1
|
Ji K, Liu W, Yin W, Kong X, Xu H, Lai ZW, Li JY, Yue JM. A new class of potent liver injury protective compounds: Structural elucidation, total synthesis and bioactivity study. Acta Pharm Sin B 2023; 13:3414-3424. [PMID: 37655332 PMCID: PMC10465957 DOI: 10.1016/j.apsb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 09/02/2023] Open
Abstract
A new class of potent liver injury protective compounds, phychetins A-D (1-4) featuring an unique 6/6/5/6/5 pentacyclic framework, were isolated and structurally characterized from a Chinese medicinal plant Phyllanthus franchetianus. Compounds 2-4 are three pairs of enantiomers that were initially obtained in a racemic manner, and were further separated by chiral HPLC preparation. Compounds 1-4 were proposed to be originated biosynthetically from a coexisting lignan via an intramolecular Friedel-Crafts reaction as the key step. A bioinspired total synthesis strategy was thus designated, and allowed the effective syntheses of compounds 2-4 in high yields. Some of compounds exhibited significant anti-inflammatory activities in vitro via suppressing the production of pro-inflammatory cytokine IL-1β. Notably, compound 4, the most active enantiomeric pair in vitro, displayed prominent potent protecting activity against liver injury at a low dose of 3 mg/kg in mice, which could serve as a promising lead for the development of acute liver injury therapeutic agent.
Collapse
Affiliation(s)
- Kailong Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeng-Wei Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
2
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
3
|
Zhang X, Lin L, Li L, Hu K, Shao R, Zhang L, Tang L, Zhu M, Ma Y, Yang Y. Janus kinase inhibitor Tofacitinib alleviated acute hepatitis induced by lipopolysaccharide/D-galactosamine in mice. Mol Biol Rep 2023; 50:1477-1485. [PMID: 36507969 DOI: 10.1007/s11033-022-08086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The Janus kinase (JAK) is a crucial intracellular signaling hub for numerous cytokines, which is extensively involved in the activation of inflammatory cascade and the induction of inflammatory injury. JAK inhibition provides protective effects in several inflammation-based disorders, but the potential effects of JAK inhibitor in inflammation-based acute hepatitis remain to be investigated. METHODS AND RESULTS Acute hepatitis is induced by Lipopolysaccharide/D-galactosamine (LPS/D-Gal) in mice with or without the JAK inhibitor Tofacitinib administration. The degree of liver injury, the production of pro-inflammatory cytokines and induction of hepatocytes apoptosis were determined. The results indicated that treatment with Tofacitinib decreased the levels of aminotransferases, attenuated the histological abnormalities in liver and decreased the plasma levels of TNF-α and IL-6 in LPS/D-Gal-insulted mice. In addition, Tofacitinib suppressed the activation of the caspase cascade, decreased the level of cleaved caspase-3, and reduced the count of TUNEL-positive cells. CONCLUSION Treatment with Tofacitinib alleviated LPS/D-Gal-induced acute hepatitis. JAK maybe become a promising target for the control of inflammation-based liver disorders.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Kai Hu
- Department of Histology and Embryology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, PR China
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| | - Min Zhu
- Department of Pathology, Karamay Central Hosptial of XinJiang Karamay, Karamay, Xinjiang, PR China
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yuhua Ma
- Department of Pathology, Karamay Central Hosptial of XinJiang Karamay, Karamay, Xinjiang, PR China.
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
4
|
Deng L, Cheng S, Li J, Xu X, Hao X, Fan Y, Mu S. Synthesis and biological evaluation of novel schisanhenol derivatives as potential hepatoprotective agents. Eur J Med Chem 2022; 227:113919. [PMID: 34688010 DOI: 10.1016/j.ejmech.2021.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Twenty-one new schisanhenol derivatives were synthesized, and their hepatoprotective effects against liver injury induced by concanavalin A (Con A) were evaluated in vitro using an MTT assay. The data indicated that most derivatives exhibited equivalent or better protective activity than the positive control (dimethyl dicarboxylate biphenyl, DDB) under the same conditions. Among them, compound 1b showed the most potent hepatoprotective activity against Con A-induced immunological injury. Mechanistic studies in vitro revealed that 1b inhibited cell apoptosis and inflammatory responses caused by Con A treatment via IL-6/JAK2/STAT3 signaling pathway. Consistently, it also exhibited significant hepatoprotective activity in mice with Con A-induced immunological liver injury. These results clearly indicated that 1b might be a highly potent hepatoprotective agent targeting IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Shasha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| |
Collapse
|
5
|
Elshal M, Abu-Elsaad N, El-Karef A, Ibrahim T. Etanercept attenuates immune-mediated hepatitis induced by concanavalin A via differential regulation of the key effector cytokines of CD4+ T cells. Life Sci 2021; 277:119618. [PMID: 34004252 DOI: 10.1016/j.lfs.2021.119618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/19/2022]
Abstract
AIMS The current study aims to investigate the role of the key effector cytokines produced by CD4+T cells in the pathogenesis of Con A-induced liver injury in mice and testing whether etanercept can be repurposed to differentially regulate these cytokines. MAIN METHODS Four groups of mice were used: group I: control group, group II: mice received 15 mg/kg Con A i.v, group III: mice received 15 mg/kg etanercept i.p, group IV: mice received both Con A and etanercept as described. Hepatic injury and necroinflammation were assessed. Infiltration of CD4+ T cells and neutrophils were evaluated. Hepatic levels of TNF-α, IL-4, IL-10, and MDA were assigned and expression of NF-κB as well. KEY FINDINGS A significant decrease in ALT, AST, and LDH levels occurred when etanercept was injected before Con A. Hepatic necrosis and infiltration of CD4+ T cells and neutrophils were reduced by etanercept. Levels of TNF-α, IL-4, and MDA were significantly decreased in group IV compared to group II while that of IL-10 was increased. Also, number of NF-κB positive cells was significantly low in group IV. SIGNIFICANCE The study elucidates an interplay between the two effector cytokines of CD4+ T cells, TNF-α and IL-4, and their key role in Con A-induced liver injury. Additionally, our results showed that etanercept could be repurposed to differentially regulate effector cytokines produced by CD4+ T cells. Not only TNF-α, but also IL-4 signaling pathways, through which it exerts immunomodulatory, anti-inflammatory, and anti-oxidant effects leading to attenuation of Con A-induced liver injury.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt.
