1
|
Zhang L, Ma H, Li Y, Pan Z, Xu Y, Wang G, Fan X, Zhao S, Lu H, Song C. Activating peroxymonosulfate with MOF-derived NiO-NiCo 2O 4/titanium membrane for water treatment: A non-radical dominated oxidation mechanism. J Colloid Interface Sci 2024; 676:1032-1043. [PMID: 39074406 DOI: 10.1016/j.jcis.2024.07.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Traditional peroxymonosulfate (PMS) catalytic membranes dominated by radical pathways often face interference from complex components in water bodies. Herein, we employed a controlled electro-deposition technique to coat a Ni-Co metal-organic framework (MOF) precursor onto titanium hollow fiber membrane (THFM), followed by high-temperature calcination to synthesize a MOF-derived NiO-NiCo2O4/THFM (M-NNCO-THFM) PMS catalytic membrane. Then, the M-NNCO-THFM filtration integrated with PMS activation (MFPA process) for water treatment. Experimental results demonstrated that the M-NNCO-THFM MFPA process successfully achieved complete phenol (PE) removal via a non-radical-dominated degradation pathway, involving singlet oxygen (1O2) and electron transfer, while exhibiting wide pH adaptability and exceptional stability in complex water matrices. Mechanism analysis revealed that the electron transfer process was significantly enhanced by the MOF-derived heterojunction structure, which increased the flat-band potential from 0.39 eV to 0.56 eV, thereby facilitating efficient electron transfer for PE removal. The non-radical 1O2 pathway was primarily due to the cycling of metal valence states (Ni2+/Co3+), leading to the reduction of Co2+ and its reaction with PMS, resulting in the generation of reactive species. Furthermore, electrochemical measurements indicated that the M-NNCO-THFM exhibited lower charge transfer resistance and enhanced charge transfer efficiency compared to non-MOF-derived NNCO-THFM, corresponding to the superior catalytic performance and electrochemically active surface area of M-NNCO-THFM.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yanda Li
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Shuaifei Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China; Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
| | - Huixia Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
2
|
Song W, Ji Y, Yu Z, Li H, Li X, Ren X, Li Y, Xu X, Zhao Y, Yan L. Microenvironment modulation of biocatalyst derived from natural cellulose of wheat straw for enhancing p-nitrophenol degradation via boosting peroxymonosulfate activation. Int J Biol Macromol 2024; 281:136525. [PMID: 39396592 DOI: 10.1016/j.ijbiomac.2024.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO4•-, •OH, O2•-, and 1O2) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.
Collapse
Affiliation(s)
- Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yuqi Ji
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Zihan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Hang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, People's Republic of China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Yu C, Lu H, Liu L, Tang J. Silver and g-C 3N 4 co-modified biochar (Ag-CN@BC) for enhancing photocatalytic/PDS degradation of BPA: Role of carrier and photoelectric mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119972. [PMID: 39260721 DOI: 10.1016/j.envres.2024.119972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO₂ and H₂O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.
Collapse
Affiliation(s)
- Yaxuan Liu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Chen Yu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
| | - Huixia Lu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China.
| |
Collapse
|
4
|
Zuo W, Mao Y, Zhan W, Li L, Tian Y, Zhang J, Ma W, Wu C, Zhao L. Activating peroxymonosulfate with Fe-doped biochar for efficient removal of tetracycline: Dual action of reactive oxygen species and electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120979. [PMID: 38692033 DOI: 10.1016/j.jenvman.2024.120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yuqing Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wanli Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China; National Engineering Research Center of Urban Water Resources Co., Ltd. Harbin Institute of Technology, Harbin, 150090, China
| | - Li Zhao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China; National Engineering Research Center of Urban Water Resources Co., Ltd. Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Wang J, Yao J, Li Y, Wei Z, Gao C, Jiang L, Wu X. S vacancies-introduced chalcopyrite switch radical to non-radical pathways via peroxymonosulfate activation: Vital roles of S vacancies. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133751. [PMID: 38341884 DOI: 10.1016/j.jhazmat.2024.133751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jia Yao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lisha Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
6
|
Li C, Shen C, Gao B, Liang W, Zhu Y, Shi W, Ai S, Xu H, Wu J, Sun Y. Degradation and mechanism of PFOA by peroxymonosulfate activated by nitrogen-doped carbon foam-anchored nZVI in aqueous solutions. CHEMOSPHERE 2024; 351:141209. [PMID: 38224751 DOI: 10.1016/j.chemosphere.2024.141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 μM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.
