1
|
Xu Y, Yu W, Wang X, Tao K, Bian Z, Wang H, Wei Y. Impact of low-dose free chlorine on the conjugative transfer of antibiotic resistance genes in wastewater effluents: Identifying key environmental factors for predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136824. [PMID: 39667151 DOI: 10.1016/j.jhazmat.2024.136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Reclaimed water disinfection results in the coexistence of antibiotic resistance genes (ARGs) and low-dose free chlorine in receiving environments. However, the impact of low-dose free chlorine on ARGs conjugative transfer and the key factors influencing the transfer under complex environmental conditions remain unclear, hindering the establishment of an effective monitoring system for resistance pollution in reclaimed water. This study investigated ARGs conjugative transfer under the influence of free chlorine at environmentally relevant concentrations and key interactive factors using machine learning models. The results showed that low-dose free chlorine (0.05-0.3 mg/L) promoted ARGs conjugative transfer, with 0.15 mg/L having a greater promoting effect than free chlorine concentrations of 0.05 and 0.3 mg/L. Additionally, different exposure patterns of low-dose chlorine affected ARGs conjugative transfer, with intermittent exposure posing a higher risk of ARGs dissemination. SVM linear model performed best in predicting ARGs conjugative transfer (RMSE=0.012, R2=0.975), and the SHapley Additive Explanations (SHAP) method revealed that key factors such as HCO3-, SAA, NO3-, and HA had positive SHAP values, indicating a positive influence on ARGs transfer under low-dose chlorine, making them the key features for predicting the ARGs conjugative transfer under the low-dose chlorine exposure. This study also revealed potential mechanisms of ARGs transfer under continuous low-dose free chlorine exposure, including intracellular reactive oxygen species (ROS), enzyme activity, cell membrane permeability, and gene expression. The integration of the machine learning model and post-hoc interpretation methods clarified the key drivers of ARGs conjugative transfer in reclaimed water-replenished environments, providing new insights for the safe reuse of reclaimed water and the development of river monitoring indicators.
Collapse
Affiliation(s)
- Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiaowen Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Yuansong Wei
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
2
|
Zhang S, Zheng S, Gong Y, Wang Y, Wei Q, Zhu Y, Liu L, Wu R, Du S. Does the herbicide napropamide exhibit enantioselective effects across genus plasmid transfer from Escherichia coli to Bacillus subtilis? JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136704. [PMID: 39637801 DOI: 10.1016/j.jhazmat.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) into the environment is an urgent concern. However, the enantioselective effects of herbicides on plasmid conjugation among bacterial genera and their underlying mechanisms remain unclear. This study demonstrates for the first time that the herbicide napropamide (NAP), commonly used in vegetable fields, exhibits a concentration-dependent effect on the transfer efficiency of the pBE2R plasmid from Escherichia coli to Bacillus subtilis. Notably, at a concentration of 5 mg L-1, R-NAP increased transfer efficiency by threefold compared to the S-enantiomer. Scanning electron microscopy revealed that R-NAP caused less structural damage to bacteria than S-NAP but more effectively reduced cell wall components (lipopolysaccharides and peptidoglycan) in donor and recipient bacteria, increasing reactive oxygen species levels and membrane permeability. Transcriptomic analysis indicated that NAP enantiomers altered the expression of genes related to membrane transport activity and transposons. Cross-domain network analysis identified yieK, ygeH, and ydbL as key genes mediating conjugation transfer. Molecular docking results showed that NAP likely interacts hydrophobically with the active sites of the proteins encoded by these genes. In conclusion, herbicides like R-NAP should be carefully managed in fields irrigated with livestock manure to mitigate the risk of ARG transfer and accumulation in crops.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shihao Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
