1
|
Ong A, Teo JYQ, Lim JYC. Interfacial Reactions in Chemical Recycling and Upcycling of Plastics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46975-46987. [PMID: 39214617 PMCID: PMC11403610 DOI: 10.1021/acsami.4c09315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Depolymerization of plastics is a leading strategy to combat the escalating global plastic waste crisis through chemical recycling, upcycling, and remediation of micro-/nanoplastics. However, critical processes necessary for polymer chain scission, occurring at the polymer-catalyst or polymer-fluid interfaces, remain largely overlooked. Herein, we spotlight the importance of understanding these interfacial chemical processes as a critical necessity for optimizing kinetics and reactivity in plastics recycling and upcycling, controlling reaction outcomes, product distributions, as well as improving the environmental sustainability of these processes. Several examples are highlighted in heterogeneous processes such as hydrogenation over solid catalysts, reaction of plastics in immiscible media, and biocatalysis. Ultimately, judicious exploitation of interfacial reactivity has practical implications in developing practical, robust, and cost-effective processes to reduce plastic waste and enable a viable post-use circular plastics economy.
Collapse
Affiliation(s)
- Albert Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jerald Y Q Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
2
|
Safdar A, Ismail F, Safdar M, Imran M. Eco-friendly approaches for mitigating plastic pollution: advancements and implications for a greener future. Biodegradation 2024; 35:493-518. [PMID: 38310578 DOI: 10.1007/s10532-023-10062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Plastic pollution has become a global problem since the extensive use of plastic in industries such as packaging, electronics, manufacturing and construction, healthcare, transportation, and others. This has resulted in an environmental burden that is continually growing, which has inspired many scientists as well as environmentalists to come up with creative solutions to deal with this problem. Numerous studies have been reviewed to determine practical, affordable, and environmentally friendly solutions to regulate plastic waste by leveraging microbes' innate abilities to naturally decompose polymers. Enzymatic breakdown of plastics has been proposed to serve this goal since the discovery of enzymes from microbial sources that truly interact with plastic in its naturalistic environment and because it is a much faster and more effective method than others. The scope of diverse microbes and associated enzymes in polymer breakdown is highlighted in the current review. The use of co-cultures or microbial consortium-based techniques for the improved breakdown of plastic products and the generation of high-value end products that may be utilized as prototypes of bioenergy sources is highlighted. The review also offers a thorough overview of the developments in the microbiological and enzymatic biological degradation of plastics, as well as several elements that impact this process for the survival of our planet.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Maryem Safdar
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Imran
- Institute of Advanced Study, Shenzhen University, Shenzhen, 5180600, Guangdong Province, China.
| |
Collapse
|
3
|
Martínez-Espinosa RM. Halophilic archaea as tools for bioremediation technologies. Appl Microbiol Biotechnol 2024; 108:401. [PMID: 38951176 PMCID: PMC11217053 DOI: 10.1007/s00253-024-13241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
4
|
Zhang S, Chen Y, Liu S, Li Y, Zhao H, Chen Q, Hou X. Dissolution-precipitation method concatenated sodium alginate/MOF-derived magnetic multistage pore carbon magnetic solid phase extraction for determination of antioxidants and ultraviolet stabilizers in polylactic acid food contact plastics. Talanta 2024; 270:125487. [PMID: 38101034 DOI: 10.1016/j.talanta.2023.125487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Antioxidants and UV stabilizers have some endocrine disrupting effects and liver toxicity. Both types of additives are still widely used in food contact plastics to improve the durability of plastic products. However, efficient and rapid detection of antioxidants and UV stabilizers has been a challenge due to the complexity of the plastic matrix and the low content of antioxidants and UV stabilizers. In this study, a sodium alginate/MOF-derived magnetic multistage pore carbon material (MIL-101(Fe)/SA-CAs) was developed, having the merits of abundant multistage pore structure, large specific surface area, and good magnetic separation properties. Thus, this material was selected as the sorbent for magnetic solid-phase extraction combined with a dissolution-precipitation method for the extraction and purification of antioxidants and UV stabilizers from polylactic acid food contact plastics. The extraction parameters such as sorbent type, sorbent dosage, sample solution pH, ionic strength, sorption time, elution solution type, volume, and time were investigated. Under the optimized conditions, all the analytes determined by UPLC-MS/MS showed good linear range (r > 0.99), detection limit (0.023-3.105 ng g-1), accuracy (70.6-102.3 %), and reproducibility (RSD<9.8 %). Further, the developed method was applied to determine the antioxidants and UV stabilizers in polylactic acid lunch boxes and straws, showing excellent applicability. The results showed that the antioxidants and UV stabilizers were detected in some of the samples, with a maximum detection of antioxidant 1010 at 7297 ng g-1. This study provided a sensitive, efficient, and environmentally friendly method for antioxidants and UV stabilizers in polylactic acid food contact plastics. The ideas for the design of environmentally friendly metal-organic frameworks and biomass composite multifunctional materials would promise in the sample pretreatment field for the emerging contaminants.
