1
|
Wang H, Su S, An X, Xu Y, Sun J, Zhen M, Wang C, Bai C. A charge reversal nano-assembly prevents hepatic steatosis by resolving inflammation and improving lipid metabolism. Bioact Mater 2025; 45:496-508. [PMID: 39717365 PMCID: PMC11664292 DOI: 10.1016/j.bioactmat.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Lipid metabolism imbalance combined with over-activated inflammation are two key factors for hepatic stestosis. However, on-demand anchoring inflammation and lipid metabolism disorder for hepatic stestosis treatment has yet to be realized. Here we propose a charge reversal fullerene based nano-assembly to migrate hepatic steatosis via inhibiting macrophage-mediated inflammation and normalizing hepatocellular lipid metabolism in obesity mice. Our nano-assembly (abbreviated as FPPD) is comprised of electropositive polyetherimide (PEI), charge-shielded dimethylmaleic anhydride (DMA), and poly(lactic-co-glycolic acid) (PLGA), which provides hydrophobic chains for self-assembly with anti-oxidative dicarboxy fullerene poly(ethylene glycol) molecule (FP). The obtained FPPD nano-assembly owns a charge reversal ability that switches to a positive charge in an acidic environment that targets the electronegative mitochondria both in pro-inflammatory macrophages and steatosis hepatocytes. We demonstrate that the anti-oxidative and mitochondria-targeting FPPD notably reduces inflammation in macrophages and lipid accumulation in hepatocytes by quenching excessive reactive oxygen species (ROS) and improving mitochondrial function in vitro. Importantly, FPPD nano-assembly reveals a superior anti-hepatic steatosis effect via migrating inflammation and facilitating lipid transport in obesity mice. Overall, the charge reversal nano-assembly reduces over-activated inflammation and promotes lipid metabolism that provides an effectiveness of a multi-target strategy for hepatic steatosis treatment.
Collapse
Affiliation(s)
- Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng'e Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin An
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2024; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Xu H, Qiu S, Lin P, Liao X, Lin Y, Sun Y, Zheng B. Vitamin D has therapeutic effects on obesity and hyperandrogenemia in PCOS mouse model induced by low dose DHEA and high-fat diet. BMC Womens Health 2024; 24:601. [PMID: 39521978 PMCID: PMC11549824 DOI: 10.1186/s12905-024-03445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most complex and common reproductive endocrine disease among reproductive age women. This study aimed to investigate the effects of vitamin D (Vit.D) in a PCOS mouse model induced by low dose DHEA and high-fat diet. Prepubertal female mice were divided into 4 groups randomly: control, PCOS, PCOS with low dose Vit.D(LDVD), and PCOS with high dose Vit.D(HDVD) groups (n = 10 per group). PCOS mice were administrated with high-fat diet and subcutaneous injection with 6 mg/kg/day dehydroepiandrosterone throughout the study. After the first 30 days, 1,25(OH)2D3 was intend to be administered by intraperitoneal injection for 40 consecutive days, 1.3 µg/kg/week in LDVD group, and 13 µg/kg /week in HDVD group. However, the mice in HDVD group appeared to be fatigue and anorexic after the Vit.D injections, then all died within two weeks. The body weights and testosterone levels in PCOS group were significantly higher than those in the control and LDVD groups (P < 0.001). The total cholesterol levels in the control group were lower than those in PCOS and LDVD groups (P < 0.001). Further, the ratio of liver to body weight was different among groups (P < 0.001). Our data illustrates that Vit.D has therapeutic effects on obesity and hyperandrogenemia in PCOS mouse model induced by low dose DHEA and high-fat diet. However, over dose of Vit.D is toxic. Further researches are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Huiling Xu
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China
| | - Shumin Qiu
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China
| | - Peiyang Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China
| | - Xiuhua Liao
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China
| | - Yunhong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China.
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China.
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, China.
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
4
|
Elangovan H, Stokes RA, Keane J, Chahal S, Samer C, Agoncillo M, Yu J, Chen J, Downes M, Evans RM, Liddle C, Gunton JE. Vitamin D Receptor Regulates Liver Regeneration After Partial Hepatectomy in Male Mice. Endocrinology 2024; 165:bqae077. [PMID: 38963813 PMCID: PMC11250209 DOI: 10.1210/endocr/bqae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.
Collapse
Affiliation(s)
- Harendran Elangovan
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Rebecca A Stokes
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jeremy Keane
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Sarinder Chahal
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Caroline Samer
- Pharmacogenomics and Personalized Therapy Unit, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Miguel Agoncillo
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Josephine Yu
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jennifer Chen
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jenny E Gunton
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
6
|
Yang A, Chen Y, Gao Y, Lv Q, Li Y, Li F, Yu R, Han Z, Dai S, Zhu J, Yang C, Zhan S, Sun L, Zhou JC. Vitamin D 3 exacerbates steatosis while calcipotriol inhibits inflammation in non-alcoholic fatty liver disease in Sod1 knockout mice: a comparative study of two forms of vitamin D. Food Funct 2024; 15:4614-4626. [PMID: 38590249 DOI: 10.1039/d4fo00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The role of vitamin D (VD) in non-alcoholic fatty liver disease (NAFLD) remains controversial, possibly due to the differential effects of various forms of VD. In our study, Sod1 gene knockout (SKO) mice were utilized as lean NAFLD models, which were administered 15 000 IU VD3 per kg diet, or intraperitoneally injected with the active VD analog calcipotriol for 12 weeks. We found that VD3 exacerbated hepatic steatosis in SKO mice, with an increase in the levels of Cd36, Fatp2, Dgat2, and CEBPA. However, calcipotriol exerted no significant effect on hepatic steatosis. Calcipotriol inhibited the expression of Il-1a, Il-1b, Il-6, Adgre1, and TNF, with a reduction of NFκB phosphorylation in SKO mice. No effect was observed by either VD3 or calcipotriol on hepatocyte injury and hepatic fibrosis. Co-immunofluorescence stains of CD68, a liver macrophage marker, and VDR showed that calcipotriol reduced CD68 positive cells, and increased the colocalization of VDR with CD68. However, VD3 elevated hepatocyte VDR expression, with no substantial effect on the colocalization of VDR with CD68. Finally, we found that VD3 increased the levels of serum 25(OH)D3 and 24,25(OH)2D3, whereas calcipotriol decreased both. Both VD3 and calcipotriol did not disturb serum calcium and phosphate levels. In summary, our study found that VD3 accentuated hepatic steatosis, while calcipotriol diminished inflammation levels in SKO mice, and the difference might stem from their distinct cellular selectivity in activating VDR. This study provides a reference for the application of VD in the treatment of lean NAFLD.
