1
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Cheng B, Wang Q, Wei Z, He Y, Li R, Liu G, Zeng S, Meng Z. MHBSt 167 induced autophagy promote cell proliferation and EMT by activating the immune response in L02 cells. Virol J 2022; 19:110. [PMID: 35761331 PMCID: PMC9235077 DOI: 10.1186/s12985-022-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis B virus can induce hepatocellular carcinoma (HCC) by inducing a host immune response against infected hepatocytes. C-terminally truncated middle surface protein (MHBSt) has been reported to contribute to HCC through transcriptional activation in epidemiology studies, while the underlying mechanism of MHBSt-induced HCC is unknown. Methods In this study, a premature stop at codon 167 in MHBS (MHBSt167) was investigated into eukaryotic expression plasmid pcDNA3.1(-). MHBSt167 expressed plasmid was transfected into the L02 cell line, cell proliferation was analyzed by CCK-8 and high-content screening assays, the cell cycle was analyzed by flow cytometry, and epithelial-to-mesenchymal transition and autophagy were analyzed by immunoblotting and immunofluorescence. NF-κB activation and the MHBSt167-induced immune response were analyzed by immunoblotting and immunofluorescence. IFN-α, IFN-β and IL-1α expression were analyzed by qPCR. Autophagy inhibitors were used to analyze the relationship between the immune response and autophagy. Results The results showed that MHBSt167 promoted L02 cell proliferation, accelerated cell cycle progression from the S to G2 phase and promoted epithelial-to-mesenchymal transition through ER-stress, leading to autophagy and NF-κB activation and increased immune-related factor expression. The MHBSt167-induced acceleration of cell proliferation and the cell cycle was abolished by autophagy or NF-κB inhibitors. Conclusion In summary, MHBSt167 could promote cell proliferation, accelerate cell cycle progression, induce EMT and activate autophagy through ER-stress to induce the host immune response, supporting a potential role of MHBSt167 in contributing to carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01840-z.
Collapse
Affiliation(s)
- Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Qiong Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Ruiming Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Shaobo Zeng
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| |
Collapse
|
3
|
Zhan Q, Chang L, Wu J, Zhang Z, Xu J, Yu Y, Feng Z, Zeng Z. T-Cell Receptor β Chain and B-Cell Receptor Repertoires in Chronic Hepatitis B Patients with Coexisting HBsAg and Anti-HBs. Pathogens 2022; 11:727. [DOI: https:/doi.org/10.3390/pathogens11070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Antibodies in response to antigens are related to the immune repertoire of T- and B-cell receptors. However, some patients with chronic hepatitis B (CHB) have coexisting HBsAg and anti-HBsAg antibodies (anti-HBs) that cannot neutralize HBV. We attempted to investigate the repertoires that produce this response in CHB patients. The T-cell receptor β chain (TRB) and B-cell receptor (BCR) repertoires of peripheral blood genomic DNA were analyzed using MiXCR. T-cell receptor (TCR) cluster analysis was carried out by clusTCR, and motifs prediction was selected by Multiple Em for Motif Elicitation (MEME). A total of 76 subjects were enrolled, including 26 HBsAg and anti-HBs coexisting patients with CHB (DP group), 25 anti-HBs single-positive healthy people (SP group), and 25 CHB patients (CHB group). The clone length of BCR in 39, 90 was significantly different among these groups (p = 0.005, 0.036). The motif “CASSLG” in the DP group was significantly higher than SP and CHB groups and may relate to coexistence, and the motif “GAGPLT” was only shown in the SP group and may relate to anti-HB expression. These provide important insights into vaccine development and CHB treatment.
Collapse
|
4
|
T-Cell Receptor β Chain and B-Cell Receptor Repertoires in Chronic Hepatitis B Patients with Coexisting HBsAg and Anti-HBs. Pathogens 2022; 11:pathogens11070727. [PMID: 35889974 PMCID: PMC9318409 DOI: 10.3390/pathogens11070727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Antibodies in response to antigens are related to the immune repertoire of T- and B-cell receptors. However, some patients with chronic hepatitis B (CHB) have coexisting HBsAg and anti-HBsAg antibodies (anti-HBs) that cannot neutralize HBV. We attempted to investigate the repertoires that produce this response in CHB patients. The T-cell receptor β chain (TRB) and B-cell receptor (BCR) repertoires of peripheral blood genomic DNA were analyzed using MiXCR. T-cell receptor (TCR) cluster analysis was carried out by clusTCR, and motifs prediction was selected by Multiple Em for Motif Elicitation (MEME). A total of 76 subjects were enrolled, including 26 HBsAg and anti-HBs coexisting patients with CHB (DP group), 25 anti-HBs single-positive healthy people (SP group), and 25 CHB patients (CHB group). The clone length of BCR in 39, 90 was significantly different among these groups (p = 0.005, 0.036). The motif “CASSLG” in the DP group was significantly higher than SP and CHB groups and may relate to coexistence, and the motif “GAGPLT” was only shown in the SP group and may relate to anti-HB expression. These provide important insights into vaccine development and CHB treatment.
Collapse
|
5
|
Proulx J, Ghaly M, Park IW, Borgmann K. HIV-1-Mediated Acceleration of Oncovirus-Related Non-AIDS-Defining Cancers. Biomedicines 2022; 10:biomedicines10040768. [PMID: 35453518 PMCID: PMC9024568 DOI: 10.3390/biomedicines10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the advent of combination antiretroviral therapy (cART), overall survival has been improved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading cause of death in people living with HIV in certain highly developed countries, such as France. However, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration of non-AIDS-defining cancers.
Collapse
|
6
|
Wang Y, Xiao X, Chen S, Huang C, Zhou J, Dai E, Li Y, Liu L, Huang X, Gao Z, Wu C, Fang M, Gao C. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients With HBV Genotype C Using Next-Generation Sequencing. Front Immunol 2021; 12:775461. [PMID: 34899733 PMCID: PMC8656693 DOI: 10.3389/fimmu.2021.775461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of the coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (HBsAb) serological pattern via intensive characterization of HBV s gene in both chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) patients. Method A total of 73 HBsAg+/HBsAb+ patients (CHB = 36, HCC = 37) and 96 HBsAg+/HBsAb− patients (CHB = 47, HCC = 49) were enrolled from 13 medical centers in China. The sequence features were elaborated based on the combination of next-generation sequencing (NGS) and multidimensional bioinformatics analysis. Results The 16 high-frequency missense mutations, changes of stop codon mutation, clustering, and random forest models based on quasispecies features demonstrated the significant discrepancy power between HBsAg+/HBsAb+ and HBsAg+/HBsAb− in CHB and HCC, respectively. The immunogenicity for cytotoxic T lymphocyte (CTL) epitope Se and antigenicity for the major hydrophilic region (MHR) were both reduced in HBsAg+/HBsAb+ patients (CTL Se: p < 0.0001; MHR: p = 0.0216). Different mutation patterns were observed between HBsAg+/HBsAb+ patients with CHB and with HCC. Especially, mutations in antigenic epitopes, such as I126S in CHB and I126T in HCC, could impact the conformational structure and alter the antigenicity/immunogenicity of HBsAg. Conclusion Based on NGS and bioinformatics analysis, this study indicates for the first time that point mutations and quasispecies diversities of HBV s gene could alter the MHR antigenicity and CTL Se immunogenicity and could contribute to the concurrent HBsAg+/HBsAb+ with different features in HCC and CHB. Our findings might renew the understanding of this special serological profile and benefit the clinical management in HBV-related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyuan Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Dong H, Zhu Y, Shen Y, Xie S, He Y, Lu L. High prevalence of tryptophan-truncated S quasispecies in treatment-naïve chronic hepatitis B patients. J Gen Virol 2021; 102. [PMID: 34292864 DOI: 10.1099/jgv.0.001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus surface antigen (HBsAg) encoded by the S gene is highly expressed during the replication cycle of hepatitis B virus (HBV). However, the frequent usage of tryptophan in HBsAg, which leads to a high cost of biosynthesis, is inconsistent with the high expression level of this protein. Tryptophan-truncated mutation of HBsAg, that is, a tryptophan to stop codon mutation resulting in truncated HBsAg, might help to maintain its high expression with lower biosynthetic cost. We aimed to investigate the prevalence of tryptophan-truncated S quasispecies in treatment-naïve patients with chronic hepatitis B (CHB) by applying CirSeq as well as a site-by-site algorithm developed by us to identify variants at extremely low frequencies in the carboxyl terminus of HBsAg. A total of 730 mutations were identified in 27 patients with CHB, varying from seven to 56 mutations per sample. The number of synonymous mutations was much higher than that of nonsynonymous mutations in the reverse transcriptase (RT) coding region and vice versa in the S coding region, implying that the evolutionary constraints on the RT and S genes might be different. We showed that 25 (92.6 %) of 27 patients had at least one S-truncated mutation, most of which were derived from tryptophan, indicating a high prevalence of tryptophan-truncated S mutations in treatment-naïve patients with CHB. In terms of the RT gene, 21 (77.8 %) patients had pre-existing drug-resistant mutations, while no truncated mutations were detected. Our findings that tryptophan-truncated S quasispecies and drug-resistant RT mutants were highly prevalent in treatment-naïve patients with CHB provide new insights into the composition of the HBV population, which might help optimize the treatment and management of patients with CHB.
Collapse
Affiliation(s)
- Hui Dong
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Yongqiang Zhu
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 201203, PR China
| | - Yan Shen
- Nanjing Shenyou Institute of Genome Research, Nanjing, 210048, PR China
| | - Shaoqing Xie
- Nanjing Shenyou Institute of Genome Research, Nanjing, 210048, PR China
| | - Yungang He
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| |
Collapse
|
8
|
Chowdhury FR, McNaughton AL, Amin MR, Barai L, Saha MR, Rahman T, Das BC, Hasan MR, Islam KMS, Faiz MA, Al-Mahtab M, Mokaya J, Kronsteiner B, Jeffery K, Andersson MI, de Cesare M, Ansari MA, Dunachie S, Matthews PC. Endemic HBV among hospital in-patients in Bangladesh, including evidence of occult infection. J Gen Virol 2021; 102. [PMID: 34328828 PMCID: PMC8491891 DOI: 10.1099/jgv.0.001628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bangladesh is one of the top-ten most heavily burdened countries for viral hepatitis, with hepatitis B (HBV) infections responsible for the majority of cases. Recombinant and occult HBV infections (OBI) have been reported previously in the region. We investigated an adult fever cohort (n=201) recruited in Dhaka, to determine the prevalence of HBV and OBI. A target-enrichment deep sequencing pipeline was applied to samples with HBV DNA >3.0 log10 IU ml−1. HBV infection was present in 16/201 (8 %), among whom 3/16 (19 %) were defined as OBI (HBsAg-negative but detectable HBV DNA). Whole genome deep sequences (WGS) were obtained for four cases, identifying genotypes A, C and D. One OBI case had sufficient DNA for sequencing, revealing multiple polymorphisms in the surface gene that may contribute to the occult phenotype. We identified mutations associated with nucleos(t)ide analogue resistance in 3/4 samples sequenced, although the clinical significance in this cohort is unknown. The high prevalence of HBV in this setting illustrates the importance of opportunistic clinical screening and DNA testing of transfusion products to minimise OBI transmission. WGS can inform understanding of diverse disease phenotypes, supporting progress towards international targets for HBV elimination.