3
|
Zhao W, Zhang B, Zheng S, Yan W, Yu X, Ye C. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136675. [PMID: 39603126 DOI: 10.1016/j.jhazmat.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of residual chlorine on the dissemination of antibiotic resistance during the distribution and storage of water has become a critical concern. However, the influence of rising temperatures attributed to global warming on this process remains ambiguous, warranting further investigation. This study investigated the effects of different temperatures (17, 27, 37, and 42°C) on the conjugative transfer of antibiotic resistance genes (ARGs) under residual chlorine (0, 0.1, 0.3, and 0.5 mg/L). The results indicated that high temperatures significantly increased the conjugative transfer frequency of ARGs in intra-species under residual chlorine. Compared to 17°C, the transfer frequencies at 27°C, 37°C, and 42°C increased by 1.07-2.43, 1.20-4.80, and 1.24-2.82 times, respectively. The promoting effect of high temperatures was mainly due to the generation of reactive oxygen species, the triggered SOS response, and the formation of pilus channels. Transcriptomic analysis demonstrated that higher temperature stimulates the electron transport chain, thereby enhancing ATP production and facilitating the processes of conjugative, as confirmed by inhibitor validation. Additionally, rising temperatures similarly promoted the frequency of conjugative transfer in inter-species and communities under residual chlorine. These further highlighted the risk of antibiotic resistance spread in extreme and prolonged high-temperature events. The increased risk of antibiotic resistance in the process of drinking water transmission under the background of climate warming is emphasized.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Binghuang Zhang
- College of the Energy, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
4
|
Yuan Y, Ning W, Chen J, Li J, Xue T, An C, Mao L, Zhang G, Zhou S, Ding J, Yang X, Ye J. Serine/threonine protein kinase mediates rifampicin resistance in Brucella melitensis through interacting with ribosomal protein RpsD and affecting antioxidant capacity. mSystems 2025; 10:e0110924. [PMID: 39636113 PMCID: PMC11748488 DOI: 10.1128/msystems.01109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Brucellosis, a zoonotic disease, has re-emerged in both humans and animals, causing significant economic losses globally. Recently, an increasing number of rifampicin-resistant Brucella strains have been isolated worldwide without detectable mutations in known antibiotic resistance genes. Here, this study identified the deletion of serine/threonine protein kinase (STPK) gene in B. melitensis as an efficient trigger for rifampicin resistance using bioinformatics predictions, a transposon mutant library, and gene mutation strains. Notably, the absence of the STPK could increase the expression of ribosomal proteins and genes involved in sulfur metabolism and reduced glutathione, and decrease NADPH oxidase activity and NADP+/NADPH ratio, which is associated with the antioxidant capacity of B. melitensis. Moreover, co-immunoprecipitation revealed that STPK could efficiently interact with the ribosomal protein RpsD, possibly altering protein translation and riboswitch expression. These findings demonstrate that the STPK gene mediates resistance by regulating sulfur metabolism to counteract the reactive oxygen species induced by rifampicin. Furthermore, the approaches developed in this study provide a platform for screening new resistance genes in Brucella spp., and the identified STPK or its pathway can serve as a potential target for new drug development against rifampicin-resistant Brucella spp. IMPORTANCE New rifampicin resistance gene in Brucella melitensis is identified via bioinformatics predictions and a whole-genome transposon mutant library, new mechanisms of rifampicin resistance in B. melitensis, and new function of serine/threonine protein kinase gene and its interaction proteins.