| | - Nashwa Abu-Elsaad
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt
| | - Amr El-Karef
- Pathology Dep., Faculty of Medicine, Mansoura University, Egypt
| | - Tarek Ibrahim
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
6
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
7
|
Avni D, Harikumar KB, Sanyal AJ, Spiegel S. Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 2021; 35:e21415. [PMID: 33566377 PMCID: PMC8491138 DOI: 10.1096/fj.202002540r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Wu B, Liu H, Cai H, Tao W, Wang G, Shi X, Chen H, Li R. Vaccine targeting TNF epitope 1-14 do not suppress host defense against Mycobacterium bovis Bacillus Calmette-Guérin infection. Int J Biol Macromol 2020; 169:371-383. [PMID: 33347929 DOI: 10.1016/j.ijbiomac.2020.12.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Anti-TNF inhibitors are efficacious in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA), Crohn's disease (CD), juvenile idiopathic arthritis (JIA), and ankylosing spondylitis (AS). However, more and more clinical case reports revealed that anti-TNF inhibitors could increase the risk of viral, fungal, and bacterial (especially intracellular) infection. In this study, based on Immune Epitope Database (IEDB) online B cell epitope prediction and the knowledge of TNF three dimensional (3D) structure we developed a novel vaccine (DTNF114-TNF114) that targeting TNF epitope 1-14, which produced antibodies only partially binding to trans-membrane TNF (tmTNF), therefore partially sparing tmTNF-TNFR1/2 interaction. Immunization with DTNF114-TNF114 significantly protected and prolonged the survival rate of mice challenged with lipopolysaccharide (LPS); and in the mCherry expressing Mycobacterium bovis Bacillus Calmette-Guérin (mCherry-BCG) infection model, DTNF114-TNF114 immunization significantly decreased soluble TNF (solTNF) level in serum, meanwhile did not suppress host immunity against infection. Thus, this novel and infection concern-free vaccine provides a potential alternative or supplement to currently clinically used anti-TNF inhibitors.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Weihong Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Gengchong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Xiaohui Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
9
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Yuan Z, Yuan Z, Hasnat M, Zhang H, Liang P, Sun L, Jiang Z, Zhang L. A new perspective of triptolide-associated hepatotoxicity: the relevance of NF- κ B and NF- κ B-mediated cellular FLICE-inhibitory protein. Acta Pharm Sin B 2020; 10:861-877. [PMID: 32528833 PMCID: PMC7280150 DOI: 10.1016/j.apsb.2020.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Previously, we proposed a new perspective of triptolide (TP)-associated hepatotoxicity: liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, the mechanisms for TP/LPS-induced hepatotoxicity remained elusive. The present study aimed to clarify the role of LPS in TP/LPS-induced hepatotoxicity and the mechanism by which TP induces liver hypersensitivity upon LPS stimulation. TNF-α inhibitor, etanercept, was injected intraperitoneally into mice to investigate whether induction of TNF-α by LPS participated in the liver injury induced by TP/LPS co-treatment. Mice and hepatocytes pretreated with TP were stimulated with recombinant TNF-α to assess the function of TNF-α in TP/LPS co-treatment. Additionally, time-dependent NF-κB activation and NF-κB-mediated pro-survival signals were measured in vivo and in vitro. Finally, overexpression of cellular FLICE-inhibitory protein (FLIP), the most potent NF-κB-mediated pro-survival protein, was measured in vivo and in vitro to assess its function in TP/LPS-induced hepatotoxicity. Etanercept counteracted the toxic reactions induced by TP/LPS. TP-treatment sensitized mice and hepatocytes to TNF-α, revealing the role of TNF-α in TP/LPS-induced hepatotoxicity. Mechanistic studies revealed that TP inhibited NF-κB dependent pro-survival signals, especially FLIP, induced by LPS/TNF-α. Moreover, overexpression of FLIP alleviated TP/LPS-induced hepatotoxicity in vivo and TP/TNF-α-induced apoptosis in vitro. Mice and hepatocytes treated with TP were sensitive to TNF-α, which was released from LPS-stimulated immune cells. These and other results show that the TP-induced inhibition of NF-κB-dependent transcriptional activity and FLIP production are responsible for liver hypersensitivity.
Collapse
Key Words
- CIAPs, cellular inhibitor of apoptosis proteins
- Etan, etanercept
- FADD, FAS-associated protein with death domain
- FLIP
- FLIP, cellular FLICE-inhibitory protein
- IκB-α, NF-κB inhibitor alpha
- LDH, lactate dehydrogenase
- LPS
- LPS, lipopolysaccharide
- MLKL, mixed lineage kinase domain like pseudokinase
- MPO, myeloperoxidase
- NF-κB
- PAS, periodic acid-schiff
- RIPK1/3, receptor-interacting protein kinase 1/3
- TNF-R1, tumor necrosis factor receptor type 1
- TNF-α
- TNFAIP3, TNF-α-induced protein 3
- TP, triptolide
- TRADD, TNF receptor-associated death domain
- TRAF2, TNF receptor-associated factor 2
- Triptolide
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Muhammad Hasnat
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haoran Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Peishi Liang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 21009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Rodriguez-Cruz A, Vesin D, Ramon-Luing L, Zuñiga J, Quesniaux VFJ, Ryffel B, Lascurain R, Garcia I, Chávez-Galán L. CD3 + Macrophages Deliver Proinflammatory Cytokines by a CD3- and Transmembrane TNF-Dependent Pathway and Are Increased at the BCG-Infection Site. Front Immunol 2019; 10:2550. [PMID: 31787969 PMCID: PMC6855269 DOI: 10.3389/fimmu.2019.02550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages are essential cells of the innate immune response against microbial infections, and they have the ability to adapt under both pro- and anti-inflammatory conditions and develop different functions. A growing body of evidence regarding a novel macrophage subpopulation that expresses CD3 has recently emerged. Here, we explain that human circulating monocytes can be differentiated into CD3+TCRαβ+ and CD3+TCRαβ− macrophages. Both cell subpopulations express on their cell surface HLA family molecules, but only the CD3+TCRαβ+ macrophage subpopulation co-express CD1 family molecules and transmembrane TNF (tmTNF). CD3+TCRαβ+ macrophages secrete IL-1β, IL-6 IP-10, and MCP-1 by both tmTNF- and CD3-dependent pathways, while CD3+TCRαβ− macrophages specifically produce IFN-γ, TNF, and MIP-1β by a CD3-dependent pathway. In this study, we also used a mouse model of BCG-induced pleurisy and demonstrated that CD3+ myeloid cells (TCRαβ+ and TCRαβ− cells) are increased at the infection sites during the acute phase (2 weeks post-infection). Interestingly, cell increment was mediated by tmTNF, and the soluble form of TNF was dispensable. BCG-infection also induced the expression of TNF receptor 2 on CD3+ myeloid cells, which increased after BCG-infection, suggesting that the tmTNF/TNFRs axis plays an important role in the presence or function of these cells in tuberculosis.
Collapse
Affiliation(s)
- Adriana Rodriguez-Cruz
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Lucero Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Valérie F J Quesniaux
- Experimental Molecular Immunology and Neurogenetics (UMR7355), CNRS and University of Orléans, Orléans, France
| | - Bernhard Ryffel
- Experimental Molecular Immunology and Neurogenetics (UMR7355), CNRS and University of Orléans, Orléans, France
| | - Ricardo Lascurain
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Hospital Nacional Homeopático, Secretaría de Salud, Mexico City, Mexico
| | - Irene Garcia
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
12
|
Myeloid cell TNFR1 signaling dependent liver injury and inflammation upon BCG infection. Sci Rep 2019; 9:5297. [PMID: 30923339 PMCID: PMC6438980 DOI: 10.1038/s41598-019-41629-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
TNF plays a critical role in mononuclear cell recruitment during acute Bacillus Calmette-Guérin (BCG) infection leading to an effective immune response with granuloma formation, but may also cause tissue injury mediated by TNFR1 or TNFR2. Here we investigated the role of myeloid and T cell specific TNFR1 and R2 expression, and show that absence of TNFR1 in myeloid cells attenuated liver granuloma formation and liver injury in response to acute BCG infection, while TNFR2 expressed in myeloid cells contributed only to liver injury. TNFR1 was the main receptor controlling cytokine production by liver mononuclear cells after antigenic specific response, modified CD4/CD8 ratio and NK, NKT and regulatory T cell recruitment. Further analysis of CD11b+CD3+ phagocytic cells revealed a TCRαβ expressing subpopulation of unknown function, which increased in response to BCG infection dependent of TNFR1 expression on myeloid cells. In conclusion, TNFR1 expressed by myeloid cells plays a critical role in mononuclear cell recruitment and injury of the liver after BCG infection.