Collapse
Affiliation(s)
- Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yuhan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Shuanghe Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Huanhuan Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
6
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
7
|
Guo M, Li Y, Niu S, Zhang R, Shen X, Ma Y, Wu L, Wu T, Zhang T, Tang M, Xue Y. Oxidative stress-activated Nrf2 remitted polystyrene nanoplastic-induced mitochondrial damage and inflammatory response in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104385. [PMID: 38340909 DOI: 10.1016/j.etap.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 μg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; Jinan Center For Disease Control and Prevention, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xin Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yu Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Liqing Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Guo S, Feng D, Li Y, Liu L, Tang J. Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115979. [PMID: 38244511 DOI: 10.1016/j.ecoenv.2024.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Yu Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
10
|
Buhari SB, Nezhad NG, Normi YM, Shariff FM, Leow TC. Insight on recently discovered PET polyester-degrading enzymes, thermostability and activity analyses. 3 Biotech 2024; 14:31. [PMID: 38178895 PMCID: PMC10761646 DOI: 10.1007/s13205-023-03882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The flexibility and the low production costs offered by plastics have made them crucial to society. Unfortunately, due to their resistance to biological degradation, plastics remain in the environment for an extended period of time, posing a growing risk to life on earth. Synthetic treatments of plastic waste damage the environment and may cause damage to human health. Bacterial and fungal isolates have been reported to degrade plastic polymers in a logistic safe approach with the help of their microbial cell enzymes. Recently, the bacterial strain Ideonella sakaiensis (201-F6) was discovered to break down and assimilate polyethylene terephthalate (PET) plastic via metabolic processes at 30 °C to 37 °C. PETase and MHETase enzymes help the bacterium to accomplish such tremendous action at lower temperatures than previously discovered enzymes. In addition to functioning at low temperatures, the noble bacterium's enzymes have amazing qualities over pH and PET plastic degradation, including a shorter period of degradation. It has been proven that using the enzyme PETase, this bacterium hydrolyzes the ester linkages of PET plastic, resulting in production of terephthalic acid (TPA), nontoxic compound and mono-2-hydroxyethyl (MHET), along with further depolymerization of MHET to release ethylene glycogen (EG) and terephthalic acid (TPA) by the second enzyme MHETase. Enzymatic plastic degradation has been proposed as an environmentally friendly and long-term solution to plastic waste in the environment. As a result, this review focuses on the enzymes involved in hydrolyzing PET plastic polymers, as well as some of the other microorganisms involved in plastic degradation.