Collapse
Affiliation(s)
- Yaqin Yuan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenqing Ning
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Junjie Chen
- Tongliao Mongolian Medical Hospital (Tongliao Mongolian Medical Research Institute), China Center for Disease Control and Prevention, Institute of Infectious Disease Control and Prevention, Co-construction research base for brucellosis, Tongliao City, China
| | - Jiquan Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Tianqi Xue
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cuihong An
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi’an, China
| | - Lingling Mao
- Liaoning Province Center for Disease Control and Prevention, Shenyang, China
| | - Guangzhi Zhang
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhong Zhou
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowen Yang
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianqiang Ye
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Yang W, Liang Y, Wang S, Cai C, Wang X, Dai X, Chen X. Effects of quaternary ammonium disinfectants on human pathogenic bacteria in anaerobic sludge digestion: Dose-response and resistance variation. BIORESOURCE TECHNOLOGY 2025; 416:131745. [PMID: 39505280 DOI: 10.1016/j.biortech.2024.131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Sewage sludge is a critical reservoir for biological pollutants, and its harmless disposal remains a major issue. Quaternary ammonium compounds (QACs) as typical household disinfectants are inevitably concentrated in sewage sludge, and have the potential to affect human pathogenic bacteria (HPBs) that remain poorly understood. This study found that the relative abundance of HPBs in digesters was decreased by 10 - 20 % at low QACs dose, but increased by 238 - 591 % at high QACs dose. Mechanistic analysis revealed that low QACs doses promoted functional hydrolytic/fermentative bacteria and their metabolism by stimulating extracellular polymeric substances secretion and enhancing resistance to QACs. Conversely, high QAC doses decreased microbial biomass and developed QACs and antibiotic resistance of HPBs by increasing cell membrane permeability and triggering oxidative stress, resulting in deteriorating sanitation performance. These findings provide advanced insights into the potential function and hazards of exogenous QACs on the biosafety of digestate.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunfei Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| |
Collapse
|
7
|
Ye G, Chen G, Avellán-Llaguno RD, Cao Y, Huang Q. Distinctive gut antibiotic resistome, potential health risks and underlying pathways upon cerebral ischemia-reperfusion injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125614. [PMID: 39743194 DOI: 10.1016/j.envpol.2024.125614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Antibiotic resistance genes (ARGs) as emerging pollutants pose health risks to humans and the environment. Gut microbiota is an important reservoir for ARGs and hotspot for ARG acquisition and dissemination. Non-antibiotic factors (such as disease pathophysiology) affect ARG emergence and dissemination. Cerebral ischemia-reperfusion injury (I/R) commonly occurs in stroke patients. However, effects of I/R on ARG emergence and dissemination are unknown. Therefore, metagenomics was used to unveil selective collection of gut antibiotic resistome and its health risks, key ARG hosts and underlying pathways upon I/R. Changes in gut antibiotic resistome upon I/R were characterized by tetracycline ARG accumulation and decreases in aminoglycoside and glycopeptide ARGs. Besides, changes in gut antibiotic resistome were corrected with those in gut microbiota from phylum to species, serum lipid accumulation and glucose depletion upon I/R. Additionally, health risks of gut microbial multidrug ARGs (such as abem, adek and TolC), macA, aph(3')-I and carO, co-localized with mobile gene elements, were increased upon I/R. Moreover, phyla Firmicutes (especially order Eubacteriales, class Clostridia) and Bacteroidota were key ARG hosts in gut microbiota of I/R gerbils. Furthermore, suppression of vancomycin resistance, and lantibiotic biosynthesis and immunity, disturbances in peptidoglycan biosynthesis and hydrolysis, activation of antimicrobial peptide resistance, lipopolysaccharide biosynthesis, teichoic acid biosynthesis, arabinogalactan biosynthesis, aromatic compound degradation, oxidative phosphorylation, the tricarboxylic acid cycle and its anaplerotic pathways were observed in upon I/R. This study provides novel insights and intervention targets related to selective collection of gut antibiotic resistome and its potential health risks upon I/R.
Collapse
Affiliation(s)
- Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Guoyou Chen
- College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yonggang Cao
- College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
8
|
Yang B, Sun J, Zhu S, Wang Z, Liu Y. Exposure to bisphenol compounds accelerates the conjugative transfer of antibiotic resistance plasmid. ENVIRONMENTAL RESEARCH 2024; 263:120002. [PMID: 39278585 DOI: 10.1016/j.envres.2024.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Antimicrobial resistance poses the most formidable challenge to public health, with plasmid-mediated horizontal gene transfer playing a pivotal role in its global spread. Bisphenol compounds (BPs), a group of environmental contaminants with endocrine-disrupting properties, are extensively used in various plastic products and can be transmitted to food. However, the impact of BPs on the plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) has not yet been elucidated. Herein, we demonstrate that BPs could promote the conjugative transfer frequency of RP4-7 and clinically multidrug-resistant plasmids. Furthermore, the promoting effect of BPs on the plasmid transfer was also confirmed in a murine model. Microbial diversity analysis of transconjugants indicated an increase in α diversity in the BPAF-treated group, along with the declined richness of some beneficial bacteria and elevated richness of Faecalibaculum rodentium, which might serve as an intermediate repository for resistance plasmids. The underlying mechanisms driving the enhanced conjugative transfer upon BPAF treatment include exacerbated oxidative stress, disrupted membrane homeostasis, augmented energy metabolism, and the increased expression of conjugation-related genes. Collectively, our findings highlight the potential risk associated with the exacerbated dissemination of AMR both in vitro and in vivo caused by BPs exposure.
