1
|
Gou Y, Liu Y, Hu A, Mao G, Dong R, Li S, Liu P, Liu Y, Ji M. Dissemination of genes associated with antibiotic resistance and bacterial virulence during ecosystem succession in two Tibetan glacier forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178514. [PMID: 39824110 DOI: 10.1016/j.scitotenv.2025.178514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
The release of pathogens and DNA from the cryosphere (glacier, permafrost, and, sea ice) has become a new threat to society and environment. Due to enhanced glacier retreat, the size of glacier forefields has greatly expanded. Herein, we used a combination of metagenomic and metatranscriptomic methods and adopted a sequence-based approach to investigate the distribution and changing patterns of virulence factor genes (VFGs) and antibiotic resistance genes (ARGs) in two glacier forefields. The forefields are separated by approximately 400 km located in the center and north of the Tibetan Plateau, which are used to demonstrate the gene dissemination capacity across short (10 m) and long (730 m) spatial transects. The results revealed a diverse range of actively transcribed VFGs and ARGs. The relative abundance of ARG reduced with ecosystem succession, while that of VFG was similar, suggesting that the ARG is under a stronger environmental selection pressure. VFGs and ARGs were dominated by those associated with adherence and vancomycin resistance, respectively. Notably, toxin production related genes were identified but a low abundance, indicating a low risk to health in glacier forefields. The dissemination risks were low for both VFGs and ARGs, which was strongly constrained by dispersal limitation. Additionally, the limited dissemination was mainly through vertical transmission, instead of horizontal transfer. In conclusion, the sequence-based approach revealed a low risk to health in recently deglaciated areas, with the risk of VFGs and ARGs being disseminated into downstream ecosystems remaining low.
Collapse
Affiliation(s)
- Yuan Gou
- Jserra Catholic High School, CA, USA
| | - Yang Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Ruyi Dong
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China
| | - Saifei Li
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China.
| |
Collapse
|
2
|
Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, Ismail A, Bux F, Kumari S. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137180. [PMID: 39847933 DOI: 10.1016/j.jhazmat.2025.137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The ever-increasing microplastics (MPs) and antibiotic-resistance genes (ARGs) in aquatic ecosystems has become a serious global challenging issue. However, the impact of different pollution sources on microbiome and antibiotic resistome in surface water (SW) and plastisphere (PS) remains largely elusive. Here, shotgun metagenomics was used to analyze microbiome structure and antibiotic resistome in SW and PS under the influence of different pollution sources. Pseudomonas were the most abundant genus, followed by Flavobacterium, Acinetobacter, Acidovorax, and Limnohabitans. However, their relative abundance varied significantly both across the sampling sites and habitats i.e. SW and PS (p < 0.05). Additionally, various ARGs were detected in SW and PS, with PS (372) having significantly more potential ARGs than SW (293). The results further showed significant variations in the relative abundance of potential pathogenic bacteria across the sampling sites and habitats (p < 0.05). Further moreover, significant differences were observed in antibiotic resistome risk scores, ARGs and MGEs across different habitats. Over all, this study suggests that pollution source and water quality parameters had a significant impact on microbiome composition and antibiotic resistome in SW and PS.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Malambule Nomalihle
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Jonathan Featherston
- Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm10 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa.