Collapse
Affiliation(s)
- Changyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| | - Cong Shen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Gao Y, Wang G, Wang X, Dong X, Zhang X. Synchronously improved permeability, selectivity and fouling resistance of Fe-N-C functionalized ceramic catalytic membrane for effective water treatment: The critical role of Fe. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132888. [PMID: 37922578 DOI: 10.1016/j.jhazmat.2023.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.
Collapse
Affiliation(s)
- Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Li C, Yin S, Yan Y, Liang C, Ma Q, Guo R, Zhang Y, Deng J, Sun Z. Efficient benzo(a)pyrene degradation by coal gangue-based catalytic material for peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119645. [PMID: 38048711 DOI: 10.1016/j.jenvman.2023.119645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
A low cost and green peroxymonosulfate (PMS) activation catalyst (CG-Ca-N) was successfully prepared with coal gangue (CG), calcium chloride, and melamine as activator. Under the optimal conditions, the CG-Ca-N can remove 100 % for benzo(a)pyrene (Bap) in an aqueous solution after 20 min and 72.06 % in soil slurry medium within 60 min, which also display excellent reuse ability toward Bap after three times. The removal of Bap is significantly decreased when the initial pH value was greater than 9 and obviously inhibited in the presence of HCO3- or SO42-. The characterization results indicated that the addition of calcium chloride could stabilize and increase the content of pyridinic N during thermal annealing, resulting in the production of •OH, SO4•- and 1O2. Based on electron paramagnetic resonance (EPR) and active radical scavenging experiments, 1O2 could be identified to be the dominant role in Bap degradation. Overall, this work opened a new perspective for the low cost and green PMS catalysts and offered great promise in the practical remediation of organic pollution of groundwater and soil.
Collapse
Affiliation(s)
- Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Shuaijun Yin
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Yutong Yan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Chao Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Qingshui Ma
- Inner Mongolia Mengtai Buliangou Coal Industry Co., Ltd, Ordos, 010399, PR China
| | - Rui Guo
- Inner Mongolia Mengtai Buliangou Coal Industry Co., Ltd, Ordos, 010399, PR China
| | - Yubo Zhang
- Huadian Coal Industry Group Digital Intelligence Technology Co., Ltd, Beijing, 102400, PR China
| | - Jiushuai Deng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
9
|
Lu L, Tang D, Luo Z, Mo H, Sun Y, Hu J, Sun J. Water hyacinth derived hierarchical porous biochar absorbent: Ideal peroxydisulfate activator for efficient phenol degradation via an electron-transfer pathway. ENVIRONMENTAL RESEARCH 2024; 242:117773. [PMID: 38029829 DOI: 10.1016/j.envres.2023.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
In this paper, a facile hydrothermal pretreatment and molten salt activation route was presented for preparing a self-doped porous biochar (HMBC) from a nitrogenous biomass precursor of water hyacinth. With an ultrahigh specific surface area (2240 m2 g-1), well-developed hierarchical porous structure, created internal structural defects and doped surface functionalities, HMBC exhibited an excellent adsorption performance and catalytic activity for phenol removal via peroxydisulfate (PDS) activation. Specifically, the porous structure promoted the adsorption of PDS on HMBC, forming a highly active HMBC/PDS* complex and thereby increasing the oxidation potential of the system. Meanwhile, the carbon defective structure, graphitic N and CO groups enhanced the electron transfer process, favoring the HMBC/PDS system to catalyze phenol oxidation via an electron transfer dominated pathway. Thus, the system degraded phenol effectively with an ultralow activation energy of 4.9 kJ mol-1 and a remarkable oxidant utilization efficiency of 8.2 mol mol-oxidant-1 h-1 g-1. More importantly, the system exhibited excellent resistance to water quality and good adaptability for decontaminating different organic pollutants with satisfactory mineralization efficiency. This study offers valuable insights into the rational designing of a low-cost biochar catalyst for efficient PDS activation towards organic wastewater remediation.