Collapse
Affiliation(s)
- Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Wu S, Ji J, Sheng L, Ye Y, Zhang Y, Sun X. Lysine and valine weaken antibiotic resistance in Salmonella Typhimurium induced by disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135858. [PMID: 39305589 DOI: 10.1016/j.jhazmat.2024.135858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
Disinfectants are widely used in food production and environmental sanitation to prevent illness, but bacteria resistance to these disinfectants and co-resistance to antibiotics pose a threat to public health. This study investigated the impact of commonly used disinfectants on the resistance of Salmonella Typhimurium (ST) to disinfectants and antibiotics, and explored the metabolic mechanisms underlying the resistance changes. The results showed that subinhibitory concentrations of disinfectants had a minor impact on the resistance of ST to four disinfectants. However, chlorine-containing disinfectants stress enhanced bacteria resistance to ampicillin, while quaternary ammonium compounds stress increased resistance to tetracycline and gentamicin. Untargeted metabolomics analysis revealed significant changes in glutathione metabolism and lysine and valine degradation pathways after disinfectant exposure. Specifically, ST activated lysine decarboxylation, leading to a significant decrease in lysine levels after benzalkonium chloride exposure, while valine and leucine degradation pathways were activated by sodium hypochlorite stress. The addition of downregulated L-lysine and L-valine increased the sensitivity of ST to antibiotics, providing further evidence for the findings of metabolomics. This study provides guidance for the proper use of disinfectants in food processing and establishes a strategy based on metabolomics to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Liu W, Wang Z, Huang Y, Liu Y, Li R, Wang M, Zhang H, Meng C, Xiao X. Acetylshikonin reduces the spread of antibiotic resistance via plasmid conjugation. Int J Antimicrob Agents 2024; 64:107370. [PMID: 39481662 DOI: 10.1016/j.ijantimicag.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
The plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) stands out as the primary driver behind the dissemination of antimicrobial resistance (AMR). Developing effective inhibitors that target conjugative transfer represents an potential strategy for addressing the issue of AMR. Here, we studied the effect of acetylshikonin (ASK), a botanical derivative, on plasmid conjugation. The conjugative transfer of RP4-7 plasmid inter and intra species was notably reduced by ASK. The conjugation process of IncI2 and IncX4 plasmids harbouring the mobile colistin resistance gene (mcr-1), IncX4 and IncX3 plasmids containing the carbapenem resistance gene (blaNDM-5), and IncFI and IncFII plasmids possessing the tetracycline resistance gene [tet(X4)] were also reduced by ASK. Importantly, the conjugative transfer frequency of mcr-1 positive IncI2 plasmid in mouse peritoneal conjugation model and gut conjugation model was reduced by ASK. The mechanism investigation showed that ASK disrupted the functionality of the bacterial cell membrane. Furthermore, the proton motive force (PMF) was dissipated. In addition, ASK blocked the electron transmission in bacteria's electron transport chain (ETC) through disturbing the quinone interaction, resulting in an insufficient energy supply for conjugation. Collectively, ASK is a potential conjugative transfer inhibitor, providing novel strategies to prevent the spread of AMR.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Xiong J, Hu S, Xu Z, Li C, Li Z, Li S, Ma Y, Ren X, Huang B, Pan X. Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. CHEMOSPHERE 2024; 368:143625. [PMID: 39510271 DOI: 10.1016/j.chemosphere.2024.143625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.