| |
Collapse
|
3
|
Yang T, Wang X, Ng HY, Huang S, Bi X, Zheng X, Zhou X. Antibiotic resistance and resistome risks of inhalable bioaerosols at aeration tank of a full-scale wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136253. [PMID: 39454330 DOI: 10.1016/j.jhazmat.2024.136253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Antibiotic resistome could be aerosolized under wastewater aeration processes, however, their seasonal variation, mobility, hosts, aerosolization behavior, and risk, are largely unknown. Herein, the antibiotic resistant pollution associated with fine particulate matter (PM2.5) from the actual aeration tank (AerT), was analyzed using metagenomic assembly. The antibiotic resistance of AerT-PM2.5 was characterized by significant seasonality. Antibiotic resistance genes (ARGs) in AerT-PM2.5, exhibited higher enrichment and mobility and were harbored more by pathogens than those in upwind-PM2.5, regardless of sampling season. Mobile ARGs were mainly flanked by transposase. Totally, 18 pathogenic antibiotic-resistant bacteria (PARB) carried more than one ARG, including 9 PARB with multiple ARG types. Although wastewater exerted a dominant source contribution for the airborne ARGs (47.31-55.56 %) and PARB (46.18-64.32 %), aeration endowed differential aerosolization capacity for various ARGs and PARB from wastewater. Airborne antibiotic resistome was mainly determined by bacterial community and indirectly influenced by meteorological conditions (i.e., relative humidity). Higher PM2.5-borne resistome risk was observed in AerT than upwind, and the most serious resistome risk of AerT-PM2.5 was found in winter. This study emphasizes the importance of wastewater aeration processes in emission of airborne antibiotic resistome and offers referenced information for mitigating air pollution in wastewater treatment plants.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
4
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
6
|
Stevenson EM, Rushby-Jones O, Buckling A, Cole M, Lindeque PK, Murray AK. Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001506. [PMID: 39405105 PMCID: PMC11477370 DOI: 10.1099/mic.0.001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Owen Rushby-Jones
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Penelope K. Lindeque
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Aimee K. Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
| |
Collapse
|
7
|
Eyheraguibel B, Diémé B, Lagrée M, Durand S, Barbe V, Meistertzheim AL, Ter Halle A, Burgaud G, Ghiglione JF. Untargeted metabolomic insights into plastisphere communities in European rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34214-9. [PMID: 39090296 DOI: 10.1007/s11356-024-34214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
Every year, rivers introduce a staggering amount of hundred kilotons of plastic into the Oceans. This plastic is inhabited by microorganisms known as the plastisphere, which can be transferred between different ecosystems through the transport of microplastics. Here, we simulated the microbial colonization of polyethylene-based plastic pellets that are classically used to manufacture large-scale plastic products. The pellets were immersed for 1 month in four to five sampling stations along the river-to-sea continuum of nine of the major European rivers. This study presents the first untargeted metabolomics analysis of the plastisphere, by using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The plastisphere metabolomes were similar in the Rhine and Rhone rivers, while being different from the Tiber and Loire rivers, which showed greater similarity to the Thames and Seine rivers. Interestingly, we found a clear distinction between plastisphere metabolomes from freshwater and marine water in most of the river-to-sea continuum, thus suggesting a complete segregation in plastisphere metabolites that is not consistent with a major transfer of microorganisms between the two contrasted ecosystems. Putative annotations of 189 discriminating metabolites suggested that lipid metabolism was significantly modulated. These results enlightened the relevance of using environmental metabolomic as complementary analysis to the current OMICs analysis.
Collapse
Affiliation(s)
- Boris Eyheraguibel
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Binta Diémé
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagrée
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Stéphanie Durand
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Alexandra Ter Halle
- Laboratoire Softmat, Université de Toulouse, Université Toulouse III - Paul Sabatier, CNRS UMR 5623, Toulouse, France
| | - Gaétan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Univ Brest, INRAE, Plouzané, France
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, UMR 7621, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| |
Collapse
|
8
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
9
|
Bocci V, Galafassi S, Levantesi C, Crognale S, Amalfitano S, Congestri R, Matturro B, Rossetti S, Di Pippo F. Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. Front Microbiol 2024; 15:1395401. [PMID: 38699475 PMCID: PMC11064797 DOI: 10.3389/fmicb.2024.1395401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.
Collapse
Affiliation(s)
- Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Galafassi
- Water Research Institute, CNR-IRSA, National Research Council, Verbania, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Bruna Matturro
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
10