Collapse
|
13
|
Mou H, Wu S, Zhao G, Wang J. Changes of Th17/Treg ratio in the transition of chronic hepatitis B to liver cirrhosis and correlations with liver function and inflammation. Exp Ther Med 2019; 17:2963-2968. [PMID: 30936966 PMCID: PMC6434237 DOI: 10.3892/etm.2019.7299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
The changes in ratio of T helper 17 cells (Th17) to Treg cells in the transition of chronic hepatitis B (CHB) to liver cirrhosis, and the correlations with liver function and inflammation were investigated. A total of 20 normal subjects (control group), 35 CHB patients (CHB group) and 40 post-hepatitis liver cirrhosis patients (liver cirrhosis group) were enrolled into this study. Liver function was measured through the levels of alanine aminotransferase (ALT) and aspartic transaminase (AST), and the hematoxylin and eosin (H&E) staining method was used to detect the histopathological features. mRNA expression of inflammation-associated factors was detected using RT-PCR. The protein expression of nuclear factor κB (NF-κB) was measured in liver tissues using the immunofluorescent method and western blot assay. In the CHB and liver cirrhosis groups, the increases in Th17 cells were more evident than those in Treg cells. Moreover, an evident increase in levels of ALT and AST was identified in the two groups. Structures of liver tissues in the CHB and liver cirrhosis groups were destroyed with damage to the cell nuclei. The expression of inflammation-associated factors were significantly elevated compared to those in the control group. NF-κB expressed in the CHB and liver cirrhosis groups was significantly higher than that in control group. The results of analysis of variance indicated that differences in the expression of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and NF-κB in the three groups had statistical significance (P<0.01). In conclusion, transition from CHB to liver cirrhosis comes with significant changes in Th17/Treg ratio, which is correlated with a decrease in liver function, and also closely associated with the development and progression of inflammation.
Collapse
Affiliation(s)
- Haijuan Mou
- Department of Public Health, Yantai Infectious Disease Hospital, Yantai, Shandong 264001, P.R. China
| | - Song Wu
- Department of Ultrasonic Medicine, Yantai Infectious Disease Hospital, Yantai, Shandong 264001, P.R. China
| | - Guang Zhao
- Department of Infectious Diseases, Yantai Infectious Disease Hospital, Yantai, Shandong 264001, P.R. China
| | - Jindong Wang
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
14
|
Ortí-Casañ N, Wu Y, Naudé PJW, De Deyn PP, Zuhorn IS, Eisel ULM. Targeting TNFR2 as a Novel Therapeutic Strategy for Alzheimer's Disease. Front Neurosci 2019; 13:49. [PMID: 30778285 PMCID: PMC6369349 DOI: 10.3389/fnins.2019.00049] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Accumulating experimental evidence shows the important linkage between tumor necrosis factor-α (TNF) and AD, but the exact role of TNF in AD is still not completely understood. Although TNF-inhibitors are successfully used for treating several diseases, total inhibition of TNF can cause side effects, particularly in neurological diseases. This is attributed to the opposing roles of the two TNF receptors. TNF receptor 1 (TNFR1) predominantly mediates inflammatory and pro-apoptotic signaling pathways, whereas TNF receptor 2 (TNFR2) is neuroprotective and promotes tissue regeneration. Therefore, the specific activation of TNFR2 signaling, either by directly targeting TNFR2 via TNFR2 agonists or by blocking TNFR1 signaling with TNFR1-selective antagonists, seems a promising strategy for AD therapy. This mini-review discusses the involvement of TNFR2 and its signaling pathway in AD and outlines its potential application as therapeutic target. A better understanding of the function of TNFR2 may lead to the development of a treatment for AD.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Petrus J W Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.,Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Gorshkova EN, Efimov GA, Ermakova KD, Vasilenko EA, Yuzhakova DV, Shirmanova MV, Mokhonov VV, Tillib SV, Nedospasov SA, Astrakhantseva IV. Properties of Fluorescent Far-Red Anti-TNF Nanobodies. Antibodies (Basel) 2018; 7:antib7040043. [PMID: 31544893 PMCID: PMC6698962 DOI: 10.3390/antib7040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
Upregulation of the expression of tumor necrosis factor (TNF-α, TNF) has a significant role in the development of autoimmune diseases. The fluorescent antibodies binding TNF may be used for personalized therapy of TNF-dependent diseases as a tool to predict the response to anti-TNF treatment. We generated recombinant fluorescent proteins consisting of the anti-TNF module based on the variable heavy chain (VHH) of camelid antibodies fused with the far-red fluorescent protein Katushka (Kat). Two types of anti-TNF VHH were developed: one (BTN-Kat) that was bound both human or mouse TNF, but did not neutralize their activity, and a second (ITN-Kat) that was binding and neutralizing human TNF. BTN-Kat does not interfere with TNF biological functions and can be used for whole-body imaging. ITN-Kat can be evaluated in humanized mice or in cells isolated from humanized mice. It is able to block human TNF (hTNF) activities both in vitro and in vivo and may be considered as a prototype of a theranostic agent for autoimmune diseases.
Collapse
Affiliation(s)
- Ekaterina N Gorshkova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Grigory A Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow 125167, Russia.
| | - Ksenia D Ermakova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Ekaterina A Vasilenko
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Diana V Yuzhakova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhniy Novgorod 603005, Russia.
| | - Marina V Shirmanova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhniy Novgorod 603005, Russia.