Collapse
Affiliation(s)
- Fazle Rabbi Chowdhury
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand
| | - Anna L McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | | | - Lovely Barai
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Mili Rani Saha
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Tanjila Rahman
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Bikash Chandra Das
- Surveillance and Immunization Unit, World Health Organization Office, Dhaka 1200, Bangladesh
| | - M Rokibul Hasan
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - K M Shahidul Islam
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - M A Faiz
- Dev Care Foundation, Dhaka 1200, Bangladesh
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh
| | - Jolynne Mokaya
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Barbara Kronsteiner
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Katie Jeffery
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Monique I Andersson
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - M Azim Ansari
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Susanna Dunachie
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| |
Collapse
|
9
|
Garcia-Garcia S, Cortese MF, Rodríguez-Algarra F, Tabernero D, Rando-Segura A, Quer J, Buti M, Rodríguez-Frías F. Next-generation sequencing for the diagnosis of hepatitis B: current status and future prospects. Expert Rev Mol Diagn 2021; 21:381-396. [PMID: 33880971 DOI: 10.1080/14737159.2021.1913055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) causes a complex and persistent infection with a major impact on patients health. Viral-genome sequencing can provide valuable information for characterizing virus genotype, infection dynamics and drug and vaccine resistance. AREAS COVERED This article reviews the current literature to describe the next-generation sequencing progress that facilitated a more comprehensive study of HBV quasispecies in diagnosis and clinical monitoring. EXPERT OPINION HBV variability plays a key role in liver disease progression and treatment efficacy. Second-generation sequencing improved the sensitivity for detecting and quantifying mutations, mixed genotypes and viral recombination. Third-generation sequencing enables the analysis of the entire HBV genome, although the high error rate limits its use in clinical practice.
Collapse
Affiliation(s)
- Selene Garcia-Garcia
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Algarra
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tabernero
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Josep Quer
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Maria Buti
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| |
Collapse
|
10
|
Jiang X, Chang L, Yan Y, Wang L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int J Biol Sci 2021; 17:1125-1137. [PMID: 33867835 PMCID: PMC8040313 DOI: 10.7150/ijbs.55724] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B surface antigen (HBsAg) and Hepatitis B surface antibody (anti-HBs) were reported simultaneously among Hepatitis B virus (HBV) infections. HBsAg is a specific indicator of acute or chronic HBV infections, while anti-HBs is a protective antibody reflecting the recovery and immunity of hosts. HBsAg and anti-HBs coexist during seroconversion and then form immune complex, which is rare detected in clinical cases. However, with the promotion of vaccination and the application of various antiviral drugs, along with the rapid development of medical technology, the coexistence of HBsAg and anti-HBs has become more prevalent. Mutations in the viral genomes, immune status and genetic factors of hosts may contribute to the coexistence. Novel HBsAg assays, with higher sensitivity and ability to detect mutations or immune complexes, can also yield HBsAg/anti-HBs coexistence. The discovery of coexistence has shattered the idea of traditional serological patterns and raised questions about the effectiveness of vaccines. Worth noting is that HBsAg/anti-HBs double positivity is strongly associated with progressive liver diseases, especially hepatocellular carcinoma. In conclusion, viral mutations, host factors, and methodology impacts can all lead to the coexistence of HBsAg and anti-HBs. This coexistence is not an indicator of improvement, as an increased risk of adverse clinical outcomes still exists.
Collapse
Affiliation(s)
- Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
11
|
Hepatitis B virus drug resistance mutations in HIV/HBV co-infected children in Windhoek, Namibia. PLoS One 2020; 15:e0238839. [PMID: 32915862 PMCID: PMC7485811 DOI: 10.1371/journal.pone.0238839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
In patients who are HIV infected, hepatitis B virus (HBV) infection is an important co-morbidity. However, antiretroviral options for HIV/HBV co-infected children are limited and, at the time of this study, only included lamivudine. These children may remain on this regimen for many years until late adolescence. They are at high risk of developing HBV drug resistance and uncontrolled HBV disease. The aim of this study was to characterize HBV infection in HIV/HBV co-infected children. Known HIV-infected/HBsAg-positive children, previously exposed to lamivudine monotherapy against HBV, and their mothers were recruited at the Katutura Hospital paediatric HIV clinic in Windhoek, Namibia. Dried blood spot and serum samples were collected for HBV characterization and serological testing, respectively. Fifteen children and six mothers participated in the study. Eight of the 15 children (53.3%) tested HBV DNA positive; all eight children were on lamivudine-based ART. Lamivudine-associated resistance variants, together with immune escape mutants in the surface gene, were identified in all eight children. Resistance mutations included rtL80I, rtV173L, rtL180M, rtM204I/V and the overlapping sE164D, sW182*, sI195M and sW196LS variants. HBV strains belonged to genotypes E (6/8, 75%) and D3 (2/8, 25%). Further analysis of the HBV core promoter region revealed mutations associated with reduced expression of HBeAg protein and hepatocarcinogenesis. All six mothers, on HBV-active ART containing tenofovir and lamivudine, tested HBV DNA negative. This study confirms the importance of screening HIV-infected children for HBV and ensuring equity of drug access to effective HBV treatment if co-infected.
Collapse
|
12
|
Hepatitis B Virus preS/S Truncation Mutant rtM204I/sW196* Increases Carcinogenesis through Deregulated HIF1A, MGST2, and TGFbi. Int J Mol Sci 2020; 21:ijms21176366. [PMID: 32887289 PMCID: PMC7503731 DOI: 10.3390/ijms21176366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Inevitable long-term therapy with nucleos(t)ide analogs in patients with chronic hepatitis B virus (HBV) infection has selected reverse-transcriptase (rt) mutants in a substantial proportion of patients. Some of these mutants introduce premature stop codons in the overlapping surface (s) gene, including rtA181T/sW172*, which has been shown to enhance oncogenicity. The oncogenicity of another drug-resistant mutant, rtM204I/sW196*, has not been studied. We constructed plasmids harboring rtM204I/sW196* and assessed the in vitro cell transformation, endoplasmic reticulum (ER) stress response, and xenograft tumorigenesis of the transformants. Cellular gene expression was analyzed by cDNA microarray and was validated. The rtM204I/sW196* transformants, compared with the control or wild type, showed enhanced transactivation activities for c-fos, increased cell proliferation, decreased apoptosis, more anchorage-independent growth, and enhanced tumor growth in mouse xenografts. X box-binding protein-1 (XBP1) splicing analysis showed no ER stress response. Altered gene expressions, including up-regulated MGST2 and HIF1A, and downregulated transforming growth factor beta-induced (TGFbi), were unveiled by cDNA microarray and validated by RT-qPCR. The TGFbi alteration occurred in transformants with wild type or mutated HBV. The altered MGST2 and HIF1A were found only with mutated HBV. The rtM204I/sW196* preS/S truncation may endorse the cell transformation and tumorigenesis ability via altered host gene expressions, including MGST2, HIF1A, and TGFbi. Downregulated TGFbi may be a common mechanism for oncogenicity in HBV surface truncation mutants.
Collapse
|
13
|
Hosseini SY, Sanaei N, Fattahi MR, Malek-Hosseini SA, Sarvari J. Association of HBsAg mutation patterns with hepatitis B infection outcome: Asymptomatic carriers versus HCC/cirrhotic patients. Ann Hepatol 2020; 18:640-645. [PMID: 31105017 DOI: 10.1016/j.aohep.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The hepatitis B virus (HBV) surface antigen (HBsAg) variations suggested having some effects on infection outcome. Due to some controversial issues, the aim of this study was to compare the pattern of HBsAg variation between asymptomatic carriers and HCC/cirrhosis patients. MATERIALS AND METHODS In this cross-sectional study, 19 HCC/cirrhotic and 26 asymptomatic patients were enrolled. After viral DNA extraction, HBs gene was amplified using an in-house nested-PCR. Then, PCR products were introduced into bi-directional Sanger sequencing. The retrieved sequences were compared with references, to investigate the variation of immunologic sites, major hydrophilic region (MHR) of HBsAg as well as reverse transcriptase (RT), and also to determine genotype/subtype. RESULTS The analysis of MHR and epitopes on HBsAg showed dozens of substitution, which occurred more prevalently in I110, P120, Y134, G159, S193, Y206, S207, I208, L213 and P214 positions. However, Y134N/F/L (P=0.04) and P120T/S (P=0.009) were significantly detected in MHR and B-cell epitope of HCC/Cirrhotic group. A number of truncation-related mutations were higher in HCC/Cirrhotic group (P>0.001), albeit only C69* stop codon was statistically significant (P=0.003). In RT, some potentially resistant substitutions such as Q215S, V191I and V214A, were revealed. Phylogenetic analysis showed that all of isolates belonged to genotype D, and the major serotype was ayw1. CONCLUSION The higher frequency of substitutions in MHR and immune epitopes at positions such as Y134 and P120 as well as stop codons such as C69* in HCC/cirrhotic group might candidate them as predictive factors for infection outcome.