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Li K, Xu L, Bai X, Zhang G, Zhang M, Huang Y. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: Evidence from metagenomic analysis of plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133428. [PMID: 38198862 DOI: 10.1016/j.jhazmat.2024.133428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The plastisphere may act as reservoir of antibiotic resistome, accelerating global antimicrobial resistance dissemination. However, the environmental risks in the plastisphere of field microplastics (MPs) in farmland remain largely unknown. Here, antibiotic resistance genes (ARGs) and virulence factors (VFs) on polyethylene microplastics (PE-MPs) and polybutylene adipate terephthalate and polylactic acid microplastics (PBAT/PLA-MPs) from residues were investigated using metagenomic analysis. The results suggested that the profiles of ARG and VF in the plastisphere of PBAT/PLA-MPs had greater number of detected genes with statistically higher values of diversity and abundance than soil and PE-MP. Procrustes analysis indicated a good fitting correlation between ARG/VF profiles and bacterial community composition. Actinobacteria was the major host for tetracycline and glycopeptide resistance genes in the soil and PE-MP plastisphere, whereas the primary host for multidrug resistance genes changed to Proteobacteria in PBAT/PLA-MP plastisphere. Besides, three human pathogens, Sphingomonas paucimobilis, Lactobacillus plantarum and Pseudomonas aeruginosa were identified in the plastisphere. The PE-MP plastisphere exhibited a higher transfer potential of ARGs than PBAT/PLA-MP plastisphere. This work enhances our knowledge of potential environmental risks posed by microplastic in farmland and provides valuable insights for risk assessment and management of agricultural mulching applications.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
12
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
13
|
Zhang J, Li T, Tao S, Shen M. Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16241-16255. [PMID: 38340302 DOI: 10.1007/s11356-024-32225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
14
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Abstract
Understanding the effects of plastic pollution in terrestrial ecosystems is a priority in environmental research. A central aspect of this suite of pollutants is that it entails particles, in addition to chemical compounds, and this makes plastic quite different from the vast majority of chemical environmental pollutants. Particles can be habitats for microbial communities, and plastics can be a source of chemical compounds that are released into the surrounding environment. In the aquatic literature, the term 'plastisphere' has been coined to refer to the microbial community colonizing plastic debris; here, we use a definition that also includes the immediate soil environment of these particles to align the definition with other concepts in soil microbiology. First, we highlight major differences in the plastisphere between aquatic and soil ecosystems, then we review what is currently known about the soil plastisphere, including the members of the microbial community that are enriched, and the possible mechanisms underpinning this selection. Then, we focus on outlining future prospects for research on the soil plastisphere.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
16
|
Stevenson EM, Buckling A, Cole M, Lindeque PK, Murray AK. Selection for antimicrobial resistance in the plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168234. [PMID: 37924893 DOI: 10.1016/j.scitotenv.2023.168234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Microplastics and antimicrobials are widespread contaminants that threaten global systems and frequently co-exist in the presence of human or animal pathogens. Whilst the impact of each of these contaminants has been studied in isolation, the influence of this co-occurrence in driving antimicrobial resistance (AMR)1 in microplastic-adhered microbial communities, known as 'the Plastisphere', is not well understood. This review proposes the mechanisms by which interactions between antimicrobials and microplastics may drive selection for AMR in the Plastisphere. These include: 1) increased rates of horizontal gene transfer in the Plastisphere compared with free-living counterparts and natural substrate controls due to the proximity of cells, co-occurrence of environmental microplastics with AMR selective compounds and the sequestering of extracellular antibiotic resistance genes in the biofilm matrix. 2) An elevated AMR selection pressure in the Plastisphere due to the adsorbing of AMR selective or co-selective compounds to microplastics at concentrations greater than those found in surrounding mediums and potentially those adsorbed to comparator particles. 3) AMR selection pressure may be further elevated in the Plastisphere due to the incorporation of antimicrobial or AMR co-selective chemicals in the plastic matrix during manufacture. Implications for both ecological functioning and environmental risk assessments are discussed, alongside recommendations for further research.
Collapse
Affiliation(s)
- Emily M Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK; Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Aimee K Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK.
| |
Collapse
|
17
|