Collapse
Affiliation(s)
- Li Lu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Diyong Tang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China.
| | - Zhipeng Luo
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Huangkaiyue Mo
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Yimeng Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| | - Jingjing Hu
- Experimental Teaching and Laboratory Management Center, South-Central Minzu University, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
10
|
Duan W, Zhang M, Zhou R. Efficient degradation of antibiotic wastewater by biochar derived from water hyacinth stems via periodate activation: pyridinic N and carbon structures improved the electron transfer process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:212-224. [PMID: 38214996 PMCID: wst_2023_408 DOI: 10.2166/wst.2023.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.
Collapse
Affiliation(s)
- Wanqing Duan
- The Shandong Bureau Testing Co., Ltd of China Metallurgica Geology Bureau, Jinan 250014, China E-mail:
| | - Ming Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Runjuan Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
11
|
Ma H, Feng G, Zhang X, Song C, Xu R, Shi Y, Wang P, Xu Z, Wang G, Fan X, Pan Z. New insights into Co 3O 4-carbon nanotube membrane for enhanced water purification: Regulated peroxymonosulfate activation mechanism via nanoconfinement. CHEMOSPHERE 2024; 347:140698. [PMID: 37967680 DOI: 10.1016/j.chemosphere.2023.140698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Co-based peroxymonosulfate (PMS) activation system with fascinating catalytic performance has become a promising technology for water purification, but it always suffers from insufficient mass transfer, less exposed active sites and toxic metal leaching. In this work, a carbon nanotube membrane confining Co3O4 inside (Co3O4-in-CNT) was prepared and was coupled with PMS activation (catalytic membrane process) for sulfamethoxazole (SMX) removal. Compared with counterpart with surface-loaded Co3O4 (Co3O4-out-CNT), the Co3O4-in-CNT catalytic membrane process exhibited enhanced SMX removal (99.5% vs. 89.1%) within residence time of 2.89 s, reduced Co leaching (20 vs. 147 μg L-1) and more interestingly, the nonradical-to-radical mechanism transformation (from 1O2 and electron transfer to SO4•- and •OH). These phenomena were ascribed to the nanoconfinement effect in CNT, which enhanced mass transfer (2.80 × 10-4 vs. 5.98 × 10-5 m s-1), accelerated Co3+/Co2+ cycling (73.4% vs. 65.0%) and showed higher adsorption energy for PMS (cleavage of O-O bond). Finally, based on the generated abundant reactive oxygen species (ROS), the seven degradation pathways of SMX were formed in system.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Zhouhang Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
12
|
Yang Y, Chi Y, Yang K, Zhang Z, Gu P, Ren X, Wang X, Miao H, Xu X. Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path. J Colloid Interface Sci 2023; 652:350-361. [PMID: 37598435 DOI: 10.1016/j.jcis.2023.08.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
A green, low-cost, high-performance Fe/N co-doped biochar material (Fe-N@C) was synthesized using salvaged cyanobacteria without other extra precursors for peroxymonosulfate (PMS) activation and ofloxacin (OFX) degradation. With the increased pyrolysis temperature, the graphitization degree, the specific surface area and the corresponding groups like OH, COO etc. for Fe-N@C tended to increase, resulting in a greater OFX adsorption. However, the total amount of Fe-NX and graphitic nitrogen groups in the Fe-N@C composites was firstly increased and then decreased, which reached the highest at 800 °C (Fe-N@C-800). All these changes of functional species ascribed to the strong interaction between Fe, N and C led to the highest defect degree of Fe-N@C-800, resulting the highest OFX removal efficiency of 95.0 %. OFX removal experiments indicated the adsorption process promoted the total OFX degradation for different functional groups on Fe-N@C composites separately dominated the process of OFX adsorption and PMS catalysis. Radical quenching and electron paramagnetic resonance (EPR) measurements proved free radical and non-free radical pathways participated in Fe-N@C/PMS system. The non-free radicals based on 1O2 and high-valent iron-oxo species played a more important role in OFX degradation, leading to the minimal effect of co-existing anions and the high universality for other antibiotic pollutants. Fe-NX was utilized as the main catalytic sites and graphitic nitrogen contributed more to the electron transfer for PMS activation, whose synergistic effect efficiently facilitated OFX degradation. Finally, the possible degradation route of OFX in the Fe-N@C-800/PMS system was proposed. All these results will provide the new insights into the intrinsic mechanism of Fe/N species in carbon-based materials for PMS activation.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanxiao Chi
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Suzhou Institute of Environmental Sciences, Postdoctoral Innovation and Practice Base of Jiangsu Province, Suzhou 21500, China.