Collapse
Affiliation(s)
- Seyed Y Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Sanaei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Gu Y, Lian Y, Zheng Q, Huang Z, Gu L, Bi Y, Li J, Huang Y, Wu Y, Chen L, Huang Y. Association among cytokine profiles of innate and adaptive immune responses and clinical-virological features in untreated patients with chronic hepatitis B. BMC Infect Dis 2020; 20:509. [PMID: 32664850 PMCID: PMC7362653 DOI: 10.1186/s12879-020-05233-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Complete clearance of intracellular viruses depends on effector cells of innate and adaptive immune systems. This study aimed to identify the relationships among antiviral cytokines produced by natural killer (NK) and T cells and clinical-virological characteristics in untreated chronic hepatitis B (CHB) patients. Methods We measured antiviral cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) produced by T, NK and natural killer T (NKT) cells, respectively, in a cohort with chronic hepatitis B virus (HBV) infection (CHB). We also correlated these cytokines with clinical-virological characteristics using a linear regression model. Results levels of IFN-γ+ and TNF-α+ CD4+ and CD8+ T cells were significantly higher in immune active (IA) phase than in other phases. Immune tolerant (IT) patients showed the lowest expression of IFN-γ by NK and NKT cells, and TNF-α by NK cells. IFN-γ+, TNF-α+ and IL-2+ CD4+ and CD8+ T cells frequencies were similar between IA and gray zone (GZ) phases. Principal component analysis based on cytokines confirmed that most IT patients significantly differed from inactive carriers (IC) and IA patients, while GZ patients were widely scattered. Multivariate analysis showed both T and NK cells producing IFN-γ and TNF-α, but not IL-2, had significant association with serum alanine aminotransferase (ALT). Moreover, IFN-γ+ NKT cells were associated with HBV DNA, while IFN-γ+ CD4+ and CD8+ T cells were correlated with age. Conclusion HBV clinical phases are characterized by distinct cytokine signatures, which showed relationship to viral features in these untreated CHB patients.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Qiaolan Zheng
- Journal Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Yanlin Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Yuankai Wu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China
| | - Lubiao Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China.
| | - Yuehua Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Ye H, Teng J, Lin Z, Wang Y, Fu X. Analysis of HBsAg mutations in the 25 years after the implementation of the hepatitis B vaccination plan in China. Virus Genes 2020; 56:546-556. [PMID: 32542478 DOI: 10.1007/s11262-020-01773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Since 1992, China has promoted hepatitis B vaccination. Concurrently, during this period, increasing use of immunoglobulins and nucleoside analogues might have exerted selective pressure on the hepatitis B virus (HBV) S gene, driving mutations in the HBsAg and changed the subtype. Using the National Center for Biotechnology Information database, we obtained gene sequence information for HBV strains from China and analysed changes in HBsAg subtypes and substitution mutations in HBsAg in 5-year intervals over 25 years to identify potential challenges to the prevention and treatment of hepatitis B. Most HBV sequences from China were genotype C (1996/2833, 70.46%) or B (706/2833, 24.92%). During the implementation of hepatitis B vaccination (recombinant hepatitis B vaccine was subgenotype A2 and HBsAg subtype adw2), the proportion of subtypes ayw1 and adw3 in genotype B and ayw2 in genotype C increased over the programme period. The overall mutation rate in HBsAg tended to decrease for genotype B, whereas, for genotype C, the rate increased gradually and then decreased slightly. Moreover, the mutation rate at some HBsAg amino acid sites (such as sG145 of genotype B and sG130 and sK141 of genotype C) is gradually increasing. HBV strains with internal stop codons of HBsAg (e.g., sC69*) and additional N-glycosylation (e.g., sG130N) mutations should be studied extensively to prevent them from becoming dominant circulating strains. The development of HBV vaccines and antiviral immunoglobulins and use of antiviral drugs may require making corresponding changes.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China
| | - Jing Teng
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China
| | - Zhiyuan Lin
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China
| | - Xiaochun Fu
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China. .,Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China.
| |
Collapse
|
16
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses 2019; 11:v11090778. [PMID: 31450544 PMCID: PMC6784188 DOI: 10.3390/v11090778] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation occurs as a major complication of immunosuppressive therapy among persons who have recovered from acute hepatitis and those who have controlled chronic infection. Recent literature data emphasize the presence of a high degree of S gene variability in HBV isolates from patients who developed reactivation. In reactivated HBV, the most frequently detected mutations belong to the second loop of “a” determinant in HBsAg. These mutations were identified to be immune escape and responsible for vaccine- and diagnostic-escape phenomena. Their emergence clearly provides survival in the presence of a developed humoral immune response and is often associated with impaired serological diagnosis of HBV reactivation. The knowledge of their existence and roles can elucidate the process of reactivation and strongly highlights the importance of HBV DNA detection in monitoring all patients with a history of HBV infection who are undergoing immunosuppression. This review discusses the possible influence of the most frequently found immune-escape mutations on HBV reactivation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia.
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Xiang K, Xiao Y, Li Y, He L, Wang L, Zhuang H, Li T. The Effect of the Hepatitis B Virus Surface Protein Truncated sC69 ∗ Mutation on Viral Infectivity and the Host Innate Immune Response. Front Microbiol 2019; 10:1341. [PMID: 31249567 PMCID: PMC6584109 DOI: 10.3389/fmicb.2019.01341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses could rapidly diversify into variants, which has long been known to facilitate viral adaption in the host. Recent studies showed that cooperation among variants and wild-type (WT) also increased viral fitness. Here, a mutant of sC69∗ in small hepatitis B surface protein (SHBs) that resulted in premature stop was investigated and the frequency of sC69∗ was 4.37% (19/435), most of which coexisted with the WT (78.95%, 15/19), indicating mixed viral populations. Functional studies showed that sC69∗ mutant was associated with lower viral spread, but could be rescued by coexisting with the WT. The sC69∗ mutant showed to attenuate host innate immune response during infection and poly (I:C) treatment such as IL29, ISG15, and RIG-I (p < 0.05). The lower immune response was not caused by the lower replication of sC69∗ mutant. Our data provide information that sC69∗ coexisting with the WT might facilitate the fitness and persistence of the viral quasispecies in the host.
Collapse
Affiliation(s)
- Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yiwei Xiao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lingyuan He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luwei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Wu C, Li B, Zhang X, Zhao K, Chen Y, Yuan Y, Liu Y, Chen R, Xu D, Chen X, Lu M. Complementation of Wild-Type and Drug-Resistant Hepatitis B Virus Genomes to Maintain Viral Replication and Rescue Virion Production under Nucleos(t)ide Analogs. Virol Sin 2019; 34:377-385. [PMID: 31218588 DOI: 10.1007/s12250-019-00143-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
As the open reading frames of hepatitis B virus (HBV) genomes are overlapping, resistance mutations (MTs) in HBV polymerase may result in stop codon MTs in hepatitis B surface proteins, which are usually detected as a mixed population with wild-type (WT) HBV. The question was raised how the coexistence of nucleos(t)ide analogs (NAs) resistance MTs and WT sequences affects HBV replication. In the present study, HBV genomes with frequently detected reverse transcriptase (RT)/surface truncation MTs, rtA181T/sW172*, rtV191I/sW182* and rtM204I/sW196*, were phenotypically characterized alone or together with their WT counterparts in different ratios by transient transfection in the absence or presence of NAs. In the absence of NAs, RT/surface truncation MTs impaired the expression and secretion of HBV surface proteins, and had a dose-dependent negative effect on WT HBV virion secretion. However, in the presence of NAs, coexistence of MTs with WT maintained viral replication, and the presence of WT was able to rescue the production of MT HBV virions. Our findings reveal that complementation of WT and MT HBV genomes is highly effective under drug treatment.
Collapse
Affiliation(s)
- Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Baolin Li
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany
| | - Kaitao Zhao
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingshan Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifei Yuan
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Rongjuan Chen
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Dongping Xu
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany.
| |
Collapse
|
19
|
Chiu SY, Chung HJ, Chen YT, Huang MS, Huang CC, Huang SF, Matsuura I. A nonsense mutant of the hepatitis B virus large S protein antagonizes multiple tumor suppressor pathways through c-Jun activation domain-binding protein1. PLoS One 2019; 14:e0208665. [PMID: 30870427 PMCID: PMC6417713 DOI: 10.1371/journal.pone.0208665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Previous studies have identified recurrent nonsense mutations in the HBV large S (LHBs) gene from the liver from HBV core antigen-positive HCC patients. These nonsense mutants have been shown to be oncogenic in mouse xenograft models using a mouse embryonic fibroblast cell line. Here, we expressed in a liver cell line Huh-7 a carboxy terminally truncated protein from a nonsense mutant of the LHBs gene, sW182* (stop codon at tryptophane-182). Although the sW182* protein appeared not to be very stable in the cultured liver cells, we confirmed that the protein can be highly expressed and retained for a prolonged period of time in the hepatocytes in the mouse liver, indicating its stable nature in the physiological condition. In the Huh-7 cells, the sW182* mutant downregulated tumor suppressors p53 and Smad4. This downregulation was reversed by a proteasome inhibitor MG132, implying the involvement of proteasome-based protein degradation in the observed regulation of the tumor suppressors. On the other hand, we found that c-Jun activation domain-binding protein 1 (Jab1) physically interacts with the sW182*, but not wild-type LHBs. RNA interference (RNAi) of Jab1 restored the levels of the downregulated p53 and Smad4. The sW182* mutant inhibited the promoter activity of downstream target genes of the tumor suppressors. Consistently, Jab1 RNAi reversed the inhibition. These results suggest that the LHBs nonsense mutant antagonizes the tumor suppressor pathways through Jab1 in the liver contributing to HCC development.