| | - Vladislav V Mokhonov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Sergei V Tillib
- Lomonosov Moscow State University, Moscow 119991, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Sergei A Nedospasov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Irina V Astrakhantseva
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| |
Collapse
|
16
|
Xie X, Wu T, Wang X, Li Y, Wang K, Zhao Z, Jiao X, Tang B. A two-photon fluorescent probe for ratiometric visualization of hypochlorous acid in live cells and animals based on a selenide oxidation/elimination tandem reaction. Chem Commun (Camb) 2018; 54:11965-11968. [PMID: 30289138 DOI: 10.1039/c8cc07312k] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilizing the oxidation/elimination tandem reaction of the α-phenylseleno carbonyl moiety, a two-photon fluorescent probe for ratiometric visualization of hypochlorous acid was developed. Its superior sensing performance and practical applications were well demonstrated.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Tianhong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhiwen Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
17
|
Zhou T, Sun Y, Li M, Ding Y, Yin R, Li Z, Xie Q, Bao S, Cai W. Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway. Cell Death Dis 2018; 9:590. [PMID: 29789597 PMCID: PMC5964223 DOI: 10.1038/s41419-018-0670-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Acute-on-chronic liver failure is mainly due to host immunity self-destruction. The histone H3 lysine 27 (H3K27) trimethylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and regulates immunity, also involves pathogenesis of several liver diseases. The current study was to determine the role of methyltransferase EZH2 and its catalysed H3K27 trimethylation (H3K27me3) in liver failure, and to further investigate the potential target for liver failure treatment. EZH2 and its catalysed H3K27me3 were determined in peripheral blood mononuclear cells (PBMC) from liver failure patients and Kupffer cells from experimental mice. Furthermore, GSK126 (an inhibitor for EZH2 trimethylation function) was applied in liver failure mice in vivo, and lipopolysaccharide-stimulated mononuclear cells in vitro. EZH2 and H3K27me3 were significantly upregulated in human PBMC from liver failure patients or murine Kupffer cells from the liver failure animals, respectively. GSK126 ameliorated disease severity in liver failure mice, which maybe attribute to down-regulate circulating and hepatic proinflammatory cytokines, especially TNF via reducing H3K27me3. In-depth chromatin immunoprecipitation analysis unravelled that decreased enrichment of H3K27me3 on Tnf promotor, resulting in TNF elevation in Kupffer cells from liver failure mice. Nuclear factor kappa B (NF-κB) and protein kinase B (Akt) signalling pathways were activated upon lipopolysaccharide stimulation, but attenuated by using GSK126, accompanied with decreased TNF in vitro. In conclusion, EZH2 and H3K27me3 contributed to the pathogenesis of liver failure via triggering TNF and other indispensable proinflammatory cytokines. EZH2 was to modify H3K27me3 enrichment, as well as, activation of the downstream NF-κB and Akt signalling pathways.
Collapse
Affiliation(s)
- Tianhui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ye Sun
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Li
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou, 215007, China
| | - Yongsen Ding
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rongkun Yin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front Immunol 2018; 9:784. [PMID: 29725328 PMCID: PMC5916970 DOI: 10.3389/fimmu.2018.00784] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a limited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling pathway by sTNF via TNFR1 mainly triggers pro-inflammatory pathways, and mTNF binding to TNFR2 usually initiates immune modulation and tissue regeneration. TNFα plays a critical role in upregulation or downregulation of Treg activity. Deficiency in TNFR2 signaling is significant in various autoimmune diseases. An ideal therapeutic strategy for autoimmune diseases would be to selectively block the sTNF/TNFR1 signal through the administration of sTNF inhibitors, or using TNFR1 antagonists while keeping the TNFR2 signaling pathway intact. Another promising strategy would be to rely on TNFR2 agonists which could drive the expansion of Tregs and promote tissue regeneration. Design of these therapeutic strategies targeting the TNFR1 or TNFR2 signaling pathways holds promise for the treatment of diverse inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Sujuan Yang
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | | | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
19
|
Vigolo M, Chambers MG, Willen L, Chevalley D, Maskos K, Lammens A, Tardivel A, Das D, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Smulski CR, Eslami M, Rolink A, Hummler E, Samy E, Fomekong Nanfack Y, Mackay F, Liao M, Hess H, Jiang X, Schneider P. A loop region of BAFF controls B cell survival and regulates recognition by different inhibitors. Nat Commun 2018; 9:1199. [PMID: 29572442 PMCID: PMC5865128 DOI: 10.1038/s41467-018-03323-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
The B cell survival factor (TNFSF13B/BAFF) is often elevated in autoimmune diseases and is targeted in the clinic for the treatment of systemic lupus erythematosus. BAFF contains a loop region designated the flap, which is dispensable for receptor binding. Here we show that the flap of BAFF has two functions. In addition to facilitating the formation of a highly active BAFF 60-mer as shown previously, it also converts binding of BAFF to TNFRSF13C (BAFFR) into a signaling event via oligomerization of individual BAFF-BAFFR complexes. Binding and activation of BAFFR can therefore be targeted independently to inhibit or activate the function of BAFF. Moreover, structural analyses suggest that the flap of BAFF 60-mer temporarily prevents binding of an anti-BAFF antibody (belimumab) but not of a decoy receptor (atacicept). The observed differences in profiles of BAFF inhibition may confer distinct biological and clinical efficacies to these therapeutically relevant inhibitors. BAFF is an important cytokine for B cell survival, and is a therapeutic target for autoimmune disorders. Here the authors show that a 'flap' region of BAFF converts BAFFR binding events into survival signals and, with structural data, that this ‘flap’ differentially modulates binding of drugs such as belimumab or atacicept.
Collapse
Affiliation(s)
- Michele Vigolo
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dehlia Chevalley
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Klaus Maskos
- Proteros Biostructures GmbH, 82152, Planegg, Germany
| | | | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dolon Das
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | | | | | - Cristian R Smulski
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mahya Eslami
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Eileen Samy
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | | | - Fabienne Mackay
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.
| |
Collapse
|
20
|
TNFR signalling and its clinical implications. Cytokine 2018; 101:19-25. [DOI: 10.1016/j.cyto.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023]
|
21
|
Chavez-Galan L, Vesin D, Uysal H, Blaser G, Benkhoucha M, Ryffel B, Quesniaux VFJ, Garcia I. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy. Front Immunol 2017; 8:999. [PMID: 28890718 PMCID: PMC5574880 DOI: 10.3389/fimmu.2017.00999] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
Pleural tuberculosis (TB) is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC) has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF) in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2), but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory of Integrative Immunology, National Institute of Respiratory Diseases "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Husnu Uysal
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Guillaume Blaser
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Valérie F J Quesniaux
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Trypanosoma brucei growth control by TNF in mammalian host is independent of the soluble form of the cytokine. Sci Rep 2017; 7:6165. [PMID: 28733685 PMCID: PMC5522424 DOI: 10.1038/s41598-017-06496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Infection of C57Bl/6 mice by pleomorphic African trypanosomes Trypanosoma brucei and T. congolense is characterized by parasitemia waves coupled with the production of systemic levels of TNF. This cytokine is known to control T. brucei growth, but also to contribute to tissue damage, shortening the survival time of infected mice. Using a dominant-negative version of TNF to discriminate between the effects of the membrane-form versus the soluble form of TNF, we show that the second form is involved in neither parasite control nor induction of liver injury. Therefore, soluble TNF is likely not a major contributor to disease outcome. We propose that membrane-bound TNF is responsible for both T. brucei control and host pathology.
Collapse
|
23
|
Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Dis Int 2017; 16:245-256. [PMID: 28603092 PMCID: PMC7172563 DOI: 10.1016/s1499-3872(17)60014-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions. DATA SOURCES The data of mouse hepatic models and relevant human liver diseases presented in this review are systematically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS The hepatotoxic liver injury in mice induced by the metabolites of CCl4, acetaminophen or alcohol represent necrotic cell death with activation of cytochrome pathway, formation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-alpha induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrated the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The alpha-GalCer-induced liver injury was mediated by TNF-alpha. The LPS-induced hepatitis involved TNF-alpha, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-alpha signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune cells and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcoholic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.