Collapse
Affiliation(s)
- Aolin Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Yanmei Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Yizhen Gao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Qingqing Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Yao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Fengna Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Shimiao Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Junying Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Chenggang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Shi Zhan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
- Guangdong Province Engineering Laboratory for Nutrition Translation, Shenzhen 518107, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, Guangdong, China
| |
Collapse
|
7
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
8
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
9
|
Li Z, Wu J, Zhao Y, Song J, Wen Y. Natural products and dietary interventions on liver enzymes: an umbrella review and evidence map. Front Nutr 2024; 11:1300860. [PMID: 38371505 PMCID: PMC10869519 DOI: 10.3389/fnut.2024.1300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background The association between natural products and dietary interventions on liver enzymes is unclear; therefore, this study aimed to examine their effects on liver enzymes in adults. Methods PubMed, Embase, and Cochrane Library of Systematic Reviews databases were searched from inception until March 2023. The Assessment of Multiple Systematic Reviews-2 (AMSTAR-2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological and evidence quality, and the therapeutic effects were summarized in a narrative form. Results A total of 40 meta-analyses on natural products (n = 25), dietary supplements (n = 10), and dietary patterns (n = 5) were evaluated, and results were presented in a narrative form. The overall methodological quality of the included studies was relatively poor. The results indicated that positive effects were observed for nigella sativa, garlic, artichoke, curcumin, silymarin, vitamin E, vitamin D, L-carnitine, propolis, and polyunsaturated fatty acids on certain liver enzymes. The dietary patterns, including high-protein, Mediterranean, and calorie-restriction diets and evening snacks, may reduce liver enzymes; however, other supplements and herbs did not reduce liver enzyme levels or have minimal effects. The evidence quality was generally weak given the risk of bias, heterogeneity, and imprecision. Conclusion This umbrella review suggests that natural products and dietary interventions have beneficial therapeutic effects on liver enzymes levels. Further clinical trials are necessary to establish the effectiveness of supplements that reduce liver enzymes.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiao Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingpan Zhao
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinjie Song
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Wu M, Wang J, Zhou W, Wang M, Hu C, Zhou M, Jiao K, Li Z. Vitamin D inhibits tamoxifen-induced non-alcoholic fatty liver disease through a nonclassical estrogen receptor/liver X receptor pathway. Chem Biol Interact 2024; 389:110865. [PMID: 38191086 DOI: 10.1016/j.cbi.2024.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.
Collapse
Affiliation(s)
- Maoxuan Wu
- Nantong Center for Disease Control and Prevention, Nantong, 226000, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wanqing Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengting Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Wu S, Tan J, Zhang H, Hou DX, He J. Tissue-specific mechanisms of fat metabolism that focus on insulin actions. J Adv Res 2023; 53:187-198. [PMID: 36539077 PMCID: PMC10658304 DOI: 10.1016/j.jare.2022.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.
Collapse
Affiliation(s)
- Shusong Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
14
|
Liu J, Song Y, Wang Y, Hong H. Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease. Expert Opin Ther Targets 2023; 27:1145-1157. [PMID: 37861098 DOI: 10.1080/14728222.2023.2274099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, but underlying mechanisms are not fully understood. In recent years, a growing body of evidence has emphasized the therapeutic role of vitamin D in NAFLD, but the specific mechanism remains to be investigated. AREAS COVERED This review summarized the roles of vitamin D/VDR (vitamin D receptor) pathway in different types of liver cells (such as hepatocytes, hepatic stellate cells, liver macrophages, T lymphocytes, and other hepatic immune cells) in case of NAFLD. Meanwhile, the effects of pathways in the gut-liver axis, adipose tissue-liver axis, and skeletal muscle-liver axis on the development of NAFLD were further reviewed. Relevant literature was searched on PubMed for the writing of this review. EXPERT OPINION The precise regulation of regional vitamin D/VDR signaling pathway based on cell-specific or tissue-specific function will help clarify the potential mechanism of vitamin D in NAFLD, which may provide new therapeutic targets to improve the safety and efficacy of vitamin D based drugs.
Collapse
Affiliation(s)
- Jingqi Liu
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Ye Wang
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huashan Hong
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
16
|
Park KY, Han K, Hwang HS, Park HK, Park K. Serum 25-Hydroxyvitamin D concentrations are inversely associated with all-cause mortality among Koreans: a nationwide cohort study. Nutr Res 2023; 113:49-58. [PMID: 37028268 DOI: 10.1016/j.nutres.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Evidence on the association between serum 25-hydroxyvitamin D (25(OH)D) concentration and all-cause and cause-specific mortality in Asians, especially Koreans, is limited. We hypothesized that high concentrations of 25(OH)D are associated with lower all-cause and cause-specific mortality in the general Korean population. This study included 27,846 adults participating in the Fourth and Fifth Korean National Health and Nutrition Examination Survey 2008-2012, followed up through December 31, 2019. Hazard ratios (HR) and 95% confidence intervals (CIs) for mortality from all causes, cardiovascular disease (CVD), and cancer were estimated using multivariable-adjusted Cox proportional hazards regression. The weighted mean serum 25(OH)D of study participants was 17.77 ng/mL; 66.5% had vitamin D deficiency (<20 ng/mL) and 94.2% had insufficient vitamin D (<30 ng/mL). During a median follow-up of 9.4 years (interquartile range, 8.1-10.6 years), 1680 deaths were documented, including 362 CVD deaths and 570 cancer deaths. Serum 25(OH)D levels ≥30 ng/mL were inversely associated with all-cause mortality (HR, 0.57; 95% CI, 0.43-0.75) compared with serum 25(OH)D levels <10 ng/mL. Based on the quartile cutoffs of serum 25(OH)D concentration, the highest quartile of serum 25(OH)D concentration (≥21.8 ng/mL) was associated with the lowest all-cause mortality (HR, 0.72; 95% CI, 0.60-0.85; P trend < .001), and CVD mortality (HR, 0.60; 95% CI, 0.42-0.85; P trend = .006). No association with cancer mortality outcome was found. In conclusion, higher serum 25(OH)D levels were associated with lower all-cause mortality in the general Korean population. An additional association was found between higher quartile of serum 25(OH)D and lower CVD mortality.