Collapse
Affiliation(s)
- Shu-Yi Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiang-Ju Chung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Min-Syuan Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Chih Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Isao Matsuura
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Al-Qahtani AA, Al-Anazi MR, Nazir N, Abdo AA, Sanai FM, Al-Hamoudi WK, Alswat KA, Al-Ashgar HI, Khan MQ, Albenmousa A, El-Shamy A, Alanazi SK, Dela Cruz D, Bohol MFF, Al-Ahdal MN. The Correlation Between Hepatitis B Virus Precore/Core Mutations and the Progression of Severe Liver Disease. Front Cell Infect Microbiol 2018; 8:355. [PMID: 30406036 PMCID: PMC6204459 DOI: 10.3389/fcimb.2018.00355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Viral mutations acquired during the course of chronic hepatitis B virus (HBV) infection are known to be associated with the progression and severity of HBV-related liver disease. This study of HBV-infected Saudi Arabian patients aimed to identify amino acid substitutions within the precore/core (preC/C) region of HBV, and investigate their impact on disease progression toward hepatocellular carcinoma (HCC). Patients were categorized according to the severity of their disease, and were divided into the following groups: inactive HBV carriers, active HBV carriers, liver cirrhosis patients, and HCC patients. Two precore mutations, W28* and G29D, and six core mutations, F24Y, E64D, E77Q, A80I/T/V, L116I, and E180A were significantly associated with the development of cirrhosis and HCC. Six of the seven significant core mutations that were identified in this study were located within immuno-active epitopes; E77Q, A80I/T/V, and L116I were located within B-cell epitopes, and F24Y, E64D, and V91S/T were located within T-cell epitopes. Multivariate risk analysis confirmed that the core mutations A80V and L116I were both independent predictors of HBV-associated liver disease progression. In conclusion, our data show that mutations within the preC/C region, particularly within the immuno-active epitopes, may contribute to the severity of liver disease in patients with chronic hepatitis. Furthermore, we have identified several distinct preC/C mutations within the study population that affect the clinical manifestation and progression of HBV-related disease. The specific identity of HBV mutations that are associated with severe disease varies between different ethnic populations, and so the specific preC/C mutations identified here will be useful for predicting clinical outcomes and identifying the HBV-infected patients within the Saudi population that are at high risk of developing HCC.
Collapse
Affiliation(s)
- Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nyla Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ayman A Abdo
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia.,Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Waleed K Al-Hamoudi
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Khalid A Alswat
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Hamad I Al-Ashgar
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Q Khan
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Albenmousa
- Department of Gastroenterology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed El-Shamy
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, CA, United States
| | - Salah K Alanazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Damian Dela Cruz
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Marie Fe F Bohol
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Colagrossi L, Hermans LE, Salpini R, Di Carlo D, Pas SD, Alvarez M, Ben-Ari Z, Boland G, Bruzzone B, Coppola N, Seguin-Devaux C, Dyda T, Garcia F, Kaiser R, Köse S, Krarup H, Lazarevic I, Lunar MM, Maylin S, Micheli V, Mor O, Paraschiv S, Paraskevis D, Poljak M, Puchhammer-Stöckl E, Simon F, Stanojevic M, Stene-Johansen K, Tihic N, Trimoulet P, Verheyen J, Vince A, Lepej SZ, Weis N, Yalcinkaya T, Boucher CAB, Wensing AMJ, Perno CF, Svicher V. Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe. BMC Infect Dis 2018; 18:251. [PMID: 29859062 PMCID: PMC5984771 DOI: 10.1186/s12879-018-3161-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. Methods This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. Results At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32–3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-presence determined an increased HBV-DNA. At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection correlated with genotype-A (OR[95%CI]:2.03[1.32–3.10],P = 0.001). Finally, stop-codons are present in 8.4% of patients also at HBsAg-positions 172 and 182, described to enhance viral oncogenic-properties. Conclusions Immune-escape mutations and stop-codons develop in a large fraction of NA-exposed patients from Europe. This may represent a potential threat for horizontal and vertical HBV transmission also to vaccinated persons, and fuel drug-resistance emergence. Electronic supplementary material The online version of this article (10.1186/s12879-018-3161-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Lucas E Hermans
- Virology, Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Suzan D Pas
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marta Alvarez
- Servicio de Microbiología, Hospital San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada, Granada, Spain
| | - Ziv Ben-Ari
- Liver Disease Centre, Sheba Medical Centre, Ramat Gan, Israel
| | - Greet Boland
- Virology, Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Nicola Coppola
- Malattie Infettive, Seconda Università degli studi di Napoli, Naples, Italy
| | | | - Tomasz Dyda
- Molecular Diagnostics Laboratory, Hospital of Infectious Diseases, Warsaw, Poland
| | - Federico Garcia
- Servicio de Microbiología, Hospital San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada, Granada, Spain
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Sukran Köse
- Izmir Tepecik Education and Research Hospital, Clinic of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja M Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sarah Maylin
- Service de Microbiologie, University Paris Diderot, Hôpital Saint Louis, Paris, France
| | | | - Orna Mor
- National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Simona Paraschiv
- Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Dimitros Paraskevis
- National Retrovirus Reference Centre, Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - François Simon
- Service de Microbiologie, University Paris Diderot, Hôpital Saint Louis, Paris, France
| | - Maja Stanojevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Nijaz Tihic
- Institute of Microbiology, Polyclinic for Laboratory Diagnostics, University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Pascale Trimoulet
- Virology Laboratory, Centre Hospitalier Régional et Université "Victor Segalen", Bordeaux, France
| | - Jens Verheyen
- Institute of Virology, University-Hospital, University Duisburg-Essen, Essen, Germany
| | - Adriana Vince
- University of Zagreb School of Medicine and University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Snjezana Zidovec Lepej
- University of Zagreb School of Medicine and University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | | | - Charles A B Boucher
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Annemarie M J Wensing
- Virology, Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Carlo F Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | | |
Collapse
|
22
|
Chen BF. Hepatitis B virus pre-S/S variants in liver diseases. World J Gastroenterol 2018; 24:1507-1520. [PMID: 29662289 PMCID: PMC5897855 DOI: 10.3748/wjg.v24.i14.1507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B is a global health problem. The clinical outcomes of chronic hepatitis B infection include asymptomatic carrier state, chronic hepatitis (CH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Because of the spontaneous error rate inherent to viral reverse transcriptase, the hepatitis B virus (HBV) genome evolves during the course of infection under the antiviral pressure of host immunity. The clinical significance of pre-S/S variants has become increasingly recognized in patients with chronic HBV infection. Pre-S/S variants are often identified in hepatitis B carriers with CH, LC, and HCC, which suggests that these naturally occurring pre-S/S variants may contribute to the development of progressive liver damage and hepatocarcinogenesis. This paper reviews the function of the pre-S/S region along with recent findings related to the role of pre-S/S variants in liver diseases. According to the mutation type, five pre-S/S variants have been identified: pre-S deletion, pre-S point mutation, pre-S1 splice variant, C-terminus S point mutation, and pre-S/S nonsense mutation. Their associations with HBV genotype and the possible pathogenesis of pre-S/S variants are discussed. Different pre-S/S variants cause liver diseases through different mechanisms. Most cause the intracellular retention of HBV envelope proteins and induction of endoplasmic reticulum stress, which results in liver diseases. Pre-S/S variants should be routinely determined in HBV carriers to help identify individuals who may be at a high risk of less favorable liver disease progression. Additional investigations are required to explore the molecular mechanisms of the pre-S/S variants involved in the pathogenesis of each stage of liver disease.
Collapse
Affiliation(s)
- Bing-Fang Chen
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
23
|
Wang ML, Wu DB, Tao YC, Chen LL, Liu CP, Chen EQ, Tang H. The truncated mutant HBsAg expression increases the tumorigenesis of hepatitis B virus by regulating TGF-β/Smad signaling pathway. Virol J 2018; 15:61. [PMID: 29609638 PMCID: PMC5879756 DOI: 10.1186/s12985-018-0972-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Background It has been reported that the emergence of HBV rtA181T/sW172* mutant could result in a dominant secretion defect of HBsAg and increase the risk of HCC development. This study was designed to reveal the role and possible pathogenic mechanism of truncated mutant HBsAg in tumorigenesis of HBV rtA181T/sW172* mutant. Results As compared to wide type or substituted mutant HBsAg, the ratio of cell clones was significant higher in L02 cells stable expressing truncated mutant HBsAg. Injection of L02 cells stable expressing truncated mutant HBsAg into the dorsal skin fold of nude mice resulted in increased primary tumor growth compared to L02 cells stable expressing wide-type and substituted mutant HBsAg. In HBV replication L02 cell lines, the key molecular involved in TGF-β/Smad pathway was also investigated. We found that the mRNA and protein levels of Smad3/2, CREB and CyclinD1 were significantly higher and TGFBI level was significantly lower in cells stably expressing truncated mutant HBsAg as compared to cells stably expressing wide-type and substituted mutant HBsAg. Additionally, after administration of TGF-β1 (increasing TGFBI level), the volume of tumor is obviously reduced in nude mice with injection of L02 cells stable expressing truncated HBsAg. Conclusions The emergence of sW172* mutant may increase the tumorigenesis of HBV, and its mechanism may be associated with down-regulated expression of TGFBI in TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Lan-Lan Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Cui-Ping Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Salpini R, Surdo M, Warner N, Cortese MF, Colledge D, Soppe S, Bellocchi MC, Armenia D, Carioti L, Continenza F, Di Carlo D, Saccomandi P, Mirabelli C, Pollicita M, Longo R, Romano S, Cappiello G, Spanò A, Trimoulet P, Fleury H, Vecchiet J, Iapadre N, Barlattani A, Bertoli A, Mari T, Pasquazzi C, Missale G, Sarrecchia C, Orecchini E, Michienzi A, Andreoni M, Francioso S, Angelico M, Verheyen J, Ceccherini-Silberstein F, Locarnini S, Perno CF, Svicher V. Novel HBsAg mutations correlate with hepatocellular carcinoma, hamper HBsAg secretion and promote cell proliferation in vitro. Oncotarget 2017; 8:15704-15715. [PMID: 28152517 PMCID: PMC5362517 DOI: 10.18632/oncotarget.14944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background An impaired HBsAg-secretion can increase HBV oncogenic-properties. Here, we investigate genetic-determinants in HBsAg correlated with HBV-induced hepatocellular carcinoma (HCC), and their impact on HBsAg-secretion and cell-proliferation. Methods This study included 128 chronically HBV-infected patients: 23 with HCC (73.9% D; 26.1% A HBV-genotype), and 105 without cirrhosis/HCC (72.4% D, 27.6% A) as reference-group. The impact of mutations on HBsAg-secretion was assessed by measuring the ratio [secreted/intracellular HBsAg] until day 5 post-transfection. The impact of mutations on cell-cycle advancement was assessed by flow-cytometry. Results Two HBsAg mutations significantly correlated with HCC: P203Q (17.4% [4/23] in HCC vs 1.0% [1/105] in non-HCC, P=0.004); S210R (34.8% [8/23] in HCC vs 3.8% [4/105] in non-HCC, P <0.001); P203Q+S210R (17.4% [4/23] in HCC vs 0% [0/110] in non-HCC, P=0.001). Both mutations reside in trans-membrane C-terminal domain critical for HBsAg-secretion. In in-vitro experiments, P203Q, S210R and P203Q+S210R significantly reduced the ratio [secreted/intracellular HBsAg] compared to wt at each time-point analysed (P <0.05), supporting an impaired HBsAg-secretion. Furthermore, P203Q and P203Q+S210R increased the percentage of cells in S-phase compared to wt, indicating cell-cycle progression (P203Q:26±13%; P203Q+S210R:29±14%; wt:18%±9, P <0.01. Additionally, S210R increased the percentage of cells in G2/M-phase (26±8% for wt versus 33±6% for S210R, P <0.001). Conclusions Specific mutations in HBsAg C-terminus significantly correlate with HBV-induced HCC. They hamper HBsAg-secretion and are associated with increased cellular proliferation, supporting their involvement in HCC-development. The identification of viral genetic markers associated with HCC is critical to identify patients at higher HCC-risk that may deserve intensive liver monitoring, and/or early anti-HBV therapy.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Matteo Surdo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Nadia Warner