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xueli Ren
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Ma H, Feng G, Li X, Pan Z, Xu R, Wang P, Fan X, Song C. A novel copper oxide/titanium membrane integrated with peroxymonosulfate activation for efficient phenolic pollutants degradation. J Colloid Interface Sci 2023; 650:1052-1063. [PMID: 37459729 DOI: 10.1016/j.jcis.2023.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xiaoyang Li
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
14
|
Li M, Ma M, Zhao Z, Bao M, Zhang N, Zhou Y, Zheng Y. Simultaneous degradation of binary fluoroquinolone antibiotics by B and N in-situ self-doped guar gum hydrogel. CHEMOSPHERE 2023; 342:140197. [PMID: 37717915 DOI: 10.1016/j.chemosphere.2023.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Using guar gum (GG) as the raw material and borax (B) as the cross-linker, zeolitic imidazolate framework-8 (ZIF-8) was in-situ loaded into the 3D network of GG hydrogel, forming a highly efficient catalytic material GG-B-ZIF-8 combined with a subsequent low-temperature calcination process. In GG-B-ZIF-8 activated peroxymonosulfate (PMS) system, binary norfloxacin (NOR) and ciprofloxacin (CIP) could be removed simultaneously, with the degradation efficiency of >99.9% within 1 h. This system was adaptable to a wide pH range of 3.0-9.0, and was also highly resistant to 5-20 mM Cl- and 10-40 mg/L humic acid. The degradation process was dominated by free radical O2•-, non-radical 1O2 and electron transfer, with eleven degradation products identified for NOR and nine for CIP via eight possible degradation pathways. Finally, the potential eco-toxicity of NOR, CIP and degradation intermediates was evaluated using the ECOSAR method.
Collapse
Affiliation(s)
- Mingzhe Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengling Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ziwei Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingkun Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nan Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Radiation Environmental Monitoring Station of Hainan Province, Haikou, 571126, China.
| | - Yian Zheng
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Fu S, Zhang Y, Xu X, Tan Y, Zhu L. N-doped citrate-sludge-derived carbon (NCSC) effectively promotes peroxymonosulfate activation for perfluorooctanoic acid (PFOA) removal with surface-mediated electron transfer mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115592. [PMID: 37837698 DOI: 10.1016/j.ecoenv.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In traditional wastewater treatment methods, the removal of emerging contaminants including perfluorooctanoic acid (PFOA) can be challenging. To address this, biochar is commonly utilized as an activator for peroxymonosulphate (PMS) to effectively eliminate organic pollutants. Sewage sludge has shown potential as a biochar precursor, but its complex composition and variable iron content, as well as the low specific surface area of the product limit the practical use of iron-dominated sludge-derived catalysts. To overcome this limitation, N-doped citrate-sludge-derived carbon (NCSC) was synthesized, possessing a low iron content (0.29 at%) and a large specific surface area (315.31 m2 g-1). As a comparison, Fe-/N-doped citrate-sludge-derived carbon (Fe-NCSC) was prepared by introducing exogenous iron, resulting in a higher iron content (2.12 at%) but a significantly reduced specific surface area (73.87 m2 g-1). In performance evaluation, the NCSC/PMS system achieved impressive removal efficiency, effectively eliminating 99.8% of PFOA (at an initial concentration of 2 mg L-1) within 60 min, while Fe-NCSC/PMS only achieved 84.6%. The slightly lower reaction rate per specific surface area of NCSC/PMS proved that large specific surface area was NCSC's key advantage. The lower sensitivity of NCSC to pH and water substrates than FeNCSC suggested different activation mechanisms. Further analysis of reactive sites and species showed that the main oxidation mechanism of NCSC/PMS was forming the surface-bound PMS-NCSC complexes at the N sites, followed by PFOA donating electrons to the complexes to be oxidized, which was different from the Fe/N-dominated singlet oxygen mechanism of Fe-NSC/PMS. Furthermore, the reusability of the NCSC was demonstrated, with the removal rate decreasing to only 90.1% after four cycles and recovering to 94.8% after heated regeneration. In conclusion, this study provides a viable method for the elimination of emerging contaminants such as PFOA in water remediation.