Collapse
|
17
|
Alshaibi HF, Bakhashab S, Almuhammadi A, Althobaiti YS, Baghdadi MA, Alsolami K. Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats. Curr Issues Mol Biol 2023; 45:479-489. [PMID: 36661517 PMCID: PMC9857557 DOI: 10.3390/cimb45010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-504687127
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Yu L, Zhao R, Wang C, Zhang C, Chu C, Zhao J, Zhang H, Zhai Q, Chen W, Zhang H, Tian F. Effects of garlic supplementation on non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Aggeletopoulou I, Thomopoulos K, Mouzaki A, Triantos C. Vitamin D–VDR Novel Anti-Inflammatory Molecules—New Insights into Their Effects on Liver Diseases. Int J Mol Sci 2022; 23:ijms23158465. [PMID: 35955597 PMCID: PMC9369388 DOI: 10.3390/ijms23158465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
There is consistent evidence that vitamin D deficiency is strongly associated with liver dysfunction, disease severity, and poor prognosis in patients with liver disease. Vitamin D and its receptor (VDR) contribute to the regulation of innate and adaptive immune responses. The presence of genetic variants of vitamin D- and VDR-associated genes has been associated with liver disease progression. In our recent work, we summarized the progress in understanding the molecular mechanisms involved in vitamin D–VDR signaling and discussed the functional significance of VDR signaling in specific cell populations in liver disease. The current review focuses on the complex interaction between immune and liver cells in the maintenance of liver homeostasis and the development of liver injury, the interplay of vitamin D and VDR in the development and outcome of liver disease, the role of vitamin D- and VDR-associated genetic variants in modulating the occurrence and severity of liver disease, and the therapeutic value of vitamin D supplementation in various liver diseases. The association of the vitamin D–VDR complex with liver dysfunction shows great potential for clinical application and supports its use as a prognostic index and diagnostic tool.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Correspondence:
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
| |
Collapse
|
20
|
Moreno-Torres M, Guzmán C, Petrov PD, Jover R. Valproate and Short-Chain Fatty Acids Activate Transcription of the Human Vitamin D Receptor Gene through a Proximal GC-Rich DNA Region Containing Two Putative Sp1 Binding Sites. Nutrients 2022; 14:2673. [PMID: 35807853 PMCID: PMC9268083 DOI: 10.3390/nu14132673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
The vitamin D receptor (VDR) mediates 1,25-dihydroxyvitamin D3 pleiotropic biological actions through transcription regulation of target genes. The expression levels of this ligand-activated nuclear receptor are regulated by multiple mechanisms both at transcriptional and post-transcriptional levels. Vitamin D3 is the natural VDR activator, but other molecules and signaling pathways have also been reported to regulate VDR expression and activity. In this study, we identify valproic acid (VPA) and natural short-chain fatty acids (SCFAs) as novel transcriptional activators of the human VDR (hVDR) gene. We further report a comprehensive characterization of VPA/SCFA-responsive elements in the 5' regulatory region of the hVDR gene. Two alternative promoter DNA regions (of 2.4 and 3.8 kb), as well as subsequent deletion fragments, were cloned in pGL4-LUC reporter vector. Transfection of these constructs in HepG2 and human Upcyte hepatocytes followed by reporter assays demonstrated that a region of 107 bp (from -107 to -1) upstream of the transcription start site in exon 1a is responsible for most of the increase in transcriptional activity in response to VPA/SCFAs. This short DNA region is GC-rich, does not contain an apparent TATA box, and includes two bona fide binding sites for the transcription factor Sp1. Our results substantiate the hypothesis that VPA and SCFAs facilitate the activity of Sp1 on novel Sp1 responsive elements in the hVDR gene, thus promoting VDR upregulation and signaling. Elevated hepatic VDR levels have been associated with liver steatosis and, therefore, our results may have clinical relevance in epileptic pediatric patients on VPA therapy. Our results could also be suggestive of VDR upregulation by SCFAs produced by gut microbiota.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carla Guzmán
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Petar D. Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
21
|
Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022; 43:1103-1119. [PMID: 35217817 PMCID: PMC9061718 DOI: 10.1038/s41401-022-00880-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.
Collapse
Affiliation(s)
- Ting-Ying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-di Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Elimination of Vitamin D Signaling Causes Increased Mortality in a Model of Overactivation of the Insulin Receptor: Role of Lipid Metabolism. Nutrients 2022; 14:nu14071516. [PMID: 35406129 PMCID: PMC9002971 DOI: 10.3390/nu14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D (VD) deficiency has been associated with cancer and diabetes. Insulin signaling through the insulin receptor (IR) stimulates cellular responses by activating the PI3K/AKT pathway. PTEN is a tumor suppressor and a negative regulator of the pathway. Its absence enhances insulin signaling leading to hypoglycemia, a dangerous complication found after insulin overdose. We analyzed the effect of VD signaling in a model of overactivation of the IR. We generated inducible double KO (DKO) mice for the VD receptor (VDR) and PTEN. DKO mice showed severe hypoglycemia, lower total cholesterol and increased mortality. No macroscopic tumors were detected. Analysis of the glucose metabolism did not show clear differences that would explain the increased mortality. Glucose supplementation, either systemically or directly into the brain, did not enhance DKO survival. Lipidic liver metabolism was altered as there was a delay in the activation of genes related to β-oxidation and a decrease in lipogenesis in DKO mice. High-fat diet administration in DKO significantly improved its life span. Lack of vitamin D signaling increases mortality in a model of overactivation of the IR by impairing lipid metabolism. Clinically, these results reveal the importance of adequate Vitamin D levels in T1D patients.