Collapse
|
24
|
Filliol A, Piquet-Pellorce C, Raguénès-Nicol C, Dion S, Farooq M, Lucas-Clerc C, Vandenabeele P, Bertrand MJM, Le Seyec J, Samson M. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. J Hepatol 2017; 66:1205-1213. [PMID: 28088582 DOI: 10.1016/j.jhep.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The severity of liver diseases is exacerbated by the death of hepatocytes, which can be induced by the sensing of pathogen associated molecular patterns (PAMPs) derived from the gut microbiota. The molecular mechanisms regulating these cell death pathways are poorly documented. In this study, we investigated the role of the receptor interacting protein kinase 1 (RIPK1), a protein known to regulate cell fate decisions, in the death of hepatocytes using two in vivo models of PAMP-induced hepatitis. METHODS Hepatitis was induced in mice by independent injections of two different bacterial PAMPs: lipopolysaccharide (LPS) and unmethylated CpG oligodeoxynucleotide (CpG-DNA) motifs. The role of RIPK1 was evaluated by using mice specifically lacking RIPK1 in liver parenchymal cells (Ripk1LPC-KO). Administration of liposome-encapsulated clodronate served to investigate the role of Kupffer cells in the establishment of the disease. Etanercept, a tumor necrosis factor (TNF)-decoy receptor, was used to study the contribution of TNF-α during LPS-mediated liver injury. RESULTS Whereas RIPK1 deficiency in liver parenchymal cells did not trigger basal hepatolysis, it greatly sensitized hepatocytes to apoptosis and liver damage following a single injection of LPS or CpG-DNA. Importantly, hepatocyte death was prevented by previous macrophage depletion or by TNF inhibition. CONCLUSIONS Our data highlight the pivotal function of RIPK1 in maintaining liver homeostasis in conditions of macrophage-induced TNF burst in response to PAMPs sensing. LAY SUMMARY Excessive death of hepatocytes is a characteristic of liver injury. A new programmed cell death pathway has been described involving upstream death ligands such as TNF and downstream kinases such as RIPK1. Here, we show that in the presence of LPS liver induced hepatic injury was due to secretion of TNF by liver macrophages, and that RIPK1 acts as a powerful protector of hepatocyte death. This newly identified pathway in the liver may be helpful in the management of patients to predict their risk of developing acute liver failure.
Collapse
Affiliation(s)
- Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Céline Raguénès-Nicol
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France; Centre National de la Recherche Scientifique (CNRS), UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), F-35043 Rennes, France
| | - Sarah Dion
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Muhammad Farooq
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Catherine Lucas-Clerc
- Université de Rennes 1, F-35043 Rennes, France; Service de Biochimie CHU Rennes, Université de Rennes 1; F-35043 Rennes, France
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Jacques Le Seyec
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| |
Collapse
|
25
|
Yao H, Sun Y, Song S, Qi Y, Tao X, Xu L, Yin L, Han X, Xu Y, Li H, Sun H, Peng J. Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of Oxidative Stress and Inflammation. Front Pharmacol 2017; 8:120. [PMID: 28377715 PMCID: PMC5359219 DOI: 10.3389/fphar.2017.00120] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
The protective effects of dioscin, a natural steroidal saponin from some medicinal plants including Dioscorea nipponica Makino, against lipopolysaccharide (LPS)- induced acute liver and renal damages have been reported in our previous works. However, the actions of dioscin against LPS-induced acute lung injury (ALI) is still unknown. In the present study, we investigated the effects and mechanisms of dioscin against LPS-induced ALI in vitro and in vivo. The results showed that dioscin obviously inhibited cell proliferation and markedly decreased reactive oxidative species level in 16HBE cells treated by LPS. In addition, dioscin significantly protected LPS-induced histological changes, inhibited the infiltration of inflammatory cells, as well as decreased the levels of MDA, SOD, NO and iNOS in mice and rats (p < 0.05). Mechanistically, dioscin significantly decreased the protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, phosphorylation levels of PI3K, Akt, IκBα, NF-κB, and the mRNA levels of IL-1β, IL-6, and TNF-α against oxidative stress and inflammation (p < 0.05). Dioscin significantly reduced the overexpression of TLR4, and obviously down-regulated the levels of MyD88, TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB. These findings provide new perspectives for the study of ALI. Dioscin has protective effects on LPS-induced ALI via adjusting TLR4/MyD88- mediated oxidative stress and inflammation, which should be a potent drug in the treatment of ALI.
Collapse
Affiliation(s)
- Hong Yao
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Yiping Sun
- Lab of Medical Function, College of Basic Medical Sciences, Dalian Medical University, Dalian China
| | - Shasha Song
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian China
| |
Collapse
|
26
|
Li N, Wang JB, Zhao YL, Zhang L, Ma XB, Li XF, Song J, Yang X, Xiao XH, Tian J, Kang TG. Liver Protective and Reactive Oxygen Species Scavenging
Effects of Emodin in Lipopolysaccharide/Bacillus Calmette
Guerin-injured Mice by Optical Molecular Imaging. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.175.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Yao H, Hu C, Yin L, Tao X, Xu L, Qi Y, Han X, Xu Y, Zhao Y, Wang C, Peng J. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int Immunopharmacol 2016; 36:132-141. [DOI: 10.1016/j.intimp.2016.04.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
|
28
|
Yang P, Zhou W, Li C, Zhang M, Jiang Y, Jiang R, Ba H, Li C, Wang J, Yin B, Gong F, Li Z. Kupffer-cell-expressed transmembrane TNF-α is a major contributor to lipopolysaccharide and D-galactosamine-induced liver injury. Cell Tissue Res 2015; 363:371-83. [PMID: 26267221 DOI: 10.1007/s00441-015-2252-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF)-α exists in two bioactive forms, a 26-kDa transmembrane form (tmTNF-α) and a 17-kDa soluble form (sTNF-α). sTNF-α has been recognized as a key regulator of hepatitis; however, serum sTNF-α disappears in mice during the development of severe liver injury, and high levels of serum sTNF-α do not necessarily result in liver damage. Interestingly, in a mouse model of acute hepatitis, we have found that tmTNF-α expression on Kupffer cells (KCs) significantly increases when mice develop severe liver injury caused by lipopolysaccharide (LPS)/D-galactosamine (D-gal), and the level of tmTNF-α expression is positively related to the activity of serum transaminases. Therefore, we hypothesized that KC-expressed tmTNF-α constitutes a pathomechanism in hepatitis and have explored the role of tmTNF-α in this disease model. Here, we have compared the impact of KCs(tmTNFlow) and KCs(tmTNFhigh) on acute hepatitis in vivo and ex vivo and have further demonstrated that KCs(tmTNFhigh), rather than KCs(tmTNFlow), not only exhibit an imbalance in secretion of pro- and anti-inflammatory cytokines, favoring inflammatory response and exacerbating liver injury, but also induce hepatocellular apoptosis via tmTNF-α and the expression of another pro-apoptotic factor, Fas ligand. Our data suggest that KC(tmTNFhigh) is a major contributor to liver injury in LPS/D-gal-induced hepatitis.
Collapse
Affiliation(s)
- Peng Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Wenjing Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Chenxi Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Meng Zhang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Yaping Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Rui Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongping Ba
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Cheng Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Wang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Bingjiao Yin
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhuoya Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
29
|
Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF. Infect Immun 2015; 83:3612-23. [PMID: 26123801 DOI: 10.1128/iai.00743-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.