Collapse
Affiliation(s)
- Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zihui Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
12
|
Zhu S, Yang B, Yu F, Zhang J, Wang Z, Liu Y. Investigation of the impact of widely used pesticides on conjugative transfer of multidrug resistance plasmids. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135436. [PMID: 39141944 DOI: 10.1016/j.jhazmat.2024.135436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Plasmid-mediated conjugative transfer has emerged as a major driver accounting for the dissemination of antibiotic resistance genes (ARGs). In addition to the use of antimicrobial agents, there is growing evidence that non-antibiotic factors also play an important role. Pesticides are widely used to protect crops against vectors of diseases, and are indispensable agents in agricultural production, whereas the impact of pesticide pollution on the transmission of antimicrobial resistance remains poorly understood. Here we reveal that the pesticides at environmentally relevant concentrations, especially cyromazine (Cyr) and kresoxim-methyl (Kre), greatly facilitate the conjugative transfer of antibiotic-resistance plasmids carrying clinically important ARGs. Mechanistic studies indicate that Cyr and Kre treatments trigger reactive oxygen species (ROS) production and SOS response, increase membrane permeability, upregulate bacterial proton motive force (PMF) and promote ATP supply. Further non-targeted metabolomics and biochemical analysis demonstrate that the addition of Cyr and Kre accelerates tricarboxylic acid (TCA) cycle and electron transport chain (ETC), thereby activating bacterial energy metabolism. In the constructed soil model, we prove that two pesticides contribute to the dissemination of resistance plasmids in the soil microbiota. 16S rRNA sequencing analyses indicate that pesticides alter transconjugant microbial communities, and enable more opportunistic pathogens, such as Pseudomonas and Enterobacter, to acquire the multidrug resistance plasmids. Collectively, our work indicates the potential risk in accelerating the spread of antimicrobial resistance owing to pesticide pollution, highlighting the importance of continuous surveillance of pesticide residues in complex environmental settings.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayi Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Yang L, Wu X, Wu G, Wu Y, Li H, Shao B. Association analysis of antibiotic and disinfectant resistome in human and foodborne E. coli in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173888. [PMID: 38866143 DOI: 10.1016/j.scitotenv.2024.173888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of chemical disinfectants and antibiotics poses a major threat to food safety and human health. However, the mechanisms of co-transmission of antimicrobial resistance genes (ARGs) and biocides and metal resistance genes (BMRGs) of foodborne pathogens in the food chain is still unclear. This study isolated 343 E. coli strains from animal-derived foods in Beijing and incorporated online data of human-derived E. coli strains from NCBI. Our results demonstrated a relatively uniform distribution of strains from various regions in Beijing, indicating a lack of region-specific clustering. Additionally, predominant sequence types varied between food- and human-derived strains, suggesting a preference for different hosts and environments. Phenotypic association analysis showed that the chlorine disinfectants peroxides had a significant positive correlation with tetracyclines. Many more ARGs and BMRGs were enriched in human-associated E. coli compared with those in chicken- and pork-origin. The quaternary ammonium compounds (QACs) resistance gene qacEΔ1 had a strong correlation with aminoglycoside resistance gene aadA5, folate pathway antagonist resistance gene dfrA17, sul1 and macrolide resistance gene mph(A). The correlation results indicated a significant association between the copper resistance gene cluster pco and the silver resistance gene cluster sil. Coexistence of many resistance genes was observed within the qacEΔ1 gene structure, with qacEΔ1-sul1 being the most common combination. Our findings demonstrated that the epidemiological spread of resistance is affected by a combination of heavy metals, disinfectants and antibiotic use, suggesting that the prevention and control strategies of antimicrobial resistance need to be multifaceted and comprehensive.
Collapse
Affiliation(s)
- Lu Yang
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guoquan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Bing Shao
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Zhang J, Zhu S, Sun J, Liu Y. Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. Int J Mol Sci 2024; 25:9819. [PMID: 39337307 PMCID: PMC11431945 DOI: 10.3390/ijms25189819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.
Collapse
Affiliation(s)
- Jiayi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuyao Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Guo J, Qiu X, Xie YG, Hua ZS, Wang Y. Regulation of intracellular process by two-component systems: Exploring the mechanism of plasmid-mediated conjugative transfer. WATER RESEARCH 2024; 259:121855. [PMID: 38838482 DOI: 10.1016/j.watres.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.