Collapse
Affiliation(s)
- Sunusi Bataiya Buhari
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|
11
|
Jadhav HS, Fulke AB, Dasari LN, Dalai A, Haridevi CK. Plastic bio-mitigation by Pseudomonas mendocina ABF786 and simultaneous conversion of its CO 2 byproduct to microalgal biodiesel. BIORESOURCE TECHNOLOGY 2024; 391:129952. [PMID: 37925087 DOI: 10.1016/j.biortech.2023.129952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Bio-mitigation of plastics by microorganisms generates carbon dioxide (CO2) that can be utilized for algal biomass generation. Pseudomonas mendocina ABF786, reportedly the most efficient plastic-degrading bacteria, was screened using the modified most probable number technique. This study highlights the use of an integrative prototype for the production of microalgal biomass (Chlorella vulgaris) in combination with bio-mitigation of plastics, which serves a dual purpose: (i) increased plastic-degradation capability by microorganisms (53%-85% increase in plastic weight loss) due to removal of CO2 feedback inhibition and (ii) increased algal biomass generation (200%-237%) due to supply of extra CO2 from plastic degradation to the algal cultivation flask. Whole-genome sequencing and functional annotation confirmed that all the genes involved in the mineralization of plastic to CO2 are present within the genome of P. mendocina ABF786. Using two or more microbial cultures for remediation may increase the process efficiency.
Collapse
Affiliation(s)
- Harshal S Jadhav
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay B Fulke
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Laxman N Dasari
- Department of Life Science and Biotechnology, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai 410206, India
| | - Abhishek Dalai
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India
| | - C K Haridevi
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India
| |
Collapse
|
12
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
13
|
Krainara S, Mistry AN, Malee C, Chavananikul C, Pinyakong O, Assavalapsakul W, Jitpraphai SM, Kachenchart B, Luepromchai E. Development of a plastic waste treatment process by combining deep eutectic solvent (DES) pretreatment and bioaugmentation with a plastic-degrading bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132507. [PMID: 37699265 DOI: 10.1016/j.jhazmat.2023.132507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Polyethylene terephthalate (PET), a petroleum-based plastic, and polylactic acid (PLA), a biobased plastic, have a similar visual appearance thus they usually end up in municipal waste treatment facilities. The objective of this project was to develop an effective PET and PLA waste treatment process that involves pretreatment with deep eutectic solvent (DES) followed by biodegradation with a plastic-degrading bacterial consortium in a composting system. The DES used was a mixture of choline chloride and glycerol, while the bacterial strains (Chitinophaga jiangningensis EA02, Nocardioides zeae EA12, Stenotrophomonas pavanii EA33, Gordonia desulfuricans EA63, Achromobacter xylosoxidans A9 and Mycolicibacterium parafortuitum J101) used to prepare the bacterial consortium were selected based on their ability to biodegrade PET, PLA, and plasticizer. The plastic samples (a PET bottle, PLA cup, and PLA film) were pretreated with DES through a dip-coating method. The DES-coated plastic samples exhibited higher surface wettability and biofilm formation, indicating that DES increases the hydrophilicity of the plastic and facilitates bacterial attachment to the plastic surface. The combined action of DES pretreatment and bioaugmentation with a plastic-degrading bacterial consortium led to improved degradation of PET and PLA samples in various environments, including aqueous media at ambient temperature, lab-scale traditional composting, and pilot-scale composting.