Collapse
|
30
|
Vetvicka V, Garcia-Mina JM, Yvin JC. Prophylactic effects of humic acid-glucan combination against experimental liver injury. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:249-55. [PMID: 26401416 PMCID: PMC4579487 DOI: 10.5455/jice.20150519103113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/08/2015] [Indexed: 11/05/2022]
Abstract
Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, USA
| | - Jose Maria Garcia-Mina
- Department of Chemistry and Soil Chemistry, Agricultural Chemistry and Biology Group, University of Navarra, Spain
| | | |
Collapse
|
31
|
Luo M, Zhao A, Li J, Chen Y, Tian D, Wang C, Hu Z, Gao J. Acute liver injury attenuation of a novel recombinant sTNFR through blocking hepatic apoptosis. Immunopharmacol Immunotoxicol 2015; 37:295-300. [PMID: 25982795 DOI: 10.3109/08923973.2015.1035390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Tumor necrosis factor (TNF) α plays a key role in acute liver injury (ALI) induced by injection of d-galactosamine (D-Gal)/lipopolysaccharide (LPS). A novel recombinant trimeric sTNFRII, sTNFRII-gAD, has been tested to be effective in ameliorating ALI, when administered prior to ALI establishment. This study aims to validate the protective effect of sTNFRII-gAD when given after ALI setup and further explore its effect on hepatic apoptosis. MATERIALS AND METHODS The treatments were carried out concomitantly with ALI establishment with clinically approved sTNFRII-Fc (the dimeric sTNFRII) as a positive control. Lethality, liver weight, and serum alanine transaminase were measured, and histological analysis was performed to evaluate liver injury induced by D-Gal/LPS. Additionally, Terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) and Western blot analyses of caspase-3 were used to examine hepatocellular apoptosis. RESULTS sTNFRII-gAD given after D-Gal/LPS injection turned out to attenuate animal mortality significantly (p < 0.01), and had better hepatic protection. In terms of apoptosis, both sTNFRII-gAD and sTNFRII-Fc displayed noticeable improvement of apoptosis evidenced by dramatic decline of active caspase-3 compared to the control group. CONCLUSIONS The results demonstrated that sTNFRII-gAD therapeutically diminished the lethality induced by D-Gal/LPS, possibly through blocking hepatic apoptosis initiated by TNFα. Of note, sTNFRII-gAD was superior to sTNFRII-Fc in some respects, indicating a promising alternative for the therapeutic strategy against the diseases associated with excessive TNFα.
Collapse
Affiliation(s)
- Mansheng Luo
- Department of Microbiology & Immunology, School of Medicine, JingGangShan University , Jian , China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Segueni N, Vigne S, Palmer G, Bourigault ML, Olleros ML, Vesin D, Garcia I, Ryffel B, Quesniaux VFJ, Gabay C. Limited Contribution of IL-36 versus IL-1 and TNF Pathways in Host Response to Mycobacterial Infection. PLoS One 2015; 10:e0126058. [PMID: 25950182 PMCID: PMC4423901 DOI: 10.1371/journal.pone.0126058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/28/2015] [Indexed: 11/18/2022] Open
Abstract
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.
Collapse
Affiliation(s)
- Noria Segueni
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Solenne Vigne
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Laure Bourigault
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Maria L. Olleros
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Valérie F. J. Quesniaux
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
33
|
|
34
|
Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. Eur J Pharmacol 2014; 738:66-73. [PMID: 24877692 DOI: 10.1016/j.ejphar.2014.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 11/20/2022]
Abstract
Linarin was isolated from Chrysanthemum indicum L. Fulminant hepatic failure is a serious clinical syndrome that results in massive inflammation and hepatocyte death. Apoptosis is an important cellular pathological process in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, and regulation of liver apoptosis might be an effective therapeutic method for fulminant hepatic failure. This study examined the cytoprotective mechanisms of linarin against GalN/LPS-induced hepatic failure. Mice were given an oral administration of linarin (12.5, 25 and 50mg/kg) 1h before receiving GalN (800 mg/kg)/LPS (40 μg/kg). Linarin treatment reversed the lethality induced by GalN/LPS. After 6h of GalN/LPS injection, the serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor (TNF)-α, interleukin-6 and interferon-γ were significantly elevated. GalN/LPS increased toll-like receptor 4 and interleukin-1 receptor-associated kinase protein expression. These increases were attenuated by linarin. Linarin attenuated the increased expression of Fas-associated death domain and caspase-8 induced by GalN/LPS, reduced the cytosolic release of cytochrome c and caspase-3 cleavage induced by GalN/LPS, and reduced the pro-apoptotic Bim phosphorylation induced by GalN/LPS. However, linarin increased the level of anti-apoptotic Bcl-xL and phosphorylation of STAT3. Our results suggest that linarin alleviates GalN/LPS-induced liver injury by suppressing TNF-α-mediated apoptotic pathways.
Collapse
|
35
|
Zhan Y, Wang Z, Yang P, Wang T, Xia L, Zhou M, Wang Y, Wang S, Hua Z, Zhang J. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Dis 2014; 5:e985. [PMID: 24407238 PMCID: PMC4040656 DOI: 10.1038/cddis.2013.516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 11/09/2022]
Abstract
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Collapse
Affiliation(s)
- Y Zhan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Wang
- East Hospital, Tongji University, Shanghai 200120, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Y Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Hua
- The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - J Zhang
- 1] Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China [2] The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Wu Z, Kong X, Zhang T, Ye J, Fang Z, Yang X. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine. Eur J Pharmacol 2013; 724:112-21. [PMID: 24365491 DOI: 10.1016/j.ejphar.2013.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 02/05/2023]
Abstract
The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.
Collapse
Affiliation(s)
- Zhongping Wu
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China.
| | - Xiangliang Kong
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Tong Zhang
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Jin Ye
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Zhaoqin Fang
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Xuejun Yang
- Department of Nephrology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
37
|
Sharma M, Mohapatra J, Malik U, Wagh A, Singh A, Patel HM, Pandey D, Kadam S, Shah GB, Chatterjee A, Jain MR. Selective inhibition of tumor necrosis factor-α converting enzyme attenuates liver toxicity in a murine model of concanavalin A induced auto-immune hepatitis. Int Immunopharmacol 2013; 17:229-36. [PMID: 23816535 DOI: 10.1016/j.intimp.2013.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/17/2013] [Accepted: 06/09/2013] [Indexed: 01/24/2023]
Abstract
Emerging evidence suggest that tumor necrosis factor (TNF)-α plays a major role in pathogenesis of auto-immune hepatitis (AIH) induced liver injury. Blockade of TNF-α synthesis or bio-activity protects against experimental AIH. TNF-α converting enzyme (TACE) is a member of the ADAM (a disintegrin and metalloproteinase) family which processes precursor TNF-α to release soluble TNF-α. We hypothesized that selective inhibition of TACE might protect AIH. To investigate this, we studied the effects of a selective TACE inhibitor DPC-333 on murine model of liver injury and fibrosis induced with concanavalin A (Con A). Pre-treatment with DPC-333 significantly suppressed plasma alanine transaminase, aspartate transaminase and cytokines such as TNF-α, interferon (IFN)-γ, interleukin (IL)-2 and IL-6 levels due to acute Con A challenge. Interestingly; DPC-333 inhibited liver poly (ADP-ribose) polymerase (PARP)-1 activity which was associated with reduced number of necrotic hepatocytes in histological examination and mortality associated with Con A. In fibrosis study, repeated Con A administration significantly up-regulated liver collagen deposition as assessed by measurement of hydroxyproline content which was further confirmed in liver histology with Masson's trichrome staining. Treatment with 30mg/kg of DPC-333 was able to suppress liver hydroxyproline and fibrous tissue proliferation which corroborated well with inhibition in expression of pro-fibrotic genes such as tissue inhibitor of metalloproteinase (TIMP)-1 and transforming growth factor (TGF)-β1. These observations suggest that selective TACE inhibition is an effective approach for the treatment of both immune mediated hepatic inflammation and fibrosis.