Metcalf R, Messer LF, White HL, Ormsby MJ, Matallana-Surget S, Quilliam RS. Evidence of interspecific plasmid uptake by pathogenic strains of Klebsiella isolated from microplastic pollution on public beaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132567. [PMID: 37741206 DOI: 10.1016/j.jhazmat.2023.132567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Microplastic beads are becoming a common feature on beaches, and there is increasing evidence that such microplastics can become colonised by potential human pathogens. However, whether the concentrations and pathogenicity of these pathogens pose a public health risk are still unclear. Therefore, the aim of this study was to determine realistic environmental concentrations of potential pathogens colonising microplastic beads, and quantify the expression of virulence and antimicrobial resistance genes (ARGs). Microplastic beads were collected from beaches and a culture-dependent approach was used to determine the concentrations of seven target bacteria (Campylobacter spp.; E. coli; intestinal enterococci; Klebsiella spp.; Pseudomonas aeruginosa; Salmonella spp.; Vibrio spp.). All seven target bacteria were detected without the need for a pre-enrichment step; urban sites had higher bacterial concentrations, whilst polymer type had no influence on bacterial concentrations. Klebsiella was the most abundant target bacteria and possessed virulence and ARGs, some of which were present on plasmids from other species, and showed pathogenicity in a Galleria melonella infection model. Our findings demonstrate how pathogen colonised microplastic beads can pose a heightened public health risk at the beach, and highlights the urgency for improved monitoring and enforcement of regulations on the release of microplastics into the environment.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Lauren F Messer
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sabine Matallana-Surget
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
18
|
Shi J, Lv B, Wang B, Xie B. Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132096. [PMID: 37480611 DOI: 10.1016/j.jhazmat.2023.132096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn2+) pressures were comparatively analyzed. The presence of ZnO NPs and Zn2+ promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn2+ mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn2+ pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn2+ pressures supported the enrichment of ARGs.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
19
|
Nath J, De J, Sur S, Banerjee P. Interaction of Microbes with Microplastics and Nanoplastics in the Agroecosystems-Impact on Antimicrobial Resistance. Pathogens 2023; 12:888. [PMID: 37513735 PMCID: PMC10386327 DOI: 10.3390/pathogens12070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are hotspots for the exchange of antimicrobial resistance genes (ARGs) between different bacterial taxa in the environment. Propagation of antimicrobial resistance (AMR) is a global public health issue that needs special attention concerning horizontal gene transfer (HGT) under micro-nano plastics (MNPs) pressure. Interactions between MNPs and microbes, or mere persistence of MNPs in the environment (either water or soil), influence microbial gene expressions, affecting autochthonous microbiomes, their resistomes, and the overall ecosystem. The adsorption of a range of co-contaminants on MNPs leads to the increased interaction of pollutants with microbes resulting in changes in AMR, virulence, toxin production, etc. However, accurately estimating the extent of MNP infestation in agroecosystems remains challenging. The main limitation in estimating the level of MNPs contamination in agroecosystems, surface and subsurface waters, or sediments is the lack of standardized protocols for extraction of MPs and analytical detection methods from complex high organic content matrices. Nonetheless, recent advances in MPs detection from complex matrices with high organic matter content are highly promising. This review aims to provide an overview of relevant information available to date and summarize the already existing knowledge about the mechanisms of MNP-microbe interactions including the different factors with influence on HGT and AMR. In-depth knowledge of the enhanced ARGs propagation in the environment under the influence of MNPs could raise the needed awareness, about future consequences and emergence of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jayashree Nath
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jayita De
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Jia J, Liu Q, Wu C. Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131618. [PMID: 37201280 DOI: 10.1016/j.jhazmat.2023.131618] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Despite that the phycosphere was an important niche for the proliferation of various bacteria and antibiotic resistance genes (ARGs), the factors that affect the colonization of bacteria and ARGs in the phycosphere are still poorly understood. In this study, sterile C. pyrenoidosa co-cultured with bacteria from different sources and provided with polylactic acid microplastic (PLA MPs) and florfenicol (FF) was examined. Results showed that bacteria promoted the growth of C. pyrenoidosa and increased its chlorophyll contents. PLA MPs and FF also showed positive effects on C. pyrenoidosa due to the "Hormesis effect". The occurrence of bacteria in the phycosphere was significantly affected by their sources and the addition of PLA MPs and FF. However, the core microbiota of the phycosphere in each group was similar. Additionally, PLA MPs and FF proliferated the abundance of phenicol-related ARGs (especially floR) and mobile genetic elements in the phycosphere. Notably, PLA MPs and FF enhanced the abundance of Flavobacterium, a potential host of ARGs. Our results highlighted the important roles of bacteria in microalgae and demonstrated exogenous pollutants could promote the spread of ARGs between surrounding environments and the phycosphere, which provide new insights into the occurrence and spread of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
21
|
Sun Y, Wu M, Zang J, Du L, Huang M, Chen C, Wang J. Plastisphere microbiome: Methodology, diversity, and functionality. IMETA 2023; 2:e101. [PMID: 38868423 PMCID: PMC10989970 DOI: 10.1002/imt2.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/14/2024]
Abstract
Broad topics of the plastisphere in various environments are reviewed, including its methodologies, diversity, functionality, and outlook.