Collapse
Affiliation(s)
- Saowaluk Krainara
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Avnish Nitin Mistry
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Chawanan Malee
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Chavananikul
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Wanchai Assavalapsakul
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Somrudee Meprasert Jitpraphai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Department of Marine Sciences, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Boonlue Kachenchart
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Yin K, Wang D, Zhang Y, Lu H, Hou L, Guo T, Zhao H, Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131236. [PMID: 36958159 DOI: 10.1016/j.jhazmat.2023.131236] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), a new and increasing environmental pollutant, can cause ongoing damage to organisms. Although recent studies have revealed mechanisms of action for some of the hepatotoxicity caused by MPs, the role-played by cellular interactions, particularly immune cells, in the process of liver injury has not been elucidated. In the present study, 5-μm polystyrene microplastics (PS-MPs) induced liver inflammation as well as the formation of Macrophage extracellular traps (METs). Macrophage and LMH cell co-culture systems confirmed that PS-MPs-induced METs promote inflammation in hepatocytes. Mechanistically, macrophages actively phagocytose particles after 4 h of exposure to PS-MPs. Subsequently PS-MPs elevated ROS levels and disrupt mitochondrial kinetic homeostasis. Further activation of mitochondrial autophagy and lysosomes. After phagocytosis of PS-MPs by macrophages for 12 h, continued autophagy and lysosome activation eventually lead to lysosome rupture and release of calcium ions to induce the formation of METs. Blocking ROS (NAC) and autophagy (3MA) partially alleviated mitochondrial and lysosomal damage and thus inhibited the formation of METs induced by PS-MPs. NAC also delayed the onset of respiratory burst to alleviate METs formation. In conclusion, our study reveals the mechanism of METs formation in liver inflammation induced by PS-MPs exposure and suggests that lysosomal damage may be one of the key players in the formation of METs induced by PS-MPs.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
15
|
Ding W, Zhang Y, Li S, Remón J, Wang K, Bao L, Pang X. Novel Biomass-Based Polymeric Dyes: Preparation and Performance Assessment in the Dyeing of Biomass-Derived Aldehyde-Tanned Leather. Polymers (Basel) 2023; 15:polym15102300. [PMID: 37242874 DOI: 10.3390/polym15102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-performance chrome-free leather production is currently one of the most concerning needs to warrant the sustainable development of the leather industry due to the serious chrome pollution. Driven by these research challenges, this work explores using biobased polymeric dyes (BPDs) based on dialdehyde starch and reactive small-molecule dye (reactive red 180, RD-180) as novel dyeing agents for leather tanned using a chrome-free, biomass-derived aldehyde tanning agent (BAT). FTIR, 1H NMR, XPS, and UV-visible spectrometry analyses indicated that a Schiff base structure was generated between the aldehyde group of dialdehyde starch (DST) and the amino group of RD-180, resulting in the successful load of RD-180 on DST to produce BPD. The BPD could first penetrate the BAT-tanned leather efficiently and then be deposited on the leather matrix, thus exhibiting a high uptake ratio. Compared with the crust leathers prepared using a conventional anionic dye (CAD), dyeing, and RD-180 dyeing, the BPD-dyed crust leather not only had better coloring uniformity and fastness but it also showed a higher tensile strength, elongation at break, and fullness. These data suggest that BPD has the potential to be used as a novel sustainable polymeric dye for the high-performance dyeing of organically tanned chrome-free leather, which is paramount to ensuring and promoting the sustainable development of the leather industry.
Collapse
Affiliation(s)
- Wei Ding
- China Leather and Footwear Research Institute Co., Ltd., Beijing 100015, China
| | - Yinuo Zhang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Shuolin Li
- China Leather and Footwear Research Institute Co., Ltd., Beijing 100015, China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - Kanglei Wang
- China Leather and Footwear Research Institute Co., Ltd., Beijing 100015, China
| | - Lihong Bao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co., Ltd., Beijing 100015, China
| |
Collapse
|
16
|
Zhu W, Jin P, Yang H, Li F, Wang C, Li T, Fan J. A green extraction strategy for the detection of antioxidants in food simulants and beverages migrated from plastic packaging materials. Food Chem 2023; 406:135060. [PMID: 36459798 DOI: 10.1016/j.foodchem.2022.135060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Antioxidants, widely utilized in the food packaging field, have a risk of migrating into foodstuffs and eventually entering the human body. In this work, a novel method was established for green extraction and determination of antioxidants in food simulants migrated from plastic packaging materials. It was found that the antioxidants could be extracted directly from food simulants by in-situ formation of hydrophobic deep eutectic solvents with low toxic medium-chain fatty alcohols. Under the optimal conditions, the limit of detection was 0.15 to 0.25 µg/L, and the limit of quantification was 0.5 to 1.0 µg/L for the antioxidants. The extraction reaches equilibrium in 2 min. Importantly, butylated hydroxytoluene was detected in two types of the surveyed food contact materials. The established method shows high sensitivity, high enrichment factor, and strong anti-interference ability, and can be used for the separation and enrichment of ultra-trace antioxidants in foodstuffs.
