.13% for removing Pb2+ from water. This is much better than the activated carbon commonly used for removing Pb2+ from water (12.19 mg g-1, 30.48%). The bond interaction of Pb2+ with the O-containing groups on CPCs900 and the electrostatic interaction of Pb2+ with the electron-rich carbon defects on CPCs900 could be the main forces to drive Pb2+ adsorption on CPCs900. The outstanding adsorption performance of CPCs900 could be due to the abundant O-containing groups and carbon defects as well as the large specific surface area of CPCs900. Bamboo has a large reserve and a low price. The present work successfully converts bamboo into adsorbents with outstanding performances in removing Pb2+ from water. This is of great significance for meeting the huge industrial demand on highly efficient adsorbents for removing toxic metal ions from water.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yiyi Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xingxing Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Qiang Liao
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Dingfeng Xu
- Department of Physical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
- Engineering Research Center of Bamboo-Based Advanced Materials and Material Conversion of Jiangxi Province, Ganzhou, 341000, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
29
|
Adsorption of Phthalate Acid Esters by Activated Carbon: The Overlooked Role of the Ethanol Content. Foods 2022; 11:foods11142114. [PMID: 35885356 PMCID: PMC9323295 DOI: 10.3390/foods11142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Ethanol has great effects on the adsorption of phthalate acid esters (PAEs) on activated carbon (AC), which are usually overlooked and hardly studied. This study investigated the overlooked effects of ethanol on the adsorption of PAEs in alcoholic solutions. The adsorption capacities of dibutyl phthalate (DBP) on AC in solutions with ethanol contents of 30, 50, 70, and 100 v% were only 59%, 43%, 19%, and 10% of that (16.39 mg/g) in water, respectively. The ethanol content increase from 50 v% to 100 v% worsened the adsorption performances significantly with the formation of water–ethanol–DBP clusters (decreasing from 13.99 mg/g to 2.34 mg/g). The molecular dynamics simulation showed that the DBP tended to be distributed farther away from the AC when the ethanol content increased from 0 v% to 100 v% (the average distribution distance increased from 5.25 Å to 15.3 Å). The PAEs with shorter chains were more affected by the presence of ethanol than those with longer chains. Taking DBP as an example, the adsorption capacity of AC in ethanol (0.41 mg/g) is only 2.2% of that in water (18.21 mg/g). The application results in actual Baijiu samples showed that the adsorption of PAEs on AC had important effects on the Baijiu flavors.
Collapse
|
30
|
Zhao Y, Zhai P, Li B, Jin X, Liang Z, Yang S, Li C, Li C. Banana, pineapple, cassava and sugarcane residue biochars cannot mitigate ammonia volatilization from latosols in tropical farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153427. [PMID: 35090906 DOI: 10.1016/j.scitotenv.2022.153427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) volatilization is a major pathway of soil nitrogen loss in tropical farmland, causing many environmental issues. Biochar can improve soil quality and affect soil NH3 volatilization. However, little is known about the effects of tropical crop residue biochar on soil NH3 volatilization in tropical farmland. Therefore, a laboratory incubation study was conducted using four kinds of tropical crop residue biochar (pineapple straw (stem and leaves), banana straw, cassava straw and sugarcane bagasse pyrolyzed at 500 °C) with five addition rates (0.5%, 1%, 2%, 4%, and 6%) to evaluate their impact on NH3 volatilization from tropical latosols. The results showed that NH3 volatilization peaked twice under biochar application, once at 1-5 days and again at 12-16 days. The cumulative NH3 volatilization (0.14-0.47 mg kg-1) of the 20 biochar treatments was higher than that of the control (0.12 mg kg-1). With the increase in the biochar addition rate, the soil pH, soil organic matter (SOM), urease activity, nitrate nitrogen content (NO3--N), nitrification rate and cumulative NH3 volatilization increased gradually, and the 6% biochar treatment resulted in the highest NH3 volatilization loss (0.19-0.47 mg kg-1). The type of biochar is also a main factor affecting soil NH3 volatilization. The cumulative NH3 volatilization was the highest under pineapple straw biochar, as it was 19-43% higher than when the other three biochars were applied. However, sugarcane bagasse biochar had the lowest cumulative NH3 volatilization due to its low quartz, sylvite and calcite contents, lack of -OH hydroxyl groups and high adsorbability. NH3 volatilization was positively correlated with the soil pH, SOM, urease activity, NO3--N and nitrification rate. In conclusion, four tropical crop residue biochars can increase NH3 volatilization in tropical latosols, so reducing NH3 volatilization needs to be further considered in tropical crop residue biochar applications.
Collapse
Affiliation(s)
- Yan Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Pengfei Zhai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Bo Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Xin Jin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Zhenghao Liang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Shuyun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Changzhen Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Changjiang Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
31
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
32
|
Application of Biochar as Functional Material for Remediation of Organic Pollutants in Water: An Overview. Catalysts 2022. [DOI: 10.3390/catal12020210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years, numerous studies have focused on the use of biochar as a biological material for environmental remediation due to its low-cost precursor (waste), low toxicity, and diversity of active sites, along with their facile tailoring techniques. Due to its versatility, biochar has been employed as an adsorbent, catalyst (for activating hydrogen peroxide, ozone, persulfate), and photocatalyst. This review aims to provide a comprehensive overview and compare the application of biochar in water remediation. First, the biochar active sites with their functions are presented. Secondly, an overview and summary of biochar performance in treating organic pollutants in different systems is depicted. Thereafter, an evaluation on performance, removal mechanism, active sites involvement, tolerance to different pH values, stability, and reusability, and an economic analysis of implementing biochar for organic pollutants decontamination in each application is presented. Finally, potential prospects to overcome the drawbacks of each application are provided.
Collapse
|