Collapse
Affiliation(s)
- Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Mochen Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Jingxi Zang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Linna Du
- College of Advanced Materials EngineeringJiaxing Nanhu UniverisityJiaxingChina
| | - Muke Huang
- China International Engineering Consulting CorporationBeijingChina
| | - Cheng Chen
- China International Engineering Consulting CorporationBeijingChina
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
22
|
Wu C, Song X, Wang D, Ma Y, Ren X, Hu H, Shan Y, Ma X, Cui J, Ma Y. Tracking antibiotic resistance genes in microplastic-contaminated soil. CHEMOSPHERE 2023; 312:137235. [PMID: 36375616 DOI: 10.1016/j.chemosphere.2022.137235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Agricultural soils and microplastics (MPs) are hotspots for antibiotic resistance genes (ARGs). Plastic mulch is the most important source of MPs in agricultural soil. ARGs, mobile genetic elements (MGEs), and their host profiles in long-term mulch MP-exposed soils remain unclear. In the present study, metagenomics was used to investigate the distribution patterns of ARGs and MGEs in eight Chinese provinces with a long history of plastic mulch use. A total of 204 subtypes of ARGs and thousands of MGEs (14 integrons, 28 insertions, and 2993 plasmids) were identified. A similar diversity of ARGs was found among MPs film-contaminated sites. The types of ARGs with a high abundance were more concentrated, and multidrug resistance genes were the dominant ARGs. Soils from regions with a longer history of plastic film use (such as Xinjiang province) had a higher abundance of ARGs and MGEs. The distribution of ARGs and MGEs exhibited a modular network distribution pattern. A total of 27 ARG subtypes and 29 MGEs showed co-occurrence network relationships. More than 10 common hosts of ARGs and MGEs, such as Pseudomonas, were found, and their abundances were highest in three provinces, including Xinjiang. This study may help elucidate the impact mechanism of long-term MP residues on the occurrence and spread of ARGs in soil.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
23
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
24
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
25
|
Pathogens transported by plastic debris: does this vector pose a risk to aquatic organisms? Emerg Top Life Sci 2022; 6:349-358. [PMID: 36205551 DOI: 10.1042/etls20220022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
Microplastics are small (<5 mm) plastic particles of varying shapes and polymer types that are now widespread global contaminants of marine and freshwater ecosystems. Various estimates suggest that several trillions of microplastic particles are present in our global oceanic system, and that these are readily ingested by a wide range of marine and freshwater species across feeding modes and ecological niches. Here, we present some of the key and pressing issues associated with these globally important contaminants from a microbiological perspective. We discuss the potential mechanisms of pathogen attachment to plastic surfaces. We then describe the ability of pathogens (both human and animal) to form biofilms on microplastics, as well as dispersal of these bacteria, which might lead to their uptake into aquatic species ingesting microplastic particles. Finally, we discuss the role of a changing oceanic system on the potential of microplastic-associated pathogens to cause various disease outcomes using numerous case studies. We set out some key and imperative research questions regarding this globally important issue and present a methodological framework to study how and why plastic-associated pathogens should be addressed.
Collapse
|
26
|
Chen J, Cai Y, Deng W, Xing S, Liao X. Transmission of tetracycline resistance genes and microbiomes from manure-borne black soldier fly larvae frass to rhizosphere soil and pakchoi endophytes. Front Microbiol 2022; 13:1014910. [DOI: 10.3389/fmicb.2022.1014910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Manure treatment with black soldier fly larvae (BSFL) and BSFL frass application in crop land is a sustainable strategy; however, whether residual antibiotic resistance genes (ARGs) and their transmission risk are related to the manure BSFL treatment process is still unknown. In this paper, the effect of BSFL addition density on residual tetracycline resistance genes (TRGs) and transmission from frass to pakchoi was determined. The results showed that BSFL frass can provide sufficient nutrients for growth, improve the economic value of pakchoi, and reduce the risk of transmission of TRGs in chicken manure regardless of BSFL density. The potential hosts of the TRGs we detected were found in BSFL frass (Oblitimonas and Tissierella), rhizosphere soil (Mortierella and Fermentimonas), and pakchoi endophytes (Roseomonas). The present study concluded that BSFL frass produced by adding 100 BSFL per 100 g of chicken manure has the advantages of high value and low risk. These findings will provide important strategic guidance for animal manure disposal and theoretical support for preventing the transmission of TRGs in BSFL applications.
Collapse
|
27
|
Liao J, Ji S, Chi Y. Effects of Discarded Masks on the Offshore Microorganisms during the COVID-19 Pandemic. TOXICS 2022; 10:toxics10080426. [PMID: 36006105 PMCID: PMC9414469 DOI: 10.3390/toxics10080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Numerous disposable plastic masks had been produced and used for preventing the worldwide COVID-19 pandemic effectively. Discarded masks are a potential source of microplastic pollution in marine ecosystems. The effect of discarded masks on offshore microorganisms is still unclear. Herein, we profiled the interaction between the microplastics released by discarded masks and marine microbes. The effects of mask quantity, time, and environment on the microplastic-related communities were determined. We characterized the bacterial communities of each group using 16S rRNA gene sequencing and metagenomic sequencing and correlated the community diversity to the physicochemical properties of seawater. We found that the diversity and richness of microflora on the surface of microplastics with different quantity and time varied significantly. Proteobacteria are the main bacteria on microplastics, and the KEGG metabolic pathway prediction shows that amino acid metabolism and carbohydrate metabolism were abundant. In addition, there was a correlation between bacterial communities and Antibiotic Resistance Ontology (ARO). We used scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques to evaluate the plastic polymer characteristics of disposable medical masks. Our research shows that disposable medical masks immersed in seawater can alter the microbial community. This study provides the most recent data and insights into the contamination of discarded masks in the marine environment.
Collapse
Affiliation(s)
- Jinlan Liao
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China;
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| |
Collapse
|
28
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|