Collapse
|
23
|
Investigation of the protective and therapeutic effects of thiamine in thioacetamide-induced liver injury. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Von-Hafe M, Borges-Canha M, Vale C, Leite AR, Sérgio Neves J, Carvalho D, Leite-Moreira A. Nonalcoholic Fatty Liver Disease and Endocrine Axes—A Scoping Review. Metabolites 2022; 12:metabo12040298. [PMID: 35448486 PMCID: PMC9026925 DOI: 10.3390/metabo12040298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease. NAFLD often occurs associated with endocrinopathies. Evidence suggests that endocrine dysfunction may play an important role in NAFLD development, progression, and severity. Our work aimed to explore and summarize the crosstalk between the liver and different endocrine organs, their hormones, and dysfunctions. For instance, our results show that hyperprolactinemia, hypercortisolemia, and polycystic ovary syndrome seem to worsen NAFLD’s pathway. Hypothyroidism and low growth hormone levels also may contribute to NAFLD’s progression, and a bidirectional association between hypercortisolism and hypogonadism and the NAFLD pathway looks likely, given the current evidence. Therefore, we concluded that it appears likely that there is a link between several endocrine disorders and NAFLD other than the typically known type 2 diabetes mellitus and metabolic syndrome (MS). Nevertheless, there is controversial and insufficient evidence in this area of knowledge.
Collapse
Affiliation(s)
- Madalena Von-Hafe
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-918935390
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Cirurgia Cardiotorácica do Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| |
Collapse
|
25
|
Albergamo A, Apprato G, Silvagno F. The Role of Vitamin D in Supporting Health in the COVID-19 Era. Int J Mol Sci 2022; 23:3621. [PMID: 35408981 PMCID: PMC8998275 DOI: 10.3390/ijms23073621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The genomic activity of vitamin D is associated with metabolic effects, and the hormone has a strong impact on several physiological functions and, therefore, on health. Among its renowned functions, vitamin D is an immunomodulator and a molecule with an anti-inflammatory effect, and, recently, it has been much studied in relation to its response against viral infections, especially against COVID-19. This review aims to take stock of the correlation studies between vitamin D deficiency and increased risks of severe COVID-19 disease and, similarly, between vitamin D deficiency and acute respiratory distress syndrome. Based on this evidence, supplementation with vitamin D has been tested in clinical trials, and the results are discussed. Finally, this study includes a biochemical analysis on the effects of vitamin D in the body's defense mechanisms against viral infection. In particular, the antioxidant and anti-inflammatory functions are considered in relation to energy metabolism, and the potential, beneficial effect of vitamin D in COVID-19 is described, with discussion of its influence on different biochemical pathways. The proposed, broader view of vitamin D activity could support a better-integrated approach in supplementation strategies against severe COVID-19, which could be valuable in a near future of living with an infection becoming endemic.
Collapse
Affiliation(s)
- Alice Albergamo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Giulia Apprato
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | |
Collapse
|
26
|
Tao T, Kobelski MM, Saini V, Demay MB. Adipose-specific VDR Deletion Leads to Hepatic Steatosis in Female Mice Fed a Low-Fat Diet. Endocrinology 2022; 163:6457073. [PMID: 34878523 PMCID: PMC10061053 DOI: 10.1210/endocr/bqab249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 02/03/2023]
Abstract
Risk factors for nonalcoholic hepatic steatosis include obesity and vitamin D deficiency which commonly coexist. Thus, the role of vitamin D signaling in the prevention of hepatic steatosis in the absence of obesity or a "Western" high-fat diet is unclear. These studies were performed to address the role of the adipocyte vitamin D receptor (VDR) in the prevention of hepatic steatosis in mice fed a chow diet containing 5% fat by weight. Female mice with adipocyte VDR ablation (Adipoq-Cre; VDRflox/flox) exhibited a mild increase in weight gain at age 70 days, accompanied by an increase in visceral white adipose tissue (VAT) weight. While they did not exhibit evidence of hepatic inflammation or fibrosis, an increase in hepatic lipid content was observed. This was accompanied by an increase in the hepatic expression of genes involved in fatty acid transport and synthesis, as well as fatty acid oxidation. Markers of hepatic inflammation and fibrosis were unaffected by adipocyte VDR ablation. Consistent with the increase in VAT weight in the Adipoq-Cre; VDRflox/flox mice, higher levels of transcripts encoding adipogenesis-related genes were observed in VAT. In contrast to other models of impaired vitamin D signaling studied in the setting of a high-fat or "Western" diet, the Adipoq-Cre; VDRflox/flox mice do not exhibit hepatic inflammation or fibrosis. These findings suggest that the adipocyte VDR regulates hepatic lipid accumulation, but in the absence of obesity or a high-fat diet, is not required to prevent hepatic inflammation or fibrosis.
Collapse
Affiliation(s)
- Tao Tao
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Endocrinology and Metabolism, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Margaret M Kobelski
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Rozmus D, Płomiński J, Augustyn K, Cieślińska A. rs7041 and rs4588 Polymorphisms in Vitamin D Binding Protein Gene (VDBP) and the Risk of Diseases. Int J Mol Sci 2022; 23:ijms23020933. [PMID: 35055118 PMCID: PMC8779119 DOI: 10.3390/ijms23020933] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of the study was to investigate the role of vitamin D binding protein (VDBP, DBP) and its polymorphism in the vitamin D pathway and human health. This narrative review shows the latest literature on the most popular diseases that have previously been linked to VDBP. Vitamin D plays a crucial role in human metabolism, controlling phosphorus and calcium homeostasis. Vitamin D binding protein bonds vitamin D and its metabolites and transports them to target tissues. The most common polymorphisms in the VDBP gene are rs4588 and rs7041, which are located in exon 11 in domain III of the VDBP gene. rs4588 and rs7041 may be correlated with differences not only in vitamin D status in serum but also with vitamin D metabolites. This review supports the role of single nucleotide polymorphisms (SNPs) in the VDBP gene and presents the latest data showing correlations between VDBP variants with important human diseases such as obesity, diabetes mellitus, tuberculosis, chronic obstructive pulmonary disease, and others. In this review, we aim to systematize the knowledge regarding the occurrence of diseases and their relationship with vitamin D deficiencies, which may be caused by polymorphisms in the VDBP gene. Further research is required on the possible influence of SNPs, modifications in the structure of the binding protein, and their influence on the organism. It is also important to mention that most studies do not have a specific time of year to measure accurate vitamin D metabolite levels, which can be misleading in conclusions due to the seasonal nature of vitamin D.