Collapse
Affiliation(s)
- Shiyuan Fu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Yingyu Tan
- Zhejiang Ecological Environment Scientific Design and Research Institute, Hangzhou 310007, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.
| |
Collapse
|
16
|
Liu Z, Luo Y, Yang P, Yang H, Chen Y, Shao Q, Wu F, Xie P, Ma J. Cobalt-doped molybdenum disulfide for efficient sulfite activation to remove As(III): Preparation, efficacy, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131311. [PMID: 37030224 DOI: 10.1016/j.jhazmat.2023.131311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The sulfite(S(IV))-based advanced oxidation process has attracted significant attention in removing As(III) in the water matrix for its low-cost and environmental-friendly. In this study, a cobalt-doped molybdenum disulfide (Co-MoS2) nanocatalyst was first applied to activate S(IV) for As(III) oxidation. Some parameters including initial pH, S(IV) dosage, catalyst dosage, and dissolved oxygen were investigated. The experiment results show that >Co(II) and >Mo(VI) on the catalyst surface promptly activated S(IV) in the Co-MoS2/S(IV) system, and the electron transfer between Mo, S, and Co atoms accelerated the activation. SO4•- was identified as the main active species for As(III) oxidation. Furthermore, DFT calculations confirmed that Co doping improved the MoS2 catalytic capacity. This study has proven that the material has broad application prospects through reutilization test and actual water experiments. It also provides a new idea for developing bimetallic catalysts for S(IV) activation.
Collapse
Affiliation(s)
- Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yingxi Luo
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Pan Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Haike Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Qing Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Wan Y, Wang H, Liu J, Liu X, Song X, Zhou W, Zhang J, Huo P. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO 2 heterojunction photocatalyst activated peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131375. [PMID: 37030225 DOI: 10.1016/j.jhazmat.2023.131375] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Waste plastics have posed enormous to the environment, but their recycling, especially polyethylene terephthalate plastics, was still a huge challenge. Here, CdS/CeO2 was used as the photocatalyst to promote the degradation of PET-12 plastics by activating peroxymonosulfate (PMS) synergistic photocatalytic system. The results showed that 10 % CdS/CeO2 had the best performance under the illumination condition, and the weight loss rate of PET-12 could reach 93.92 % after adding 3 mM PMS. The effects of important parameters (PMS dose and co-existing anions) on PET-12 degradation were systematically studied, and the excellent performance of the photocatalytic-activated PMS system was verified by comparison experiments. SO4•- contributed the most to the degradation performance of PET-12 plastics, which was demonstrated by electron paramagnetic resonance (EPR) and free radical quenching experiments. Furthermore, the results of GC showed that the gas products including CO, and CH4. This indicated that the mineralized products could be further reduced to hydrocarbon fuel under the action of the photocatalyst. This job supplied a new idea for the photocatalytic treatment of waste microplastics in the water, which will help recycle waste plastics and recycle carbon resources.
Collapse
Affiliation(s)
- Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiejing Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengewei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
18
|
Song W, Xiao X, Wang G, Dong X, Zhang X. Highly efficient peroxymonosulfate activation on Fe-N-C catalyst via the collaboration of low-coordinated Fe-N structure and Fe nanoparticles for enhanced organic pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131596. [PMID: 37167867 DOI: 10.1016/j.jhazmat.2023.131596] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Supporting Fe catalysts on N doped carbon (Fe-N-C) renders a promising way towards peroxymonosulfate (PMS) activation for water decontamination, but constructing high-efficiency Fe-N-C remains challenging due to the insufficient understanding of the structure-performance relationship. Herein, the N doped carbon nanotube supported Fe catalysts (Fe-NCNT) were prepared towards PMS activation for organic pollutants removal, in which the Fe-N coordination number and Fe species were tuned through changing the pyrolysis temperature to study their roles in PMS activation. Results showed increasing the pyrolysis temperature converted the Fe-N4 structure in Fe-NCNT to low-coordinated Fe-N3 structure and produced Fe nanoparticles (FeNP, encapsulated in carbon). The Fe-NCNT with Fe-N3 and FeNP exhibited a remarkably high specific activity (0.119 L min-1 m-2), which was 1.8 times higher than that of Fe-NCNT with only Fe-N4 and obviously outperformed those of the state-of-the-art PMS activators. The low-coordinated structure and FeNP promoted the PMS reduction on Fe2+ of Fe-Nx for •OH and SO4•- production, which served as major oxidants for pollutants degradation. The experimental results and theoretical calculation corroborated the low-coordinated structure and FeNP jointly enhanced the PMS adsorption and electron density on Fe center, which accelerated electron transfer from Fe center to PMS for radical production.