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Maria Francesca Cortese
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Danny Colledge
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Sally Soppe
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | | | - Daniele Armenia
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Fabio Continenza
- Laboratory of Monitoring Antiviral Drugs, National Institute for Infectious Diseases (INMI) "Lazzaro Spallanzani" Rome, Italy
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Patrizia Saccomandi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Carmen Mirabelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy.,Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Roberta Longo
- Unit of Microbiology, "S. Pertini Hospital", Rome, Italy
| | - Sara Romano
- Unit of Microbiology, "S. Pertini Hospital", Rome, Italy
| | | | - Alberto Spanò
- Unit of Microbiology, "S. Pertini Hospital", Rome, Italy
| | - Pascale Trimoulet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Hôpital Pellegrin Tripode, Bordeaux, France
| | - Herve Fleury
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Hôpital Pellegrin Tripode, Bordeaux, France
| | - Jacopo Vecchiet
- Department of Medicine and Aging Sciences, "SS Annunziata" Hospital, Chieti, Italy
| | - Nerio Iapadre
- Infectious Diseases Unit, "S Salvatore" Hospital, L'Aquila, Italy
| | | | - Ada Bertoli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Terenzio Mari
- Hepatology Unit, "Regina Margherita" Hospital, Rome, Italy
| | | | | | - Cesare Sarrecchia
- Tor Vergata University Hospital, Infectious Diseases Unit, Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" Rome, Italy
| | - Massimo Andreoni
- Tor Vergata University Hospital, Infectious Diseases Unit, Rome, Italy
| | | | - Mario Angelico
- Tor Vergata University Hospital, Hepatology Unit, Rome, Italy
| | - Jens Verheyen
- Tor Vergata University Hospital, Hepatology Unit, Rome, Italy
| | | | - Stephen Locarnini
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy
| |
Collapse
|
25
|
Lee SY, Lee SH, Kim JE, Kim H, Kim K, Kook YH, Kim BJ. Identification of Novel A2/C2 Inter-Genotype Recombinants of Hepatitis B Virus from a Korean Chronic Patient Co-Infected with Both Genotype A2 and C2. Int J Mol Sci 2017; 18:ijms18040737. [PMID: 28358313 PMCID: PMC5412322 DOI: 10.3390/ijms18040737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Nearly all cases of Hepatitis B virus (HBV) infections in South Korea have the C2 genotype. Here, we have identified a chronically infected patient who was co-infected with HBV of both the A2 and C2 genotypes by screening 135 Korean chronically infected patients using direct sequencing protocols targeting the 1032-bp polymerase reverse transcriptase (RT) region. Further polymerase chain reaction (PCR)-cloning analysis (22 clones) of the RT showed that this patient had genotype C2 (12 clones), genotype A2 (six clones) and A2/C2 inter-genotype HBV recombinants (four clones). BootScan analysis showed that three of the four recombinants have different types of recombination breakpoints in both the RT and overlapping hepatitis B surface antigen (HBsAg) region. Given the significance of HBsAg as a diagnostic or vaccination target against HBV infection, clinical implications of these identified recombinants should be studied in the future. To our knowledge, this is the first report on A2/C2 inter-genotype HBV recombinants.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Seung-Hee Lee
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Hong Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Kijeong Kim
- Department of Microbiology, School of Medicine, Chung-Ang University, Seoul 156-756, Korea.
| | - Yoon-Hoh Kook
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| |
Collapse
|
26
|
Fu X, Chen J, Chen H, Lin J, Xun Z, Li S, Liu C, Zeng Y, Chen T, Yang B, Ou Q. Mutation in the S gene of hepatitis B virus and anti-HBs subtype-nonspecificity contributed to the co-existence of HBsAg and anti-HBs in patients with chronic hepatitis B virus infection. J Med Virol 2017; 89:1419-1426. [PMID: 28198078 DOI: 10.1002/jmv.24782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/25/2016] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaochun Fu
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- First Clinical College; Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Jing Chen
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Huijuan Chen
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Jinpiao Lin
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Zhen Xun
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- First Clinical College; Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Shiqi Li
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- First Clinical College; Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Can Liu
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Yongbin Zeng
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Tianbin Chen
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Bin Yang
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| | - Qishui Ou
- Department of Laboratory Medicine; The First Affiliated Hospital of Fujian Medical University; Fuzhou China
- The Genetic Diagonstic Laboratory; The First Affiliated Hospital of Fujian Medical University; China
| |
Collapse
|
27
|
Xiang KH, Michailidis E, Ding H, Peng YQ, Su MZ, Li Y, Liu XE, Thi VLD, Wu XF, Schneider WM, Rice CM, Zhuang H, Li T. Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity, HBsAg and viral DNA. J Hepatol 2017; 66:288-296. [PMID: 27650283 PMCID: PMC5523976 DOI: 10.1016/j.jhep.2016.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS As important virological markers, serum hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels show large fluctuations among chronic hepatitis B patients. The aim of this study was to reveal the potential impact and mechanisms of amino acid substitutions in small hepatitis B surface proteins (SHBs) on serum HBsAg and HBV DNA levels. METHODS Serum samples from 230 untreated chronic hepatitis B patients with genotype C HBV were analyzed in terms of HBV DNA levels, serological markers of HBV infection and SHBs sequences. In vitro functional analysis of the identified SHBs mutants was performed. RESULTS Among 230 SHBs sequences, there were 39 (16.96%) sequences with no mutation detected (wild-type) and 191 (83.04%) with single or multiple mutations. SHBs consist of 226 amino acids, of which 104 (46.02%) had mutations in our study. Some mutations (e.g., sE2G, sL21S, sR24K, sT47A/K, sC69stop (sC69∗), sL95W, sL98V, and sG145R) negatively correlated with serum HBsAg levels. HBsAg and HBV DNA levels from this group of patients had a positive correlation (r=0.61, p<0.001). In vitro analysis showed that these mutations reduced extracellular HBsAg and HBV DNA levels by restricting virion secretion and antibody binding capacity. Virion secretion could be rescued for sE2G, sC69∗, and sG145R by co-expression of wild-type HBsAg. CONCLUSION The serum HBsAg levels were lower in untreated CHB patients with novel SHBs mutations outside the major antigenic region than those without mutations. Underlying mechanisms include impairment of virion secretion and lower binding affinity to antibodies used for HBsAg measurements. LAY SUMMARY The hepatitis B surface antigen (HBsAg) is a major viral protein of the hepatitis B virus (HBV) secreted into patient blood serum and its quantification value serves as an important marker for the evaluation of chronic HBV infection and antiviral response. We found a few new amino acid substitutions in HBsAg associated with lower serum HBsAg and HBV DNA levels. These different substitutions might impair virion secretion, change the ability of HBsAg to bind to antibodies, or impact HBV replication. These could all result in decreased detectable levels of serum HBsAg. The factors affecting circulating HBsAg level and HBsAg detection are varied and caution is needed when interpreting clinical significance of serum HBsAg levels. Clinical trial number: NCT01088009.
Collapse
Affiliation(s)
- Kuan-hui Xiang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China,Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Hai Ding
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ya-qin Peng
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China,Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-ze Su
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yao Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue-en Liu
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Viet Loan Dao Thi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Xian-fang Wu
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Tong Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
28
|
Hepatocarcinogenesis in transgenic mice carrying hepatitis B virus pre-S/S gene with the sW172* mutation. Oncogenesis 2016. [PMID: 27918551 DOI: 10.1038/oncsis.2016.77.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) carrying the rtA181T/sW172* mutation conferred cross-resistance to adefovir and lamivudine. Cell-based and clinical studies indicated that HBV carrying this mutation had an increased oncogenic potential. Herein, we created transgenic mouse models to study the oncogenicity of the HBV pre-S/S gene containing this mutation. Transgenic mice were generated by transfer of the HBV pre-S/S gene together with its own promoter into C57B6 mice. Four lines of mice were created. Two of them carried wild-type gene and produced high and low levels of HBV surface antigen (HBsAg) (TgWT-H and L). The other two carried the sW172* mutation with high and low intrahepatic expression levels (TgSW172*-H and L). When sacrificed 18 months after birth, none of the TgWT mice developed hepatocellular carcinoma (HCC), whereas 6/26 (23.1%) TgSW172*-H and 2/24 (8.3%) TgSW172*-L mice developed HCC (TgWT vs TgSW172*; P=0.0021). Molecular analysis of liver tissues revealed significantly increased expression of glucose-regulated protein 78 and phosphorylated extracellular signal-regulated kinases 1 in TgSW172* mice, and decreased expression of B-cell lymphoma-extra large in TgSW172*-H mice. Higher proportion of apoptotic cells was found in TgSW172*-H mice, accompanied by increased cyclin E levels, suggesting increased hepatocyte turnover. Combined analysis of complimentary DNA microarray and microRNA array identified microRNA-873-mediated reduced expression of the CUB and Sushi multiple domains 3 (CSMD3) protein, a putative tumor suppressor, in TgSW172* mice. Our transgenic mice experiments confirmed that HBV pre-S/S gene carrying the sW172* mutation had an increased oncogenic potential. Increased endoplasmic reticulum stress response, more rapid hepatocyte turnover and decreased CSMD3 expression contributed to the hepatocarcinogenesis.