Collapse
Affiliation(s)
- Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Janusz Płomiński
- Clinical Department of Trauma-Orthopedic Surgery and Spine Surgery of the Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland;
- Department and Clinic of Orthopaedics and Traumatology, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Klaudia Augustyn
- Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
28
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
29
|
Andrographolide derivative as antagonist of vitamin D receptor to induce lipidation of microtubule associate protein 1 light chain 3 (LC3). Bioorg Med Chem 2021; 51:116505. [PMID: 34781081 DOI: 10.1016/j.bmc.2021.116505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Lipidation of microtubule associated protein 1 light chain 3 (LC3) is the critical step in autophagosome formation, numerous efforts have been made to design and develop small molecules that trigger LC3 lipidation to activate autophagy. In this study, we discovered a series of andrographolide derivatives as potent antagonists of vitamin D receptor (VDR) by luciferase reporter assay. Structure-activity-relationship study revealed that andrographolide derivative ZAV-12 specifically inhibited VDR signaling but not NF-κB or STAT3 activation. Western blot analysis indicates that ZAV-12 markedly triggered lipidation of LC3 in MPP+-induced Parkinsonism in vitro in an mTOR-independent manner. The ZAV-12 triggered lipidation was mediated through SREBP2 activation instead of changing expression levels of lipid synthesis genes. Furthermore, ZAV-12 treatment increased the ratio of LC3-II/LC3-I and oligomerization of A53T α-synuclein (SNCA) in SNCA triggered neurotoxicity. Taken together, these results demonstrate the therapeutic potential of VDR antagonist as novel drug candidate for neurodegenerative diseases.
Collapse
|
30
|
Lauer AA, Griebsch LV, Pilz SM, Janitschke D, Theiss EL, Reichrath J, Herr C, Beisswenger C, Bals R, Valencak TG, Portius D, Grimm HS, Hartmann T, Grimm MOW. Impact of Vitamin D 3 Deficiency on Phosphatidylcholine-/Ethanolamine, Plasmalogen-, Lyso-Phosphatidylcholine-/Ethanolamine, Carnitine- and Triacyl Glyceride-Homeostasis in Neuroblastoma Cells and Murine Brain. Biomolecules 2021; 11:1699. [PMID: 34827697 PMCID: PMC8615687 DOI: 10.3390/biom11111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Jörg Reichrath
- Department of Dermatology, Saarland University Hospital, 66421 Homburg, Germany;
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Teresa Giovanna Valencak
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Germany;
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
31
|
Rezaei S, Tabrizi R, Nowrouzi-Sohrabi P, Jalali M, Shabani-Borujeni M, Modaresi S, Gholamalizadeh M, Doaei S. The Effects of Vitamin D Supplementation on Anthropometric and Biochemical Indices in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Front Pharmacol 2021; 12:732496. [PMID: 34803681 PMCID: PMC8595299 DOI: 10.3389/fphar.2021.732496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Vitamin D was reported to be associated with non-alcoholic fatty liver disease (NAFLD). This systematic review and meta-analysis aimed to investigate the effects of the vitamin D supplementation on anthropometric and biochemical indices in patient with NAFLD. Methods: PubMed, Web of science, Scopus, and Embase databases were explored to identify all randomized controlled trial (RCT) investigating the effects of vitamin D supplementation on anthropometric and biochemical indices in patients with NAFLD. A random-effects model was used to pool weighted mean difference (WMD) and corresponding 95% confidence intervals (CIs). The statistical heterogeneity among the studies was assessed using I2 statistic (high ≥ 50%, low < 50%) and Cochran's Q-test. Results: Sixteen RCTs were included in this meta-analysis. The results identified that high-density lipoprotein-cholesterol (HDL-C) level significantly increased following vitamin D supplementation (P = 0.008). Vitamin D reduced body weight (P = 0.007), body mass index (P = 0.002), waist circumstance (WC) (P = 0.02), serum alanine transaminase (ALT) (P = 0.01), fasting blood sugar (FBS) (P = 0.01), homeostatic model assessment for insulin resistance (HOMA-IR) (P = 0.004), and calcium (P = 0.01). No significant changes were found on body fat, triglyceride (TG), total cholesterol, low-density lipoprotein-cholesterol (LDL-C), aspartate transaminase, alkaline phosphatase, gamma-glutamyl transferase, and adiponectin following vitamin D supplementation. Conclusion: Vitamin D had significant effects on anthropometric and biochemical indices including HDL-C, body weight, BMI, WC, serum ALT, serum FBS, HOMA-IR, and calcium. Vitamin D supplementation can be considered as an effective strategy in management of patients with NAFLD. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Shahla Rezaei
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Peyman Nowrouzi-Sohrabi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Nutrition Research Center, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shabani-Borujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Modaresi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Enviroment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
Koohpeyma F, Ranjbar Omrani G, Zamani A, Saki F. Effects of Paricalcitol on Body Composition in Vitamin D-Deficient Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:468-474. [PMID: 34840387 PMCID: PMC8611226 DOI: 10.30476/ijms.2020.85368.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/01/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Background Paricalcitol has been proposed for the treatment of secondary hyperparathyroidism in patients with renal failure and vitamin D deficiency (VDD); however, VDD is related to a range of clinical complaints. We aimed to investigate the effects of paricalcitol on body composition in VDD rats. Methods Thirty adult male rats aged 10 weeks were randomly divided into three groups of 10, comprising control, VDD, and VDD plus paricalcitol (32 ng/rat intraperitoneal injection) (VDD+P), at the Animal Lab of the Endocrinology and Metabolism Research Center, Shiraz, Iran, in 2020. Body composition was assessed after three weeks via serum biochemical tests and dual-energy X-ray absorptiometry. Finally, the data were analyzed by using the paired-sample t test, the one-way ANOVA, and the Tukey post hoc test. Results Global lean mass and fat mass were lower in the VDD and VDD+P groups than in the controls (P<0.001). Global fat percentage was reduced significantly in the VDD+P group (P=0.029). Conclusion Paricalcitol reduced global fat mass and fat percentage in a rat model with VDD. Evaluation of insulin and adiponectin levels is suggested to clarify the physiology of paricalcitol in VDD states.