Collapse
Affiliation(s)
- Wenjuan Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, PR China
| | - Pingning Jin
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Hongrui Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Fei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chen Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Tiemei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
17
|
Ma J, Xu M, Wu J, Yang G, Zhang X, Song C, Long L, Chen C, Xu C, Wang Y. Effects of variable-sized polyethylene microplastics on soil chemical properties and functions and microbial communities in purple soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161642. [PMID: 36652965 DOI: 10.1016/j.scitotenv.2023.161642] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Microplastic contamination of soil has drawn increased attention due to the ecological harm it poses to the soil ecosystem. However, little is known about how microplastic particle sizes affect soil chemical properties and microbial communities, particularly in purple soil. In this study, a four-week incubation experiment was conducted to evaluate the effect of polyethylene microplastics (PE MPs) with different particle sizes (i.e., 300 and 600 μm) on soil properties, extracellular polymeric substances (EPS), enzyme activities, and microbial communities in purple soil. When compared to 600 μm-PE MPs, 300 μm-PE MPs reduced contents of dissolved organic matter (DOM), EPS, and β-1,4-N-acetylglucosaminidase (NAG) activity, but increased the cation exchange capacity (CEC). High-throughput 16S rRNA gene sequencing revealed that the 300 μm-PE MPs resulted in an increase in the phylum Nitrospirae, which is associated with microplastic degradation. The data implied that smaller PE MPs improved the growth of polyethylene-degrading bacteria by adsorbing more EPS and DOM, resulting in the degradation of microplastics. Co-occurrence network analysis revealed that smaller PE MPs had lower toxicity to microbial populations than larger PE MPs, increasing the stability of the network. CEC and β-1,4-glucosidase (BG) were found to be the two major factors affecting the microbial communities by redundancy analysis (RDA). The study highlighted how microplastic particle sizes affect soil bacterial communities and soil functions.
Collapse
Affiliation(s)
- Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Changlian Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
18
|
Malik S, Maurya A, Khare SK, Srivastava KR. Computational Exploration of Bio-Degradation Patterns of Various Plastic Types. Polymers (Basel) 2023; 15:polym15061540. [PMID: 36987320 PMCID: PMC10056476 DOI: 10.3390/polym15061540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
Plastic materials are recalcitrant in the open environment, surviving for longer without complete remediation. The current disposal methods of used plastic material are inefficient; consequently, plastic wastes are infiltrating the natural resources of the biosphere. The mixed composition of urban domestic waste with different plastic types makes them unfavorable for recycling; however, natural assimilation in situ is still an option to explore. In this research work, we have utilized previously published reports on the biodegradation of various plastics types and analyzed the pattern of microbial degradation. Our results demonstrate that the biodegradation of plastic material follows the chemical classification of plastic types based on their main molecular backbone. The clustering analysis of various plastic types based on their biodegradation reports has grouped them into two broad categories of C-C (non-hydrolyzable) and C-X (hydrolyzable). The C-C and C-X groups show a statistically significant difference in their biodegradation pattern at the genus level. The Bacilli class of bacteria is found to be reported more often in the C-C category, which is challenging to degrade compared to C-X. Genus enrichment analysis suggests that Pseudomonas and Bacillus from bacteria and Aspergillus and Penicillium from fungi are potential genera for the bioremediation of mixed plastic waste. The lack of uniformity in reporting the results of microbial degradation of plastic also needs to be addressed to enable productive growth in the field. Overall, the result points towards the feasibility of a microbial-based biodegradation solution for mixed plastic waste.