Collapse
Affiliation(s)
- Wen Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
19
|
Zhu Y, Shi W, Gao H, Li C, Liang W, Nie Y, Shen C, Ai S. A novel aminated lignin/geopolymer supported with Fe nanoparticles for removing Cr(VI) and naphthalene: Intermediates promoting the reduction of Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161379. [PMID: 36621477 DOI: 10.1016/j.scitotenv.2022.161379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A novel, inexpensive and eco-friendly aminated lignin/geopolymer supported with Fe nanoparticles (Fe@N-L-GM) composite was successfully synthesized using kaolin and lignin as the major precursors. The prepared Fe@N-L-GM had larger specific surface area, rich oxygen-containing and nitrogen-containing functional groups, greater electron transfer ability and interconnective porous structure. The Fe@N-L-GM could be employed as the adsorbent of Cr(VI) and the activator of potassium peroxymonosulfate (PMS) for treatment of Cr(VI) and naphthalene (NAP) in wastewater. The adsorption and degradation results indicated that the maximum adsorption capacity of Cr(VI) could reach 65.83 mg g-1, whereas the maximum NAP degradation efficiency could reach 97.81 %. The adsorbed Cr(VI) was mostly converted to the low toxic Cr(III) through the reduction of electron donors such as Fe(II), amino and hydroxyl groups. The quenching experiment results confirmed that ·OH might be the crucial ROSs in mediating NAP degradation. In the simultaneous removal experiment of Cr(VI) and NAP, the Cr(VI) removal rate was significantly improved in the presence of NAP, while phenol as the degradation intermediate of NAP might be the main substance for promoting the reduction of Cr(VI). This work provided the theoretical foundation and a new type of material for the simultaneous removal of heavy metal and persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Yifan Zhu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Weijie Shi
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Hu Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Changyu Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Wenxu Liang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Cong Shen
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
20
|
Pan G, Wei J, Xu M, Li J, Wang L, Li Y, Cui N, Li J, Wang Z. Insight into boron-doped biochar as efficient metal-free catalyst for peroxymonosulfate activation: Important role of -O-B-O- moieties. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130479. [PMID: 36455330 DOI: 10.1016/j.jhazmat.2022.130479] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In recent years, metal-free catalysts for persulfate-mediated oxidation processes have been widely applied to remove contaminants in the aquatic environment. Herein, a simple pyrolysis approach was used to synthesize the boron doped biochars (B@TBCs) derived from boric acid mixed with tea seed shells powders. The obtained B@TBCs exhibited fantastic capability to boost PMS (0.5 mM) activation for 90%∼ removal of oxytetracycline (OTC) within 20 min. Through the correlation analysis and DFT calculations, it was concluded that the apparent rate constant of pollutants removal was greatly related to the -O-B-O- groups on the biochars, which could improve the electron-donating capacity of the biochar. In addition, the degradation process of OTC was pH-dependent because of the changed roles of ROSs under different pH. Finally, according to the DFT calculation, LC-MS and toxicological analysis, the degradation pathways of pollutants and the toxicity changes during the degradation process were obtained. These findings consolidated the theoretical basis for further boosting the catalytic activity of B-doped biochars and expanded the imagination for the modification of other metal-free biochar catalysts for PMS activation.