Collapse
Affiliation(s)
- Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Zamani
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Saki
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Pickard A, Calverley BC, Chang J, Garva R, Gago S, Lu Y, Kadler KE. Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells. PLoS Pathog 2021; 17:e1009840. [PMID: 34499689 PMCID: PMC8428568 DOI: 10.1371/journal.ppat.1009840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.
Collapse
Affiliation(s)
- Adam Pickard
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (AP); (KEK)
| | - Ben C. Calverley
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Gago
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (AP); (KEK)
| |
Collapse
|
34
|
Abstract
ANGPTL8 is an important cytokine, which is significantly increased in type 2 diabetes mellitus (T2DM), obesity and metabolic syndrome. Many studies have shown that ANGPTL8 can be used as a bio-marker of these metabolic disorders related diseases, and the baseline ANGPTL8 level has also been found to be positively correlated with retinopathy and all-cause mortality in patients with T2DM. This may be related to the inhibition of lipoprotein lipase activity and the reduction of circulating triglyceride (TG) clearance by ANGPTL8. Consistently, inhibition of ANGPTL8 seems to prevent or improve atherosclerosis. However, it is puzzling that ANGPTL8 seems to have a directing function for TG uptake in peripheral tissues; that is, ANGPTL8 specifically enhances the reserve and buffering function of white adipose tissue, which may alleviate the ectopic lipid accumulation to a certain extent. Furthermore, ANGPTL8 can improve insulin sensitivity and inhibit hepatic glucose production. These contradictory results lead to different opinions on the role of ANGPTL8 in metabolic disorders. In this paper, the correlation between ANGPTL8 and metabolic diseases, the regulation of ANGPTL8 and the physiological role of ANGPTL8 in the process of glucose and lipid metabolism were summarized, and the physiological/pathological significance of ANGPTL8 in the process of metabolic disorder was discussed.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Raza S, Tewari A, Rajak S, Sinha RA. Vitamins and non-alcoholic fatty liver disease: A Molecular Insight ⋆. LIVER RESEARCH 2021; 5:62-71. [PMID: 34221537 PMCID: PMC7611112 DOI: 10.1016/j.livres.2021.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly across the globe. NAFLD pathogenesis is largely driven by an imbalance in hepatic energy metabolism and at present, there is no approved drug for its treatment. The liver plays a crucial role in micronutrient metabolism and deregulation of this micronutrient metabolism may contribute to the pathogenesis of NAFLD. Vitamins regulate several enzymatic processes in the liver, and derangement in vitamin metabolism is believed to play a critical role in NAFLD progression. The anti-oxidant activities of vitamin C and E have been attributed to mitigate hepatocyte injury, and alterations in the serum levels of vitamin D, vitamin B12 and folate have shown a strong correlation with NAFLD severity. This review aims to highlight the role of these vitamins, which represent promising therapeutic targets for the management of NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Corresponding author: Dr. Rohit A. Sinha (), Dr. Sana Raza ()
| | | | | | - Rohit A. Sinha
- Corresponding author: Dr. Rohit A. Sinha (), Dr. Sana Raza ()
| |
Collapse
|
36
|
Pickard A, Calverley BC, Chang J, Garva R, Lu Y, Kadler KE. Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.31.428851. [PMID: 33564760 PMCID: PMC7872348 DOI: 10.1101/2021.01.31.428851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, vaccine escape variants might arise leading to a re-emergence of COVID. In anticipation of such a scenario, the identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2- DOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in- line with reported proteinuria and liver damage in patients with COVID-19. We identified 35 drugs that reduced viral replication in Vero and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.
Collapse
|
37
|
Common Transcriptional Program of Liver Fibrosis in Mouse Genetic Models and Humans. Int J Mol Sci 2021; 22:ijms22020832. [PMID: 33467660 PMCID: PMC7830925 DOI: 10.3390/ijms22020832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Multifactorial metabolic diseases, such as non-alcoholic fatty liver disease, are a major burden to modern societies, and frequently present with no clearly defined molecular biomarkers. Herein we used system medicine approaches to decipher signatures of liver fibrosis in mouse models with malfunction in genes from unrelated biological pathways: cholesterol synthesis-Cyp51, notch signaling-Rbpj, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling-Ikbkg, and unknown lysosomal pathway-Glmp. Enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and TRANScription FACtor (TRANSFAC) databases complemented with genome-scale metabolic modeling revealed fibrotic signatures highly similar to liver pathologies in humans. The diverse genetic models of liver fibrosis exposed a common transcriptional program with activated estrogen receptor alpha (ERα) signaling, and a network of interactions between regulators of lipid metabolism and transcription factors from cancer pathways and the immune system. The novel hallmarks of fibrosis are downregulated lipid pathways, including fatty acid, bile acid, and steroid hormone metabolism. Moreover, distinct metabolic subtypes of liver fibrosis were proposed, supported by unique enrichment of transcription factors based on the type of insult, disease stage, or potentially, also sex. The discovered novel features of multifactorial liver fibrotic pathologies could aid also in improved stratification of other fibrosis related pathologies.