Collapse
Affiliation(s)
- Sunny Malik
- Regional Centre for Biotechnology, Faridabad 121002, Haryana, India
| | - Ankita Maurya
- Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | - Sunil Kumar Khare
- Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | | |
Collapse
|
19
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
20
|
Ge J, Wang M, Liu P, Zhang Z, Peng J, Guo X. A systematic review on the aging of microplastics and the effects of typical factors in various environmental media. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Wang S, Muiruri JK, Soo XYD, Liu S, Thitsartarn W, Tan BH, Suwardi A, Li Z, Zhu Q, Loh XJ. Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future. Chem Asian J 2023; 18:e202200972. [PMID: 36461701 DOI: 10.1002/asia.202200972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Polypropylene (PP) is among the most widely used commodity plastics in our everyday life due to its low cost, lightweight, easy processability, and exceptional chemical, thermo-mechanical characteristics. The growing awareness on energy and environmental crisis has driven global efforts for creating a circular economy via developing sustainable and eco-friendly alternatives to traditional plastics produced from fossil fuels for a variety of end-use applications. This review paper presents a brief outline of the emerging bio-based PP derived from renewable natural resources, covering its production routes, market analysis and potential utilizations. This contribution also provides a comprehensive review of the PP-based biocomposites produced with diverse green fillers generated from agro-industrial wastes, with particular emphasis on the structural modification, processing techniques, mechanical properties, and practical applications. Furthermore, given that the majority of PP products are currently destined for landfills, research progress on enhancing the degradation of PP and its biocomposites is also presented in light of the environmental concerns. Finally, a brief conclusion with discussions on challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| |
Collapse
|
23
|
Zhang C, Mu Y, Li T, Jin FJ, Jin CZ, Oh HM, Lee HG, Jin L. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere". Front Microbiol 2023; 14:1181967. [PMID: 37138608 PMCID: PMC10150012 DOI: 10.3389/fmicb.2023.1181967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.
Collapse
Affiliation(s)
- Chengxiao Zhang
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yulin Mu
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Hyung-Gwan Lee,
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Long Jin,
| |
Collapse
|
24
|
Kim NK, Lee SH, Park HD. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127931. [PMID: 36100185 DOI: 10.1016/j.biortech.2022.127931] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into value-added products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.
Collapse
Affiliation(s)
- Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
25
|
Kim DW, Ahn JH, Cha CJ. Biodegradation of plastics: mining of plastic-degrading microorganisms and enzymes using metagenomics approaches. J Microbiol 2022; 60:969-976. [DOI: 10.1007/s12275-022-2313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
|
26
|
Hu X, Gu H, Wang Y, Liu J, Yu Z, Li Y, Jin J, Liu X, Dai Q, Wang G. Succession of soil bacterial communities and network patterns in response to conventional and biodegradable microplastics: A microcosmic study in Mollisol. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129218. [PMID: 35739740 DOI: 10.1016/j.jhazmat.2022.129218] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Significant soil contamination of microplastics (MPs) by the application of agricultural mulching films has aroused global concern, however, the effects of conventional and biodegradable MPs on the dynamics of soil microbial communities and network patterns have not been sufficiently reported. In this study, we conducted a soil microcosmic experiment by adding low-density polyethylene and biodegradable MPs (PE and BD) into a black soil at the dosages of 0 % (CK), 0.1 % (low-dose, w/w), 1 % (medium-dose, w/w) and 5 % (high-dose, w/w), and soils were sampled on the 15th, 30th, 60th and 90th day of soil incubation for high-throughput sequencing. The results showed that the incubation time was the most influential factor driving the variations in bacterial community structures, and significant effects of MP dosages and types were also detected. With the increase in MP dosage, bacterial diversity markedly increased and decreased at the beginning (D15) and end of sampling day (D90), respectively. Compared to CK, BD induced a larger community dissimilarity than PE and tended to enrich environmentally friendly taxa, while PE likely promoted the growth of hazardous taxa. Moreover, BD simplified interspecies interactions compared to the networks of PE and CK, and Nitrospira was identified as a keystone species in both PE and BD networks. These findings provide new insights into the influences of conventional and biodegradable MPs on the succession patterns of soil bacterial communities, and further studies are needed to explore the soil metabolic potentials affected by the presence of MPs.