Collapse
Affiliation(s)
- Manoranjan Sharma
- Dept. of Pharmacology, Zydus Research Centre, Moraiya, Ahmedabad, Gujarat, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Addition of pentoxifylline to pegylated interferon-alpha-2a and ribavirin improves sustained virological response to chronic hepatitis C virus: a randomized clinical trial. Ann Hepatol 2013. [DOI: 10.1016/s1665-2681(19)31363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
39
|
Chen EQ, Gong DY, Leng XH, Bai L, Liu C, Wang LC, Tang H. Inhibiting the expression of hepatocyte nuclear factor 4 alpha attenuates lipopolysaccharide/D-galactosamine-induced fulminant hepatic failure in mice. Hepatobiliary Pancreat Dis Int 2012; 11:624-9. [PMID: 23232634 DOI: 10.1016/s1499-3872(12)60235-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor 4 alpha (HNF4alpha) plays an important role in regulating cytokine-induced inflammatory responses. This study aimed to investigate the role of HNF4alpha in the development of fulminant hepatic failure (FHF) induced by lipopolysaccharide/D-galactosamine (LPS/D-GalN). METHODS The FHF model was induced by simultaneous intraperitoneal injection of LPS/D-GalN in mice. Three days prior to LPS/D-GalN administration, HNF4alpha short-hairpin interfering RNA expression plasmid or physiological saline was injected via the tail vein with a hydrodynamics-based procedure. The degree of hepatic damage and cumulative survival rate were subsequently assessed. RESULTS The expression of HNF4alpha was increased in the early stage after LPS/D-GalN administration. Inhibiting the expression of HNF4alpha reduced serum levels of alanine aminotransferase and aspartate aminotransferase, alleviated histological injury, and improved the survival of mice with FHF. In addition, both serum and hepatic tumor necrosis factor alpha expression were suppressed when HNF4alpha expression was inhibited in mice with FHF. CONCLUSION Inhibiting HNF4alpha expression protects mice from FHF induced by LPS/D-GalN, but the exact mechanism behind this needs further investigation.
Collapse
Affiliation(s)
- En-Qiang Chen
- Center for Infectious Diseases, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu M, Gong X, Jiang R, Zhang L, Li X, Wan J. Polydatin Protects against Lipopolysaccharide-Induced Fulminant Hepatic Failure in D-Galactosamine-Sensitized Mice. Int J Immunopathol Pharmacol 2012; 25:923-34. [DOI: 10.1177/039463201202500410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fulminant hepatic failure (FHF) is a devastating clinical syndrome with extremely poor prognosis and high mortality. Therefore, better treatment is urgently needed. Polydatin (PD), a traditional anti-inflammatory drug, has been described to protect against liver injury induced by certain hepatotoxins. The present study investigated the protective effect of PD against lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF in mice and the underlying mechanism. Mice were pretreated with an increasing dose of PD (10, 30, and 100 mg/kg), following LPS/D-GalN challenge. The liver injury was assessed biochemically and histologically. We found that PD exerted a protective effect on LPS/D-GalN-induced FHF as evidenced by reducing sera alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, diminishing liver histopathological injury, and lowering mortality in a dose-dependent manner. In addition, pretreatment mice with PD dose-dependently suppressed tumor necrosis factor-α (TNF-α) production, myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1) and endothelial cell adhesion molecule-1 (ECAM-1) expression, caspase-3 activation, and transcription factor nuclear factor-kappa B(NF-kB) activity induced by LPS. These results suggested that PD could effectively protect from LPS/D-GalN-induced FHF and the protective effect afforded by PD probably contributed to reduce TNF-α production via inhibiting NF-kB activation.
Collapse
Affiliation(s)
- M.J. Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - X. Gong
- Department of Anatamy, Chongqing Medical University, Chongqing, China
| | - R. Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - L. Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - X.H. Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - J.Y. Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Olleros ML, Vesin D, Bisig R, Santiago-Raber ML, Schuepbach-Mallepell S, Kollias G, Gaide O, Garcia I. Membrane-bound TNF induces protective immune responses to M. bovis BCG infection: regulation of memTNF and TNF receptors comparing two memTNF molecules. PLoS One 2012; 7:e31469. [PMID: 22666310 PMCID: PMC3364241 DOI: 10.1371/journal.pone.0031469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022] Open
Abstract
Background Several activities of the transmembrane form of TNF (memTNF) in immune responses to intracellular bacterial infection have been shown to be different from those exerted by soluble TNF. Evidence is based largely on studies in transgenic mice expressing memTNF, but precise cellular mechanisms are not well defined and the importance of TNF receptor regulation is unknown. In addition, memTNF activities are defined for a particular modification of the extracellular domain of TNF but a direct comparison of different mutant memTNF molecules has not been done in vivo. Methodology To understand the activities of memTNF we compared two commonly used mouse strains lacking soluble TNF but possessing functional and normally regulated membrane-bound TNF knockin (memTNF KI) for their capacity to generate cell-mediated immune responses and resistance to M. bovis BCG infection, and to regulate TNF receptors. Principal Findings M. bovis BCG infection resulted in similar bacterial loads in one strain of memTNF KI (memTNFΔ1–9,K11E) and in wild-type mice, in contrast, the other strain of memTNF KI mice (memTNFΔ1–12) showed higher sensitivity to infection with high mortality (75%), greater bacterial load and massive lung pathology. The pattern of cytokines/chemokines, inflammatory cells, pulmonary NF-κB phosphorylation, antigen-dependent IFN-γ response, and splenic iNOS was impaired in M. bovis BCG-infected memTNFΔ1–12 KI mice. Macrophages expressing TNFR2 were reduced but soluble TNFRs were higher in memTNFΔ1–12 KI mice during the infection. In vitro, M. bovis BCG-induced NF-κB activation and cytokines were also decreased in memTNFΔ1–12 KI bone marrow-derived macrophages. Conclusion Our data show that two memTNF molecules exerted very different activities upon M. bovis BCG infection resulting in protection or not to bacterial infection. These results suggest a regulatory mechanism of memTNF and TNF receptors being critical in the outcome of the infection and highlight the role of cell-bound and soluble TNFR2 in memTNF-mediated anti-microbial mechanisms.