Collapse
|
38
|
Borges-Canha M, Neves JS, Mendonça F, Silva MM, Costa C, Cabral PM, Guerreiro V, Lourenço R, Meira P, Salazar D, Ferreira MJ, Pedro J, Leite AR, von-Hafe M, Vale C, Viana S, Sande A, Belo S, Lau E, Freitas P, Carvalho D. The Impact of Vitamin D in Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study in Patients with Morbid Obesity. Diabetes Metab Syndr Obes 2021; 14:487-495. [PMID: 33568925 PMCID: PMC7868234 DOI: 10.2147/dmso.s286334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We aimed to evaluate the association between vitamin D status and hepatic function parameters and scores: Fatty Liver Index (FLI, predictor of hepatic steatosis) and BARD (BMI, AST/ALT ratio and DM, predictor of hepatic fibrosis) in patients with morbid obesity. PATIENTS AND METHODS Cross-sectional study including patients with morbid obesity followed in our centre between January 2010 and July 2018. Patients with missing vitamin D levels or hepatic profile parameters were excluded. We divided the population according to two cut-offs of vitamin D levels (12ng/mL and 20ng/mL). RESULTS The included population (n=1124) had an average age of 43.3±10.7 years and 84.3% were female. Seventy-point eight percent of the population had vitamin D levels lower than 20ng/mL and 34.8% lower than 12ng/dL. Patients with lower vitamin D levels (<12ng/mL) had higher BMI, hip and waist circumferences and higher prevalence of hypertension. Higher FLI scores [OR= 0.77 (0.07), p<0.01] and ALP levels [β= -0.03 (-0.06, -0.01), p<0.01] associated to lower vitamin D levels. CONCLUSION Vitamin D deficiency is associated with a higher risk of hepatic steatosis in individuals with morbid obesity. Correction of vitamin D deficiency may have a beneficial role in the management of NAFLD in patients with morbid obesity.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Correspondence: Marta Borges-Canha Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, PortugalTel +351918935390 Email
| | - João Sérgio Neves
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fernando Mendonça
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Maria Manuel Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Cláudia Costa
- Serviço de Endocrinologia do Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Pedro M Cabral
- Serviço de Patologia Clínica do Centro Hospitalar Universitário Cova da Beira, Covilhã, Portugal
| | - Vanessa Guerreiro
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rita Lourenço
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Patrícia Meira
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Daniela Salazar
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Maria João Ferreira
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Jorge Pedro
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Madalena von-Hafe
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Sara Viana
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Sande
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sandra Belo
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Eva Lau
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Paula Freitas
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Investigação e Inovação Em Saúde (I3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Investigação e Inovação Em Saúde (I3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Giustina A, Bouillon R, Binkley N, Sempos C, Adler RA, Bollerslev J, Dawson-Hughes B, Ebeling PR, Feldman D, Heijboer A, Jones G, Kovacs CS, Lazaretti-Castro M, Lips P, Marcocci C, Minisola S, Napoli N, Rizzoli R, Scragg R, White JH, Formenti AM, Bilezikian JP. Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus 2020; 4:e10417. [PMID: 33354643 PMCID: PMC7745884 DOI: 10.1002/jbm4.10417] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022] Open
Abstract
The Third International Conference on Controversies in Vitamin D was held in Gubbio, Italy, September 10–13, 2019. The conference was held as a follow‐up to previous meetings held in 2017 and 2018 to address topics of controversy in vitamin D research. The specific topics were selected by the steering committee of the conference and based upon areas that remain controversial from the preceding conferences. Other topics were selected anew that reflect specific topics that have surfaced since the last international conference. Consensus was achieved after formal presentations and open discussions among experts. As will be detailed in this article, consensus was achieved with regard to the following: the importance and prevalence of nutritional rickets, amounts of vitamin D that are typically generated by sun exposure, worldwide prevalence of vitamin D deficiency, the importance of circulating concentrations of 25OHD as the best index of vitamin D stores, definitions and thresholds of vitamin D deficiency, and efficacy of vitamin D analogues in the treatment of psoriasis. Areas of uncertainly and controversy include the following: daily doses of vitamin D needed to maintain a normal level of 25OHD in the general population, recommendations for supplementation in patients with metabolic bone diseases, cutaneous production of vitamin D by UVB exposure, hepatic regulation of 25OHD metabolites, definition of vitamin D excess, vitamin D deficiency in acute illness, vitamin D requirements during reproduction, potential for a broad spectrum of cellular and organ activities under the influence of the vitamin D receptor, and potential links between vitamin D and major human diseases. With specific regard to the latter area, the proceedings of the conference led to recommendations for areas in need of further investigation through appropriately designed intervention trials. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital Milan Italy
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases Metabolism and Ageing KU Leuven Leuven Belgium
| | - Neil Binkley
- Osteoporosis Clinical Research Program on Aging, University of Wisconsin Madison WI USA
| | | | - Robert A Adler
- McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Richmond VA USA
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway, and Faculty of Medicine University of Oslo Oslo Norway
| | - Bess Dawson-Hughes
- Jean Mayer USDA Nutrition Research Center on Aging Tufts University Boston MA USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences Monash University Calyton Victoria Australia
| | - David Feldman
- Department of Medicine Stanford University School of Medicine Stanford CA USA
| | - Annemieke Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry Amsterdam UMC, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Gastroenterology & Metabolism Amsterdam The Netherlands
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences Queen's University Kingston Ontario Canada
| | - Christopher S Kovacs
- Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| | - Marise Lazaretti-Castro
- Division of Endocrinology Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP) São Paulo Brazil
| | - Paul Lips
- Department of Internal Medicine, Endocrine Section Amsterdam University Medical Center Amsterdam The Netherlands
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines University of Rome "Sapienza" Rome Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes Campus Bio-Medico, University of Rome Rome Italy.,Division of Bone and Mineral Diseases Washington University in St. Louis St. Louis MO USA
| | - Rene Rizzoli
- Service of Bone Diseases Geneva University Hospitals and Faculty of Medicine Geneva Switzerland
| | - Robert Scragg
- School of Population Health University of Auckland Auckland New Zealand
| | - John H White
- Department of Physiology McGill University Montreal Quebec Canada
| | - Anna Maria Formenti
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital Milan Italy
| | - John P Bilezikian