Collapse
Affiliation(s)
- Xiaojing Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Haidong Gu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yongbin Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Qingwen Dai
- Hangzhou Sci-Doer Technology Co., Ltd, Hangzhou 311100, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
27
|
Abstract
Human activity and modern production contribute to the formation of a certain amount of waste that can be recycled to obtain useful products and energy sources. Today, the higher the level of industrial development, the greater the amount of waste generated, and as a result, the more important the need for disposal. A similar pattern is typical for any human production activity; as a result of large-scale production, at least 70–80% of waste is generated in relation to the amount of raw materials used. The large-scale use of polymeric materials and the plastic waste generated after their use lead to environmental pollution. While a small part of the waste is utilized naturally due to the vital activity of soil microorganisms, and a part is purposefully processed by humans into products for various purposes, a fairly large amount of waste occupies large areas in the form of a variety of garbage. After the removal of garbage by incineration, the liberated territories cannot be transferred to agricultural land due to the high content of harmful contaminants. The harm to the environment is quite obvious. In practice, certain types of waste consist of more than 70% content of valuable substances that can find further practical application in a wide variety of industries.
Collapse
|
28
|
Xiao M, Ding J, Luo Y, Zhang H, Yu Y, Yao H, Zhu Z, Chadwick DR, Jones D, Chen J, Ge T. Microplastics shape microbial communities affecting soil organic matter decomposition in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128589. [PMID: 35247738 DOI: 10.1016/j.jhazmat.2022.128589] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) can alter microbial communities and carbon (C) cycling in agricultural soils. However, the mechanism by which MPs affect the decomposition of microbe-driven soil organic matter remains unknown. We investigated the bacterial community succession and temporal turnover during soil organic matter decomposition in MP-amended paddy soils (none, low [0.01% w/w], or high [1% w/w]). We observed that MPs reduced the CO2 efflux rate on day 3 and subsequently promoted it on day 15 of incubation. This increased CO2 emission in MP-amended soil may be related to (i) enhanced hydrolase enzyme activities or; (ii) shifts in the Shannon diversity, positive group interactions, and temporal turnover rates (from 0.018 to 0.040). CO2 efflux was positively correlated (r > 0.8, p < 0.01) with Ruminiclostridium_1, Mobilitalea, Eubacterium xylanophilum, Sporomusa, Anaerobacteriu, Papillibacter, Syntrophomonadaceae, and Ruminococcaceae_UCG_013 abundance in soil with high MPs, indicating that these genera play important roles in soil organic C mineralization. These results demonstrate how microorganisms adapt to MPs and thus influence the C cycle in MP-polluted paddy ecosystems.
Collapse
Affiliation(s)
- Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ji'na Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yongxiang Yu
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huaiying Yao
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - David R Chadwick
- School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Davey Jones
- School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
29
|
Verschoor JA, Kusumawardhani H, Ram AFJ, de Winde JH. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Front Microbiol 2022; 13:821629. [PMID: 35401461 PMCID: PMC8985596 DOI: 10.3389/fmicb.2022.821629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 400 Mt of plastics are produced of which roughly 40% is discarded within a year. Current plastic waste management approaches focus on applying physical, thermal, and chemical treatments of plastic polymers. However, these methods have severe limitations leading to the loss of valuable materials and resources. Another major drawback is the rapid accumulation of plastics into the environment causing one of the biggest environmental threats of the twenty-first century. Therefore, to complement current plastic management approaches novel routes toward plastic degradation and upcycling need to be developed. Enzymatic degradation and conversion of plastics present a promising approach toward sustainable recycling of plastics and plastics building blocks. However, the quest for novel enzymes that efficiently operate in cost-effective, large-scale plastics degradation poses many challenges. To date, a wide range of experimental set-ups has been reported, in many cases lacking a detailed investigation of microbial species exhibiting plastics degrading properties as well as of their corresponding plastics degrading enzymes. The apparent lack of consistent approaches compromises the necessary discovery of a wide range of novel enzymes. In this review, we discuss prospects and possibilities for efficient enzymatic degradation, recycling, and upcycling of plastics, in correlation with their wide diversity and broad utilization. Current methods for the identification and optimization of plastics degrading enzymes are compared and discussed. We present a framework for a standardized workflow, allowing transparent discovery and optimization of novel enzymes for efficient and sustainable plastics degradation in the future.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Arthur F. J. Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Johannes H. de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