Collapse
|
29
|
Hepatocarcinogenesis in transgenic mice carrying hepatitis B virus pre-S/S gene with the sW172* mutation. Oncogenesis 2016; 5:e273. [PMID: 27918551 PMCID: PMC5177775 DOI: 10.1038/oncsis.2016.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) carrying the rtA181T/sW172* mutation conferred cross-resistance to adefovir and lamivudine. Cell-based and clinical studies indicated that HBV carrying this mutation had an increased oncogenic potential. Herein, we created transgenic mouse models to study the oncogenicity of the HBV pre-S/S gene containing this mutation. Transgenic mice were generated by transfer of the HBV pre-S/S gene together with its own promoter into C57B6 mice. Four lines of mice were created. Two of them carried wild-type gene and produced high and low levels of HBV surface antigen (HBsAg) (TgWT-H and L). The other two carried the sW172* mutation with high and low intrahepatic expression levels (TgSW172*-H and L). When sacrificed 18 months after birth, none of the TgWT mice developed hepatocellular carcinoma (HCC), whereas 6/26 (23.1%) TgSW172*-H and 2/24 (8.3%) TgSW172*-L mice developed HCC (TgWT vs TgSW172* P=0.0021). Molecular analysis of liver tissues revealed significantly increased expression of glucose-regulated protein 78 and phosphorylated extracellular signal-regulated kinases 1 in TgSW172* mice, and decreased expression of B-cell lymphoma-extra large in TgSW172*-H mice. Higher proportion of apoptotic cells was found in TgSW172*-H mice, accompanied by increased cyclin E levels, suggesting increased hepatocyte turnover. Combined analysis of complimentary DNA microarray and microRNA array identified microRNA-873-mediated reduced expression of the CUB and Sushi multiple domains 3 (CSMD3) protein, a putative tumor suppressor, in TgSW172* mice. Our transgenic mice experiments confirmed that HBV pre-S/S gene carrying the sW172* mutation had an increased oncogenic potential. Increased endoplasmic reticulum stress response, more rapid hepatocyte turnover and decreased CSMD3 expression contributed to the hepatocarcinogenesis.
Collapse
|
30
|
Abstract
BACKGROUND The long-term use of nucleos(t)ide analogues causes drug resistance and mutations in the HBV reverse transcriptase (RT) region of the polymerase gene. The RT region overlaps the HBV surface gene (S gene) and therefore, the mutations in the RT region simultaneously modify S gene sequence. Certain mutations in the RT region bring about truncated S proteins because the corresponding changed S gene encodes a stop codon which results in the loss of a large portion of the C-terminal hydrophobic region of HBV surface protein. The rtA181T/sW172*, rtM204I/sW196* and rtV191I/sW182* are the most frequently reported drug-resistant mutations with C-terminal truncation, these mutations have oncogenic potential. DATA SOURCES PubMed and Web of Science were searched using terms: "hepatitis B virus", "HBV drug resistance mutation", "HBV surface protein", "HBV truncation", "hepatocellular carcinoma", "rtA181T/sW172*", "rtM204I/sW196*", "rtV191I/sW182*", and relevant articles published in English in the past decades were reviewed. RESULTS The rtA181T/sW172* and rtV191I/sW182* mutants occurred more frequently than the rtM204I/sW196* mutant both in chronic hepatitis B patients and the HBV-related hepatocellular carcinoma tissues. Although these mutations occur naturally, nucleos(t)ide analogues therapy is the main driving force. These mutations may exist alone or coexist with other HBV mutations. All these three mutants impair the virion secretion and result in HBV surface protein retention and serum HBV DNA level reduction. These mutations possess potential carcinogenic properties. The three mutations are resistant to more than one nucleos(t)ide analogue and therefore, it is difficult to treat the patients with the truncated mutations. CONCLUSIONS Nucleos(t)ide analogues induce drug resistance and HBV S gene truncated mutations. These mutations have potential carcinogenesis.
Collapse
Affiliation(s)
- Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University; Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | | |
Collapse
|
31
|
Abstract
Hepatitis B virus (HBV) infection is a major global health problems leading to severe liver disease such as cirrhosis and hepatocellular carcinoma (HCC). HBV is a circular, partly double-stranded DNA virus with various serological markers: hepatitis B surface antigen (HBsAg) and anti-HBs, anti-HBc IgM and IgG, and hepatitis B e antigen (HBeAg) and anti-HBe. It is transmitted by sexual, parenteral and vertical route. One significant method to diminish the burden of this disease is timely diagnosis of acute, chronic and occult cases of HBV. First step of HBV diagnosis is achieved by using serological markers for detecting antigens and antibodies. In order to verify first step of diagnosis, to quantify viral load and to identify genotypes, quantitative or qualitative molecular tests are used. In this article, the serological and molecular tests for diagnosis of HBV infection will be reviewed.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Chaouch H, Taffon S, Villano U, Equestre M, Bruni R, Belhadj M, Hannachi N, Aouni M, Letaief A, Ciccaglione AR. Naturally Occurring Surface Antigen Variants of Hepatitis B Virus in Tunisian Patients. Intervirology 2016; 59:36-47. [PMID: 27544241 DOI: 10.1159/000445894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
In Tunisia, the prevalence of naturally occurring surface (S) gene variants of hepatitis B virus (HBV) has not been determined. In the present study, the prevalence of these variants was examined in terms of the clinical and viral state in a series of 99 Tunisian patients with HBV infection. The S genes were amplified and directly sequenced. Genotype D was predominant (98%), 40.4% isolates belonged to subgenotypes D7 and 1 to subgenotype D2. The most common subtype was ayw2 (95.9%). In total, 60.6% of the studied strains harbored S mutations. Several novel mutation patterns were detected. Interestingly, the presence of S mutations was significantly correlated with the D7 subgenotype, low HBV DNA and advancing age (≥35 years), and tended to be higher in liver cirrhosis than in chronic infection. The global prevalence of the major hydrophilic region variants was 12.1%, with substitution S143L/T as the most frequent (4%). Only 33.9% of S substitutions produced amino acid changes in the polymerase gene. In conclusion, a high prevalence of naturally occurring HBsAg variants was observed among Tunisian HBV carriers. Natural viral variability in a geographical region and duration of infection are among the major factors associated with the occurrence of S mutations.
Collapse
Affiliation(s)
- Houda Chaouch
- Department of Infectious Diseases, Viral Hepatitis Research Unit (UR12SP35), University Hospital Farhat Hached, Sousse, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim H, Lee SA, Kim BJ. X region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:5467-5478. [PMID: 27350725 PMCID: PMC4917607 DOI: 10.3748/wjg.v22.i24.5467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies.
Collapse
|
34
|
Hepatitis B virus genotypes: epidemiological and clinical relevance in Asia. Hepatol Int 2016; 10:854-860. [PMID: 27300749 DOI: 10.1007/s12072-016-9745-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/27/2016] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) is characterized by a high genetic heterogeneity since it replicates via a reverse transcriptase that lacks proofreading ability. Up to now, ten genotypes (A-J) have been described, with genotype A and D being ubiquitous but most prevalent in Europe and Africa, genotype B and C being confined to Asia and Oceania. Infections with other genotypes such as E, F, G and H are also occasionally observed in Asia. Genotype I is rare and can be found in Laos, Vietnam, India and China, whereas genotype J has been described in Japan and Ryukyu. Novel variants generated by recombination and co-infection with other genotypes have gradually gotten worldwide attention and may be correlated with certain clinical features. There are substantial differences in HBV infection regarding prevalence, clinical manifestation, disease progression and response to antiviral therapy. Due to the complex interplay among viral, host and environmental factors, the relationship between HBV genotypes and clinical profiles remains incompletely revealed. In general, genotype A is associated with better response to interferon therapy; genotype C, and to lesser extent B, usually represent a risk factor for perinatal infection and are associated with advanced liver diseases such as cirrhosis and hepatocellular carcinoma; genotype D may be linked with poor response to interferon therapy. Future studies with better design and larger sample size are warranted to further clarify the controversial issues and guide the day-to-day clinical practice.
Collapse
|
35
|
Kim H, Lee SA, Do SY, Kim BJ. Precore/core region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:4287-4296. [PMID: 27158197 PMCID: PMC4853686 DOI: 10.3748/wjg.v22.i17.4287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of an effective vaccine, hepatitis B virus (HBV) infection remains a major health problem, with more than 350 million chronically infected people worldwide and over 1 million annual deaths due to cirrhosis and liver cancer. HBV mutations are primarily generated due both to a lack of proofreading capacity by HBV polymerase and to host immune pressure, which is a very important factor for predicting disease progression and therapeutic outcomes. Several types of HBV precore/core (preC/C) mutations have been described to date. The host immune response against T cells drives mutation in the preC/C region. Specifically, preC/C mutations in the MHC class II restricted region are more common than in other regions and are significantly related to hepatocellular carcinoma. Certain mutations, including preC G1896A, are also significantly related to HBeAg-negative chronic infection. This review article mainly focuses on the HBV preC/C mutations that are related to disease severity and on the HBeAg serostatus of chronically infected patients.
Collapse
|
36
|
Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016; 64:S84-S101. [PMID: 27084040 DOI: 10.1016/j.jhep.2016.02.021] [Citation(s) in RCA: 666] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) contributes to hepatocellular carcinoma (HCC) development through direct and indirect mechanisms. HBV DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. Prolonged expression of the viral regulatory protein HBx and/or altered versions of the preS/S envelope proteins dysregulates cell transcription and proliferation control and sensitizes liver cells to carcinogenic factors. Accumulation of preS1 large envelope proteins and/or preS2/S mutant proteins activates the unfold proteins response, that can contribute to hepatocyte transformation. Epigenetic changes targeting the expression of tumor suppressor genes occur early in the development of HCC. A major role is played by the HBV protein, HBx, which is recruited on cellular chromatin and modulates chromatin dynamics at specific gene loci. Compared with tumors associated with other risk factors, HBV-related tumors have a higher rate of chromosomal alterations, p53 inactivation by mutations and overexpression of fetal liver/hepatic progenitor cells genes. The WNT/β-catenin pathway is also often activated but HBV-related tumors display a low rate of activating β-catenin mutations. HBV-related HCCs may arise on non-cirrhotic livers, further supporting the notion that HBV plays a direct role in liver transformation by triggering both common and etiology specific oncogenic pathways in addition to stimulating the host immune response and driving liver chronic necro-inflammation.
Collapse
Affiliation(s)
- Massimo Levrero
- Cancer Research Center of Lyon (CRCL) - INSERM U1052, Lyon, France; IIT Centre for Life Nanoscience (CLNS), Rome, Italy; Dept of Internal Medicine (DMISM), Sapienza University, Rome, Italy.