Collapse
Affiliation(s)
- Guoping Pan
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Mengdie Xu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiamei Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Linhao Wang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yanan Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Nan Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
21
|
Ma H, Zhang X, Feng G, Ren B, Pan Z, Shi Y, Xu Resource R, Wang P, Liu Y, Wang G, Fan X, Song C. Carbon nanotube membrane armed with confined iron for peroxymonosulfate activation towards efficient tetracycline removal. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Microbial community structure and potential function associated with poly-3-hydroxybutyrate biopolymer-boosted activation of peroxymonosulfate for waste-activated sludge decontamination. BIORESOURCE TECHNOLOGY 2023; 369:128450. [PMID: 36496120 DOI: 10.1016/j.biortech.2022.128450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Excess waste-activated sludge (WAS) is a major biosolid management problem due to its biohazardous and recalcitrant content of phthalate esters (PAEs). This study aimed to assess the combined use of biopolymer, poly-3-hydroxybutyrate and peroxymonosulfate to degrade PAEs and decontaminate WAS. Poly-3-hydroxybutyrate was biosynthesized by Cupriavidus sp. L7L. The combined poly-3-hydroxybutyrate and peroxymonosulfate process removed 86 % of PAEs from WAS in 12 h. The carbonyl groups of poly-3-hydroxybutyrate were conducive to peroxymonosulfate activation leading to PAE degradation followed the radical pathway and surface-mediated electron transfer. Poly-3-hydroxybutyrate and peroxymonosulfate also enriched the PAE-biodegrading microbes in WAS. The microbial population and the functional composition in response to peroxymonosultate treatment was identified, with the genus Sulfurisoma being the most abundant. This synergistic treatment, i.e., advanced oxidation process, was augmented by highly promising microbial polyesters, exhibited important implications for WAS pretreatment toward circular bioeconomy that encompasses carbon-neutral biorefinery and mitigate pollution.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
23
|
Zhang X, Tian Y, Zhou L, Wang L, Zhang J, Liu Y, Lei J. Efficient degradation of levofloxacin using a g-C 3N 4@glucose-derived carbon catalyst with adjustable N content via peroxymonosulfate activation. CHEMOSPHERE 2023; 314:137684. [PMID: 36584832 DOI: 10.1016/j.chemosphere.2022.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Metal-free carbon-based catalysts hold great promise for the degradation of organic pollutants by peroxymonosulfate (PMS) activation because they avoid the negative effects of metal catalysts such as harmful metal ions leaching. However, these carbon-based catalysts are limited by their high cost and complex synthesis, and the mechanisms for the activation of PMS are unclear. Herein, the N-rich carbon catalysts (GCN-x) derived from glucose and g-C3N4 were facilely synthesized by hydrothermal treatment and carbonization to explore the mechanism of PMS activation. The nitrogen content of catalysts could be adjusted by simply altering the ratio of glucose and g-C3N4. GCN-2.4 with a ratio of glucose and g-C3N4 of 2.4 displayed the highest efficiency for the degradation of pollutants represented by Levofloxacin. The electron paramagnetic resonance and quenching experiments demonstrated that the non-radical pathway was dominant in Levofloxacin degradation and singlet oxygen (1O2) was the main active specie. Further, we found 1O2 was generated from superoxide radical (• O2-) which has rarely been studied. Levofloxacin degradation rate was shown to be positively correlated with both the amount of graphitic N and pyridinic N. Graphitic N and pyridinic N were identified as the catalytic sites. The GCN-2.4/PMS system could also remove multifarious contaminants effectively. Overall, this research advances understanding of the role of N species in PMS activation and has potential practical application in wastewater treatment.
Collapse
Affiliation(s)
- Xinxi Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Yunhao Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
24
|
Ta M, Wang T, Guo J, Wang Y, Zhang J, Zhao C, Liu S, Liu G, Yang H. Enhanced norfloxacin degradation by three-dimensional (3D) electrochemical activation of peroxymonosulfate using Mn/Cu co-doped activated carbon particle electrode. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Hao R, Du L, Gu X, Li S. Facile synthesis of N-rich carbon nanosheets derived from antibiotic mycelial dregs as efficient catalysts for peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Liang L, Wang Y, Li N, Yan B, Chen G, Hou L. Breaking rate-limiting steps in a red mud-sewage sludge carbon catalyst activated peroxymonosulfate system: Effect of pyrolysis temperature. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Ma Q, Sun Y, Zhang C, Xue Y, Chen Y, Teng W, Fan J. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate. NEW J CHEM 2022. [DOI: 10.1039/d2nj03259g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An Fe2P2O7@C catalyst was synthesized by simple carbonization of complex precursors and showed strong resistance to interference.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|