Collapse
Affiliation(s)
- Jingjing Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Guo Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Shuang Hua
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Hu Q, Zhang L, Yang R, Tang J, Dong G. Quaternary ammonium biocides promote conjugative transfer of antibiotic resistance gene in structure- and species-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 189:108812. [PMID: 38878503 DOI: 10.1016/j.envint.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/19/2024]
Abstract
The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.
Collapse
Affiliation(s)
- Qin Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guoliang Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
17
|
Jin W, Xiao C, Zhao J, Yang G, Chen Q, Feng L. Exposure to trace levels of live seaweed-derived antibacterial 2,4,6-tribromophenol modulates β-lactam antibiotics resistance in Vibrio. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133774. [PMID: 38417370 DOI: 10.1016/j.jhazmat.2024.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Non-antibiotic substances have been found to contribute to the spread of antibiotic resistance. Bromophenols (BPs) are special anti-bacterial substances obtained from seaweed. This study explored the modulatory effect of trace BPs from a live seaweed on the antibiotic resistance of pathogenic Vibrio (V.) strains. A hydroponic solution of Ulva fasciata was found to contain trace levels (9-333 μg L-1) of 2,4,6-tribromophenol (TBP), a typical BP. TBP at a concentration of 165 μg L-1 significantly increased the inhibition zone diameter of widely used β-lactam antibiotics (amoxicillin and ampicillin) against V. alginolyticus M7 (Va. M7) and V. parahaemolyticus M3 (Vp. M3) as well as reduced the minimum inhibitory concentration by 2-4 fold against Va. M7. Whole genome re-sequencing analysis demonstrated that Va. M3 (53-60) had more mutant genes than Vp. M7 (44) in β-lactam resistance pathway. Transcriptome sequencing analysis, along with verification through RT-qPCR, further showed that oligopeptide permease (opp) was the only differentially expressed gene (DEG) among the mutated genes in the β-lactam resistance pathway. The opp transport activity and membrane permeability of Vibrio were both enhanced at 165 μg L-1 of TBP, and the ability of biofilm formation was also decreased. Thus, antibiotics resistance improvement of Vibrio by TBP was potentially related with the promoted opp transport activity, membrane permeability and inhibited biofilm formation.
Collapse
Affiliation(s)
- Weimei Jin
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Changyan Xiao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Qingguo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Lijuan Feng
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
18
|
Zeng JY, Li W, Su JQ, Wang YZ, Li Y, Yao H. Manure application amplified the co-selection of quaternary ammonium disinfectant and antibiotic on soil antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133792. [PMID: 38368685 DOI: 10.1016/j.jhazmat.2024.133792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.
Collapse
Affiliation(s)
- Jie-Yi Zeng
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
19
|
Zhang M, Yang B, Shi J, Wang Z, Liu Y. Host defense peptides mitigate the spread of antibiotic resistance in physiologically relevant condition. Antimicrob Agents Chemother 2024; 68:e0126123. [PMID: 38415983 PMCID: PMC10994823 DOI: 10.1128/aac.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.
Collapse
Affiliation(s)
- Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Jiang X, Long J, Song Y, Qi X, Li P, Pan K, Yan C, Xu H, Liu H. The effect of triclosan on intergeneric horizontal transmission of plasmid-mediated tigecycline resistance gene tet(X4) from Citrobacter freundii isolated from grass carp gut. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123658. [PMID: 38432343 DOI: 10.1016/j.envpol.2024.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 μg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 μg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 μg/L TCS, while lysed or even ruptured at 200.00 μg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.