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Equipe Labellisée Ligue Contre le Cancer, Institut Universitaire d'Hematologie, Paris, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Université Paris 13, Sorbonne Paris Cité, Unité de Formation et de Recherche Santé, Médecine, Biologie Humaine, Bobigny, France; Université Paris Diderot, Paris, France.
| |
Collapse
|
37
|
Aragri M, Alteri C, Battisti A, Di Carlo D, Minichini C, Sagnelli C, Bellocchi MC, Pisaturo MA, Starace M, Armenia D, Carioti L, Pollicita M, Salpini R, Sagnelli E, Perno CF, Coppola N, Svicher V. Multiple Hepatitis B Virus (HBV) Quasispecies and Immune-Escape Mutations Are Present in HBV Surface Antigen and Reverse Transcriptase of Patients With Acute Hepatitis B. J Infect Dis 2016; 213:1897-905. [PMID: 26908731 DOI: 10.1093/infdis/jiw049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study characterizes and defines the clinical value of hepatitis B virus (HBV) quasispecies with reverse transcriptase and HBV surface antigen (HBsAg) heterogeneity in patients with acute HBV infection. METHODS Sixty-two patients with acute HBV infection (44 with genotype D infection and 18 with genotype A infection) were enrolled from 2000 to 2010. Plasma samples obtained at the time of the first examination were analyzed by ultradeep pyrosequencing. The extent of HBsAg amino acid variability was measured by Shannon entropy. RESULTS Median alanine aminotransferase and serum HBV DNA levels were 2544 U/L (interquartile range, 1938-3078 U/L) and 5.88 log10 IU/mL (interquartile range, 4.47-7.37 log10 IU/mL), respectively. Although most patients serologically resolved acute HBV infection, only 54.1% developed antibody to HBsAg (anti-HBs). A viral population with ≥1 immune-escape mutation was found in 53.2% of patients (intrapatient prevalence range, 0.16%-100%). Notably, by Shannon entropy, higher genetic variability at HBsAg amino acid positions 130, 133, and 157 significantly correlated with no production of anti-HBs in individuals infected with genotype D (P < .05). Stop codons were detected in 19.3% of patients (intrapatient prevalence range, 1.6%-47.5%) and occurred at 11 HBsAg amino acid positions, including 172 and 182, which are known to increase the oncogenic potential of HBV.Finally, ≥1 drug resistance mutation was detected in 8.1% of patients (intrapatient prevalence range, 0.11%-47.5% for primary mutations and 10.5%-99.9% for compensatory mutations). CONCLUSIONS Acute HBV infection is characterized by complex array of viral quasispecies with reduced antigenicity/immunogenicity and enhanced oncogenic potential. These viral variants may induce difficult-to-treat HBV forms; favor HBV reactivation upon iatrogenic immunosuppression, even years after infection; and potentially affect the efficacy of the current HBV vaccination strategy.
Collapse
Affiliation(s)
- Marianna Aragri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Arianna Battisti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Caterina Sagnelli
- Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Italy
| | | | - Maria Antonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Mario Starace
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Daniele Armenia
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Luca Carioti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| |
Collapse
|
38
|
Wei D, Zeng Y, Xing X, Liu H, Lin M, Han X, Liu X, Liu J. Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics. J Proteome Res 2016; 15:487-98. [PMID: 26709725 DOI: 10.1021/acs.jproteome.5b00838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is the main cause of hepatocellular carcinoma (HCC) in southeast Asia where HBV genotype B and genotype C are the most prevalent. Viral genotypes have been reported to significantly affect the clinical outcomes of HCC. However, the underlying molecular differences among different genotypes of HBV virus infected HCC have not been revealed. Here, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify the proteome differences between the HBV genotypes B- and C-induced HCC. In brief, a total of 83 proteins in the surrounding noncancerous tissues and 136 proteins in the cancerous tissues between HBV genotype-B- and genotype-C-induced HCC were identified, respectively. This information revealed that there might be different molecular mechanisms of the tumorigenesis and development of HBV genotypes B- and C-induced HCC. Furthermore, our results indicate that the two proteins ARFIP2 and ANXA1 might be potential biomarkers for distinguishing the HBV genotypes B- and C-induced HCC. Thus, the quantitative proteomic analysis revealed molecular differences between the HBV genotypes B- and C-induced HCC, and might provide fundamental information for further deep study.
Collapse
Affiliation(s)
- Dahai Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Hongzhi Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Minjie Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| |
Collapse
|
39
|
Guerrieri F, Belloni L, Pediconi N, Levrero M. Pathobiology of Hepatitis B Virus-Induced Carcinogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-22330-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Liu J, Su S. Relationship between long non-coding RNAs and liver-related diseases and injuries. Shijie Huaren Xiaohua Zazhi 2015; 23:5784-5789. [DOI: 10.11569/wcjd.v23.i36.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs>200 bp in length. In recent years, it was discovered that lncRNAs play an important role in many physiological processes, such as transcription activation, transcriptional interference, X chromosome silencing, genomic imprinting and chromatin modification, transport and so on. More and more studies show alterations of lncRNA expression in primary liver cancer, hepatitis and other liver diseases. This paper reviews the relationship between long non-coding RNAs and liver-related diseases and injuries.
Collapse
|
41
|
Kim H, Hong SH, Lee SA, Gong JR, Kim BJ. Development of Fok-I based nested polymerase chain reaction-restriction fragment length polymorphism analysis for detection of hepatitis B virus X region V5M mutation. World J Gastroenterol 2015; 21:13360-13367. [PMID: 26715821 PMCID: PMC4679770 DOI: 10.3748/wjg.v21.i47.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a Fok-I nested polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) method for the detection of hepatitis B virus X region (HBx) V5M mutation.
METHODS: Nested PCR was applied into DNAs from 198 chronic patients at 2 different stages [121 patients with hepatocellular carcinoma (HCC) and 77 carrier patients]. To identify V5M mutants, digestion of nested PCR amplicons by the restriction enzyme Fok-I (GGA TGN9↓) was done. For size comparison, the enzyme-treated products were analyzed by electrophoresis on 2.5% agarose gels, stained with ethidium bromide, and visualized on a UV transilluminator.
RESULTS: The assay enabled the identification of 69 patients (sensitivity of 34.8%; 46 HCC patients and 23 carrier patients). Our data also showed that V5M prevalence in HCC patients was significantly higher than in carrier patients (47.8%, 22/46 patients vs 0%, 0/23 patients, P < 0.001), suggesting that HBxAg V5M mutation may play a pivotal role in HCC generation in chronic patients with genotype C infections.
CONCLUSION: The Fok-I nested PRA developed in this study is a reliable and cost-effective method to detect HBxAg V5M mutation in chronic patients with genotype C2 infection.
Collapse
|
42
|
Kim H, Gong JR, Lee SA, Kim BJ. Discovery of a Novel Mutation (X8Del) Resulting in an 8-bp Deletion in the Hepatitis B Virus X Gene Associated with Occult Infection in Korean Vaccinated Individuals. PLoS One 2015; 10:e0139551. [PMID: 26437447 PMCID: PMC4593592 DOI: 10.1371/journal.pone.0139551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Universal infantile hepatitis B virus (HBV) vaccination may lead to an increase in vaccine escape variants, which may pose a threat to the long-term success of massive vaccination. To determine the prevalence of occult infections in Korean vaccinated individuals, 87 vaccinated subjects were screened for the presence of HBV DNA using both the nested PCR protocol and the VERSANT HBV DNA 3.0 assay. The mutation patterns of variants were analyzed in full-length HBV genome sequences. Their HBsAg secretion and replication capacities were investigated using both in vitro transient transfection and in vivo hydrodynamic injection. The presence of HBV DNA was confirmed in 6 subjects (6.9%). All six variants had a common mutation type (X8Del) composed of an 8-bp deletion in the C-terminal region of the HBV X gene (HBxAg). Our in vitro and in vivo analyses using the full-length HBV genome indicated that the X8Del HBxAg variant reduced the secretion of HBsAg and HBV virions compared to the wild type. In conclusion, our data suggest that a novel mutation (X8Del) may contribute to occult HBV infection in Korean vaccinated individuals via a reduced secretion of HBsAg and virions, possibly by compromising HBxAg's transacting capacity.
Collapse
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Ryeol Gong
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Kim H, Kim BJ. Association of preS/S Mutations with Occult Hepatitis B Virus (HBV) Infection in South Korea: Transmission Potential of Distinct Occult HBV Variants. Int J Mol Sci 2015; 16:13595-609. [PMID: 26084041 PMCID: PMC4490511 DOI: 10.3390/ijms160613595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Occult hepatitis B virus infection (HBV) is characterized by HBV DNA positivity but HBV surface antigen (HBsAg) negativity. Occult HBV infection is associated with a risk of HBV transmission through blood transfusion, hemodialysis, and liver transplantation. Furthermore, occult HBV infection contributes to the development of cirrhosis and hepatocellular carcinoma. We recently reported the characteristic molecular features of mutations in the preS/S regions among Korean individuals with occult infections caused by HBV genotype C2; the variants of preS and S related to severe liver diseases among chronically infected patients were also responsible for the majority of HBV occult infections. We also reported that HBsAg variants from occult-infected Korean individuals exhibit lower HBsAg secretion capacity but not reduced HBV DNA levels. In addition, these variants exhibit increased ROS-inducing capacity compared with the wild-type strain, linking HBV occult infections to liver cell damage. Taken together, our previous reports suggest the transmission potential of distinct HBV occult infection-related variants in South Korea.
Collapse
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| |
Collapse
|
44
|
Lee IK, Lee SA, Kim H, Won YS, Kim BJ. Induction of endoplasmic reticulum-derived oxidative stress by an occult infection related S surface antigen variant. World J Gastroenterol 2015; 21:6872-6883. [PMID: 26078563 PMCID: PMC4462727 DOI: 10.3748/wjg.v21.i22.6872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/28/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the mechanism of endoplasmic reticulum (ER) stress induction by an occult infection related hepatitis B virus S surface antigen (HBsAg) variant.
METHODS: We used an HBsAg variant with lower secretion capacity, which was a KD variant from a Korean subject who was occultly infected with the genotype C. We compared the expression profiles of ER stress-related proteins between HuH-7 cells transfected with HBsAg plasmids of a wild-type and a KD variant using Western blot.