Collapse
Affiliation(s)
- Maria L. Olleros
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Ruth Bisig
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Marie-Laure Santiago-Raber
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | | | - George Kollias
- Biomedical Sciences Research Center Alexander Fleming, Institute of Immunology, Vari-Athens, Greece
| | - Olivier Gaide
- Department of Dermatology-Venereology, Geneva University Hospital, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Lu Y, Leung TM, Ward SC, Nieto N. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress. Am J Physiol Gastrointest Liver Physiol 2012; 302:G287-95. [PMID: 22052013 PMCID: PMC3287402 DOI: 10.1152/ajpgi.00375.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the L-citrulline/nitric oxide (NO·) salvage pathway to continually supply L-arginine from L-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/- mice (Ass+/+ mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/- mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/- compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration.
Collapse
Affiliation(s)
- Yongke Lu
- 1Division of Liver Diseases, Department of Medicine, and
| | | | - Stephen C. Ward
- 2Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Natalia Nieto
- 1Division of Liver Diseases, Department of Medicine, and
| |
Collapse
|
43
|
Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H, Szymkowski DE, Probert L. Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-kappaB. ACTA ACUST UNITED AC 2011; 134:2722-35. [PMID: 21908876 DOI: 10.1093/brain/awr203] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor mediates chronic inflammatory pathologies including those affecting the central nervous system, but non-selective tumour necrosis factor inhibitors exacerbate multiple sclerosis. In addition, TNF receptor SF1A, which encodes one of the tumour necrosis factor receptors, has recently been identified as a multiple sclerosis susceptibility locus in genome-wide association studies in large patient cohorts. These clinical data have emphasized the need for a better understanding of the beneficial effects of tumour necrosis factor during central nervous system inflammation. In this study, we present evidence that the soluble and transmembrane forms of tumour necrosis factor exert opposing deleterious and beneficial effects, respectively, in a multiple sclerosis model. We compared the effects, in experimental autoimmune encephalomyelitis, of selectively inhibiting soluble tumour necrosis factor, and of both soluble and transmembrane tumour necrosis factor. Blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected mice against the clinical symptoms of experimental autoimmune encephalomyelitis. Therapeutic benefit was independent of changes in antigen-specific immune responses and focal inflammatory spinal cord lesions, but was associated with reduced overall central nervous system immunoreactivity, increased expression of neuroprotective molecules, and was dependent upon the activity of neuronal nuclear factor-κB, a downstream mediator of neuroprotective tumour necrosis factor/tumour necrosis factor receptor signalling, because mice lacking IκB kinase β in glutamatergic neurons were not protected by soluble tumour necrosis factor blockade. Furthermore, blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected neurons in astrocyte-neuron co-cultures against glucose deprivation, an in vitro neurodegeneration model relevant for multiple sclerosis, and this was dependent upon contact between the two cell types. Our results show that soluble tumour necrosis factor promotes central nervous system inflammation, while transmembrane tumour necrosis factor is neuroprotective, and suggest that selective inhibition of soluble tumour necrosis factor may provide a new way forward for the treatment of multiple sclerosis and possibly other inflammatory central nervous system disorders.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Maillet I, Schnyder-Candrian S, Couillin I, Quesniaux VFJ, Erard F, Moser R, Fleury S, Kanda A, Dombrowicz D, Szymkowski DE, Ryffel B. Allergic Lung Inflammation Is Mediated by Soluble Tumor Necrosis Factor (TNF) and Attenuated by Dominant-Negative TNF Biologics. Am J Respir Cell Mol Biol 2011; 45:731-9. [DOI: 10.1165/rcmb.2010-0512oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
45
|
Zhang NN, Huang NY, Zhou XK, Luo XL, Liu CY, Zhang Y, Qiu J, Zhang YB, Teng X, Luo C, Chen XC, Kan B, Mao YQ, Tong AP, Wei YQ, Li J. Protective effects of IL-4 on Bacillus Calmette-Guerin and lipopolysaccharide induced immunological liver injury in mice. Inflamm Res 2011; 61:17-26. [PMID: 21947361 DOI: 10.1007/s00011-011-0383-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/22/2011] [Accepted: 09/07/2011] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Mice injected with Bacillus Calmette-Guérin (BCG) were challenged with lipopolysaccharide (LPS) to induce inflammatory liver injury. This study was performed to explore the protective effects of interleukin (IL)-4 against liver injury induced by BCG and LPS in mice. MATERIALS AND METHODS Mice injected with BCG (125 mg/kg) were challenged with LPS (10 μg/kg) to induce the model of inflammatory liver injury. Half an hour after injection of LPS, mice were subcutaneously administered rmIL-4 at 5 and 0.5 μg/kg, respectively. Liver injury was evaluated by serum transaminase assay and H & E staining. Liver cytokine concentrations were determined by enzyme-linked immunosorbent assay, and intrahepatic cytokine and iNOS mRNA levels by reverse transcriptase polymerase chain reaction. Intrahepatic apoptosis was evaluated by terminal deoxynucleotidyl transferase mediated nick end labeling. NF-κB p65 and ERK signal pathway was detected by Western-blotting. NF-κB signal pathway was also detected by electrophoretic mobility shift assay. RESULTS IL-4 reduced the serum ALT, AST and LDH, alleviated the inflammatory cells infiltration, down regulated the expression of TNF-α, IL-1β, IFN-γ, IL-6 and iNOS mRNA in liver, and alleviated hepatic glutathione depletion (GSH). In addition, IL-4 displayed inhibition of extracellular signal-regulated kinase phosphorylation and NF-κB activation. CONCLUSION IL-4 may protect mice against BCG/LPS-induced immune liver injury, besides ERK and NF-κB signal pathways were involved in the effects.
Collapse
Affiliation(s)
- Nan N Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
TNF-α blockade in chronic granulomatous disease–induced hyperinflammation: Patient analysis and murine model. J Allergy Clin Immunol 2011; 128:675-7. [DOI: 10.1016/j.jaci.2011.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 11/19/2022]
|
47
|
The duality of TNF signaling outcomes in the brain: potential mechanisms? Exp Neurol 2011; 229:198-200. [PMID: 21377463 DOI: 10.1016/j.expneurol.2011.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/20/2011] [Indexed: 11/20/2022]
|
48
|
Liu S, Rong L, Deng J, Zhao X, Liu X, Xu X, Qin Z. TNFR2 expression on non-bone marrow-derived cells is crucial for lipopolysaccharide-induced septic shock and downregulation of soluble TNFR2 level in serum. Cell Mol Immunol 2011; 8:164-71. [PMID: 21258364 DOI: 10.1038/cmi.2010.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Persistently high serum levels of soluble tumor-necrosis factor (TNF) receptor 2 (sTNFR2) have been observed in septic shock and many inflammatory diseases. However, its origin and regulation during these pathological processes are still largely unknown. In this study, murine bone marrow (BM) chimeras selectively expressing TNFR2 on either BM-derived or non-BM-derived cells were generated and challenged with lipopolysaccharide (LPS). The results show that TNFR2 expression on non-BM-derived cells is crucial for both the sensitivity of mice to LPS and the downregulation of sTNFR2 in serum. Most importantly, sTNFR2 was released from both BM- and non-BM-derived cells. Non-BM TNFR1 expression influenced the sensitivity of mice to LPS challenge but not the level of serum sTNFR2. These results provide the first in vivo evidence for the origin and regulation of sTNFR2 in serum and could aid in the development of novel anti-TNF strategies against septic shock.
Collapse
Affiliation(s)
- Shubai Liu
- National Laboratory of Biomacromolecules, China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|