30
|
Tiwari N, Bansal M, Santhiya D, Sharma JG. Insights into microbial diversity on plastisphere by multi-omics. Arch Microbiol 2022; 204:216. [PMID: 35316402 DOI: 10.1007/s00203-022-02806-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Plastic pollution is a major concern in marine environment as it takes many years to degrade and is one of the greatest threats to marine life. Plastic surface, referred to as plastisphere, provides habitat for growth and proliferation of various microorganisms. The discovery of these microbes is necessary to identify significant genes, enzymes and bioactive compounds that could help in bioremediation and other commercial applications. Conventional culture techniques have been successful in identifying few microbes from these habitats, leaving majority of them yet to be explored. As such, to recognize the vivid genetic diversity of microbes residing in plastisphere, their structure and corresponding ecological roles within the ecosystem, an emerging technique, called metagenomics has been explored. The technique is expected to provide hitherto unknown information on microbes from the plastisphere. Metagenomics along with next generation sequencing provides comprehensive knowledge on microbes residing in plastisphere that identifies novel microbes for plastic bioremediation, bioactive compounds and other potential benefits. The following review summarizes the efficiency of metagenomics and next generation sequencing technology over conventionally used methods for culturing microbes. It attempts to illustrate the workflow mechanism of metagenomics to elucidate diverse microbial profiles. Further, importance of integrated multi-omics techniques has been highlighted in discovering microbial ecology residing on plastisphere for wider applications.
Collapse
Affiliation(s)
- Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
31
|
Han P, Teo WZ, Yew WS. Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. ENGINEERING BIOLOGY 2022; 6:23-34. [PMID: 36968558 PMCID: PMC9995160 DOI: 10.1049/enb2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the face of a burgeoning stream of e-waste globally, e-waste recycling becomes increasingly imperative, not only to mitigate the environmental and health risks it poses but also as an urban mining strategy for resource recovery of precious metals, rare Earth elements, and even plastics. As part of the continual efforts to develop greener alternatives to conventional approaches of e-waste recycling, biologically assisted degradation of e-waste offers a promising recourse by capitalising on certain microorganisms' innate ability to interact with metals or degrade plastics. By harnessing emerging genetic tools in synthetic biology, the evolution of novel or enhanced capabilities needed to advance bioremediation and resource recovery could be potentially accelerated by improving enzyme catalytic abilities, modifying substrate specificities, and increasing toxicity tolerance. Yet, the management of e-waste presents formidable challenges due to its massive volume, high component complexity, and associated toxicity. Several limitations will need to be addressed before nascent laboratory-scale achievements in bioremediation can be translated to viable industrial applications. Nonetheless, vested groups, involving both start-up and established companies, have taken visionary steps towards deploying microbes for commercial implementation in e-waste recycling.
Collapse
Affiliation(s)
- Ping Han
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhe Teo
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
32
|
Singh Jadaun J, Bansal S, Sonthalia A, Rai AK, Singh SP. Biodegradation of plastics for sustainable environment. BIORESOURCE TECHNOLOGY 2022; 347:126697. [PMID: 35026422 DOI: 10.1016/j.biortech.2022.126697] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Plastics are a kind of utility product that has become part and parcel of one's life. Their continuous usage, accumulation, and contamination of soil and water pose a severe threat to the biotic and abiotic components of the environment. It not only increases the carbon footprints but also contributes to global warming. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. The microbial strains equipped with the potential of degrading plastic materials, which can further be converted into usable products, are blessings for the ecosystem. This review comprehensively summarizes the microbial technologies to degrade different plastic types, such as polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), and polyurethane (PU). The study also describes the utilization of degraded plastic material as feedstock for its conversion into high-value chemicals.
Collapse
Affiliation(s)
- Jyoti Singh Jadaun
- Department of Botany, Dayanand Girls Postgraduate College, Kanpur 208001, Uttar Pradesh, India
| | - Shilpi Bansal
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 10012, India
| | - Ankit Sonthalia
- SRM Institute of Science and Technology, NCR Campus, Modi Nagar- 201204, Ghaziabad, Uttar Pradesh, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|