Collapse
Affiliation(s)
- Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ping Li
- Powerchina Northwest Engineering Corporation Limited, Xi'an, 710065, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Zeng JP, Zhang J, Hong JH, Zhao YF, Zhang J, Zhang Y, Huang XH, Xie FZ. Predicting the occurrence of antagonism within ternary guanidine mixture pollutants based on the concentration ratio of components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169380. [PMID: 38123081 DOI: 10.1016/j.scitotenv.2023.169380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The widespread prevalence and coexistence of diverse guanidine compounds pose substantial risks of potential toxicity interactions, synergism or antagonism, to environmental organisms. This complexity presents a formidable challenge in assessing the risks associated with various pollutants. Hence, a method that is both accurate and universally applicable for predicting toxicity interactions within mixtures is crucial, given the unimaginable diversity of potential combinations. A toxicity interaction prediction method (TIPM) developed in our past research was employed to predict the toxicity interaction, within guanidine compound mixtures. Here, antagonism were found in the mixtures of three guanidine compounds including chlorhexidine (CHL), metformin (MET), and chlorhexidine digluconate (CDE) by selecting Escherichia coli (E. coli) as the test organism. The antagonism in the mixture was probably due to the competitive binding of all three guanidine compounds to the anionic phosphates of E. coli cell membranes, which eventually lead to cell membrane rupture. Then, a good correlation between toxicity interactions (antagonisms) and components' concentration ratios (pis) within binary mixtures (CHL-MET, CHL-CDE, MET-CDE) was established. Based on the correlation, the TIPM was constructed and accurately predicted the antagonism in the CHL-MET-CDE ternary mixture, which once again proved the accuracy and applicability of the TIPM method. Therefore, TIPM can be suggested to identify or screen rapidly the toxicity interaction within ternary mixtures exerting potentially adverse effects on the environment.
Collapse
Affiliation(s)
- Jian-Ping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jun-Hua Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yuan-Fan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ying Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Xian-Huai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China
| | - Fa-Zhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
22
|
Batantou Mabandza D, Colletin E, Dagot C, Quétel I, Breurec S, Guyomard-Rabenirina S. Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes? Antibiotics (Basel) 2024; 13:87. [PMID: 38247646 PMCID: PMC10812525 DOI: 10.3390/antibiotics13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Waterborne faecal contamination is a major public health concern. The main objectives of this study were to investigate faecal contamination and Escherichia coli (E. coli) antibiotic resistance in recreational fresh water from Guadeloupe and to characterise the microbiome and resistome composition in biofilms from submerged rocks. Significant faecal contamination was observed at 14 freshwater sites. E. coli predominated (62%), followed by Enterobacter cloacae (11%) and Acinetobacter spp. (11%). Of 152 E. coli isolated, none produced extended-spectrum beta-lactamases (ESBLs), but 7% showed resistance to streptomycin and 4% to tetracycline. Biofilm resistome analysis revealed clinically significant antibiotic-resistance genes (ARGs), including those coding for resistance to sulfonamides (sul1), carbapenems (blaKPC), and third-generation cephalosporins (blaCTX-M). Mobile genetic elements (MGEs) (intI1, intI2, intI3) linked to resistance to aminoglycosides, beta-lactams, tetracycline, as well as heavy metal resistance determinants (copA, cusF, czcA, merA) conferring resistance to copper, silver, cadmium, and mercury were also detected. Diverse bacterial phyla were found in biofilm samples, of which Proteobacteria, Bacteroidetes, Planctonomycetes, and Cyanobacteria were predominant. Despite the frequent presence of E. coli exceeding regulatory standards, the low levels of antibiotic-resistant bacteria in freshwater and of ARGs and MGEs in associated biofilms suggest limited antibiotic resistance in Guadeloupean recreational waters.
Collapse
Affiliation(s)
- Degrâce Batantou Mabandza
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Edlyne Colletin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Christophe Dagot
- University of Limoges, INSERM, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France
| | - Isaure Quétel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97110 Pointe-à-Pitre, France
- INSERM, Centre for Clinical Investigation 1424, 97110 Pointe-à-Pitre, France
- Department of Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34394 Montpellier, France
- Laboratory of Clinical Microbiology, University Hospital Centre of Guadeloupe, 971110 Pointe-à-Pitre, France
| | - Stéphanie Guyomard-Rabenirina
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| |
Collapse
|
23
|
Azuma T, Usui M, Hayashi T. Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167432. [PMID: 37777130 DOI: 10.1016/j.scitotenv.2023.167432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
24
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|