RESULTS: Confocal microscopy indicated that the KD variant had higher levels of co-localization with ER than the wild-type HBsAg. The KD variant up-regulated ER stress-related proteins and induced reactive oxygen species (ROS) compared to the wild-type via an increase in calcium. The KD variant also down-regulated anti-oxidant proteins (HO-1, catalase and SOD) compared to the wild-type, which indicates positive amplification loops of the ER-ROS axis. The KD variant also induced apoptotic cell death via the up-regulation of caspase proteins (caspase 6, 9 and 12). Furthermore, the KD variant induced a higher level of nitric oxide than wild-type HBsAg via the up-regulation of the iNOS protein.
CONCLUSION: Our data indicate that occult infection related HBsAg variants can lead to ER-derived oxidative stress and liver cell death in HuH-7 cells.
Collapse
|
45
|
Gao S, Duan ZP, Coffin CS. Clinical relevance of hepatitis B virus variants. World J Hepatol 2015; 7:1086-1096. [PMID: 26052397 PMCID: PMC4450185 DOI: 10.4254/wjh.v7.i8.1086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) is a global public health problem with more than 240 million people chronically infected worldwide, who are at risk for end-stage liver disease and hepatocellular carcinoma. There are an estimated 600000 deaths annually from complications of HBV-related liver disease. Antiviral therapy with nucleos/tide analogs (NA) targeting the HBV polymerase (P) can inhibit disease progression by long-term suppression of HBV replication. However, treatment may fail with first generation NA therapy due to the emergence of drug-resistant mutants, as well as incomplete medication adherence. The HBV replicates via an error-prone reverse transcriptase leading to quasispecies. Due to overlapping open reading frames mutations within the HBV P can cause concomitant changes in the HBV surface gene (S) and vice versa. HBV quasispecies diversity is associated with response to antiviral therapy, disease severity and long-term clinical outcomes. Specific mutants have been associated with antiviral drug resistance, immune escape, liver fibrosis development and tumorgenesis. An understanding of HBV variants and their clinical relevance may be important for monitoring chronic hepatitis B disease progression and treatment response. In this review, we will discuss HBV molecular virology, mechanism of variant development, and their potential clinical impact.
Collapse
|
46
|
Lee SA, Kim KJ, Kim H, Choi WH, Won YS, Kim BJ. Hepatitis B virus preS1 deletion is related to viral replication increase and disease progression. World J Gastroenterol 2015; 21:5039-5048. [PMID: 25945020 PMCID: PMC4408479 DOI: 10.3748/wjg.v21.i16.5039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/30/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical implications of hepatitis B virus (HBV) preS1 deletion.
METHODS: We developed a fluorescence resonance energy transfer-based real-time polymerase chain reaction (RT-PCR) that can detect four genotypes (wild type, 15-bp, 18-bp and 21-bp deletion). The PCR method was used in two cohorts of Korean chronic HBV subjects with genotype C infections. Cohort I included 292 chronic HBV subjects randomly selected from Cheju National University Hospital (Jeju, South Korea) or Seoul National University Hospital (Seoul, South Korea), and cohort II included 90 consecutive chronic HBV carriers recruited from Konkuk University Hospital (Seoul, South Korea); the cohort II patients did not have hepatocellular carcinoma or liver cirrhosis.
RESULTS: The method proposed in this study identified 341 of 382 samples (89.3%). Deletion variants were identified in 100 (29.3%) of the 341 detected samples. In both cohorts, the subjects with deletions had a significantly higher Hepatitis B virus e antigen (HBeAg)-positive seroprevalence [cohort I, wild (51.0%) vs deletion (75.0%), P < 0.001; cohort II, wild (69.2%) vs deletion (92.9%), P = 0.002] and higher HBV DNA levels [cohort I, wild (797.7 pg/mL) vs deletion (1678.9 pg/mL), P = 0.013; cohort II, wild (8.3 × 108 copies/mL) vs deletion (2.2 × 109 copies/mL), P = 0.049], compared to subjects with wild type HBV.
CONCLUSION: HBV genotype C preS1 deletion may affect disease progression in chronic HBV subjects through an extended duration of HBeAg seropositive status and increased HBV replications.
Collapse
|
47
|
Coffin CS, Osiowy C, Gao S, Nishikawa S, van der Meer F, van Marle G. Hepatitis B virus (HBV) variants fluctuate in paired plasma and peripheral blood mononuclear cells among patient cohorts during different chronic hepatitis B (CHB) disease phases. J Viral Hepat 2015; 22:416-26. [PMID: 25203736 DOI: 10.1111/jvh.12308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus is classically considered a hepatotropic virus but also infects peripheral blood mononuclear cells. Chronic hepatitis B has different disease phases modulated by host immunity. We compared HBV variability, drug resistance and immune escape mutations in the overlapping HBV polymerase/surface gene in plasma and peripheral blood mononuclear cells in different disease phases. Plasma and peripheral blood mononuclear cells were isolated from 22 treatment naïve patient cohorts (five inactive, six immune-active, nine HBeAg negative and two immune-tolerant). HBV was genotyped via line probe assay, hepatitis B surface antigen titres were determined by an in-house immunoassay, and HBV DNA was quantified by kinetic PCR. The HBV polymerase/surface region, including full genome in some, was PCR-amplified and cloned, and ~20 clones/sample were sequenced. The sequences were subjected to various mutational and phylogenetic analyses. Clonal sequencing showed that only three of 22 patients had identical HBV genotype profiles in both sites. In immune-active chronic hepatitis B, viral diversity in plasma was higher compared with peripheral blood mononuclear cells. Mutations at residues, in a minority of clones, associated with drug resistance, and/or immune escape were found in both compartments but were more common in plasma. Immune escape mutations were more often observed in the peripheral blood mononuclear cells of immune-active CHB carriers, compared with other disease phases. During all CHB disease phases, differences exist between HBV variants found in peripheral blood mononuclear cells and plasma. Moreover, these data indicate that HBV evolution occurs in a compartment and disease phase-specific fashion.
Collapse
Affiliation(s)
- C S Coffin
- Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%), mainly A2 (149, 60%) but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%), with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7). Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions.
Collapse
|
49
|
Kim H, Lee SA, Won YS, Lee H, Kim BJ. Occult infection related hepatitis B surface antigen variants showing lowered secretion capacity. World J Gastroenterol 2015; 21:1794-1803. [PMID: 25684944 PMCID: PMC4323455 DOI: 10.3748/wjg.v21.i6.1794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the molecular mechanisms underlying hepatitis B virus (HBV) occult infection of genotype C.
METHODS: A total of 10 types of hepatitis B surface antigen (HBsAg) variants from a Korean occult cohort were used. After a complete HBV genome plasmid mutated such that it does not express HBsAg and plasmid encoding, each HBsAg variant was transiently co-transfected into HuH-7 cells. The secretion capacity and intracellular expression of the HBV virions and HBsAgs in their respective variants were analyzed using real-time quantitative polymerase chain reaction assays and commercial HBsAg enzyme-linked immunosorbent assays, respectively.
RESULTS: All variants exhibited lower levels of HBsAg secretion into the medium compared with the wild type. In particular, in eight of the ten variants, very low levels of HBsAg secretion that were similar to the negative control were detected. In contrast, most variants (9/10) exhibited normal virion secretion capacities comparable with, or even higher than, the wild type. This provided new insight into the intrinsic nature of occult HBV infection, which leads to HBsAg sero-negativeness but has horizontal infectivity. Furthermore, most variants generated higher reactive oxidative species production than the wild type. This finding provides potential links between occult HBV infection and liver disease progression.
CONCLUSION: The presently obtained data indicate that deficiency in the secretion capacity of HBsAg variants may have a pivotal function in the occult infections of HBV genotype C.
Collapse
|
50
|
Suppiah J, Mohd Zain R, Bahari N, Haji Nawi S, Saat Z. S gene mutants occurrence among hepatitis B carriers in malaysia. HEPATITIS MONTHLY 2014; 14:e22565. [PMID: 25737728 PMCID: PMC4329239 DOI: 10.5812/hepatmon.22565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/11/2014] [Accepted: 11/22/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The S gene region of the hepatitis B virus (HBV) codes for surface antigen (HBs Ag) and is responsible for classification of HBV strains. OBJECTIVES The current study aimed to identify important mutations in the S gene in Hepatitis B virus (HBV) isolated from Malaysian HBV carriers. MATERIALS AND METHODS Isolated HBV DNAs were subjected for PCR amplification and sequencing of HBV full genome. RESULTS A total of 76 HBV full genome and 17 partial genome sequences were obtained from the 93 sequenced sera samples Genotyping of the full genome sequences by HEPSEQ software revealed a distribution of 49.46%, 48.39% and 2.15% of genotypes C, B, and D, respectively; whereas phylogenetic and jumping profile Hidden Markov Model (jpHMM) analysis identified six (7.89%) recombinant B/C strains. The distribution of sub-genotypes were B2 (78.79%) and B3 (21.21%) for genotype B, sub genotype D2 (100%) for genotype D and sub genotype C1 (75.76%), C2 (15.15%), C3 (6.06%) and C5 (3.13%) for genotype C. Mutation analysis in the S gene demonstrated two significant mutations which were W182 stop codon and deletion at open reading frame (ORF) of pre-S1 with the frequency occurrence of 2.2% (2/93) and 5.4% (5/93), respectively. The two patients with W182 stop codon were both male, infected with HBV genotype C and one showed progression of liver disease to hepatocellular carcinoma (HCC). CONCLUSIONS Association with sex, genotype and clinical symptoms revealed that the pre-S1 ORF deletion occurred in 40% , 40%,and 20% of genotypes B,C, and D respectively, and 80% of the female population, of which all but one were diagnosed with chronic hepatitis B. Additionally, several mutations were found in the BCP region with the following incidence rate; C1653 T (8.6%), A1752 G (10.8%),1762 AGG--TGA 1764 (26.9%), C1766T(2.2%),T1768 A (10.8%), C1858 T (64.5%), G1896 A (25.8%).
Collapse
Affiliation(s)
- Jeyanthi Suppiah
- Virology Unit, Institute for Medical Research, Kuala Lumpur, Malaysia
- Corresponding Author: Jeyanthi Suppiah, Virology Unit, Institute for Medical Research, Kuala Lumpur, Malaysia. Tel: +603-26162674, E-mail:
| | | | | | | | - Zainah Saat
- Virology Unit, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|