- Department of Medicine, Endocrinology Division, College of Physicians and Surgeons Columbia University New York NY USA
| |
Collapse
|
41
|
Cao Y, Shu XB, Yao Z, Ji G, Zhang L. Is vitamin D receptor a druggable target for non-alcoholic steatohepatitis? World J Gastroenterol 2020; 26:5812-5821. [PMID: 33132636 PMCID: PMC7579753 DOI: 10.3748/wjg.v26.i38.5812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressed stage of non-alcoholic fatty liver disease, and available therapeutic strategies for NASH are limited. Vitamin D receptor (VDR) is proposed as a druggable target for NASH due to the discovery of vitamin D deficiency in NASH patients. To date, vitamin D supplementation has not consistently conferred expected therapeutic benefits, raising the question of whether VDR can serve as a proper drug target for NASH. It is known that VDR can interact with other ligands such as bile acids in addition to vitamin D, and its expression can be induced by fatty acids, and insulin. It has also been shown that while activation of VDR in hepatic macrophages and hepatic stellate cells resulted in attenuation of hepatic inflammation and fibrosis, activation of VDR in hepatocytes could accelerate lipid accumulation. Thus, the multiplicity of VDR ligands, together with the cell type-specificity of VDR activation, must be taken into consideration in assessing the validity of VDR being a potential druggable target for NASH treatment. To this end, we have evaluated the relationship between VDR activation and various contributing factors, such as gut microbiota, bile acid, fatty acids, and insulin, in addition to vitamin D, with an expectation that a potential drug might be identified that can elicit VDR activation in a tissue- and/or cell type-specific manner and therefore achieving therapeutic benefits in NASH.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiang-Bing Shu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H8M5, Ontario, Canada
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
42
|
Barchetta I, Chiappetta C, Ceccarelli V, Cimini FA, Bertoccini L, Gaggini M, Cristofano CD, Silecchia G, Lenzi A, Leonetti F, Baroni MG, Gastaldelli A, Cavallo MG. Angiopoietin-Like Protein 4 Overexpression in Visceral Adipose Tissue from Obese Subjects with Impaired Glucose Metabolism and Relationship with Lipoprotein Lipase. Int J Mol Sci 2020; 21:ijms21197197. [PMID: 33003532 PMCID: PMC7582588 DOI: 10.3390/ijms21197197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) regulates lipid partitioning by inhibiting circulating and tissue lipoprotein lipase (LPL); ANGPTL4 loss-of-function variants improve insulin sensitivity and reduce type 2 diabetes (T2D) risk with mechanisms partially unknown. This study was designed to explore metabolic implications of differential ANGPTL4 and LPL expression in human adipose tissue (AT). We recruited eighty-eight obese individuals, with and without abnormal glucose metabolism (AGM), undergoing bariatric surgery; visceral AT (VAT) fragments were obtained intra-operatively and analyzed by immunohistochemistry and mRNA by rt-PCR. Data on hepatic ANGPTL4 mRNA were available for 40 participants. VAT ANGPTL4 expression was higher in AGM individuals than in those with normal glucose tolerance (NGT) and associated with VAT inflammation, insulin resistance, and presence of adipocyte size heterogeneity. Increased ANGPTL4 was associated with AGM with OR = 5.1 (95% C.I.: 1.2–23; p = 0.02) and AUROC = 0.76 (95% C.I.: 1.2–23; p < 0.001). High LPL was associated with the detection of homogeneous adipocyte size, reduced microvessel density, and higher HIF-1α levels and inversely correlated to blood transaminases. In conclusion, in obese individuals, VAT ANGPTL4 levels are increased in the presence of local inflammation and AGM. Conversely, higher LPL expression describes a condition of increased lipid storage in adipocytes, which may serve as a protective mechanism against ectopic fat accumulation and related metabolic disease in obesity.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA) University of L’Aquila, 67100 Coppito (AQ) Italy;
- IRCCS Neuromed, 86077 Pozzilli (Is), Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
43
|
Effect of cholecalciferol on serum hepcidin and parameters of anaemia and CKD-MBD among haemodialysis patients: a randomized clinical trial. Sci Rep 2020; 10:15500. [PMID: 32968158 PMCID: PMC7512011 DOI: 10.1038/s41598-020-72385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/25/2020] [Indexed: 12/02/2022] Open
Abstract
In this multicentre double-blind randomized clinical trial, we investigated the effects of oral cholecalciferol supplementation on serum hepcidin and parameters related to anaemia and CKD-MBD among haemodialysis patients. Participants were assigned in a 2:2:1:1 ratio to either (1) thrice-weekly 3,000-IU cholecalciferol, (2) once-monthly cholecalciferol (equivalent to 9,000 IU/week), (3) thrice-weekly placebo, or (4) once-monthly placebo. We also examined the effect modifications by selected single nucleotide polymorphisms in vitamin D-related genes. Out of 96 participants, 94 were available at Month 3, and 88 completed the 6-month study. After adjustment for baseline values, serum hepcidin levels were higher at Day 3 in the combined cholecalciferol (vs. placebo) group, but were lower at Month 6 with increased erythropoietin resistance. Cholecalciferol increased serum 1,25(OH)2D levels, resulting in a greater proportion of patients who reduced the dose of active vitamin D at Month 6 (31% vs. 10% in the placebo group). Cholecalciferol also suppressed intact PTH only among patients with severe vitamin D deficiency. In conclusion, cholecalciferol supplementation increases serum hepcidin-25 levels in the short term and may increase erythropoietin resistance in the long term among haemodialysis patients. Both thrice-weekly and once-monthly supplementation effectively increases serum 1,25(OH)2D levels, and hence, reduces active vitamin D drugs. Clinical Trial Registry: This study was registered at ClinicalTrials.gov and University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) as NCT02214563 (registration date: 12/08/2014) and UMIN000011786 (registration date: 15/08/2014), respectively (please refer to the links below). ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/record/NCT02214563. UMIN-CTR: https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000017152&language=E.
Collapse
|
44
|
Barchetta I, Cimini FA, Chiappetta C, Bertoccini L, Ceccarelli V, Capoccia D, Gaggini M, Di Cristofano C, Della Rocca C, Silecchia G, Leonetti F, Lenzi A, Gastaldelli A, Cavallo MG. Relationship between hepatic and systemic angiopoietin-like 3, hepatic Vitamin D receptor expression and NAFLD in obesity. Liver Int 2020; 40:2139-2147. [PMID: 32510837 DOI: 10.1111/liv.14554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and an independent risk factor for cardiovascular mortality. Angiopoietin-like proteins (ANGPTLs) are targets for vitamin D receptor (VDR)-mediated gene transcription and this axis may promote NAFLD. ANGPTL3 is a hepatokine which inhibits lipoprotein lipase and its experimentally induced inactivation reduces hepatosteatosis. Little is known on ANGPTL3 in human NAFLD and no data exist on its relationship with hepatic VDR/VD-related genes. The aim of this research was to investigate hepatic ANGPTLs and VDR/VD-related gene expression in human obesity in relation to NAFLD. METHODS We conducted a cross-sectional investigation on forty obese subjects with/without NAFLD. We evaluated hepatic ANGPTL3, ANGPTL4, ANGPTL8, LPL, VDR, CYP27A1 and CYP2R1 mRNA expression in liver biopsies by RT-PCR; VDR expression was further investigated by immunohistochemistry; circulating ANGPTL3 was measured by Milliplex assay. RESULTS Compared to non-NAFLD, NAFLD individuals had significantly higher hepatic VDR, ANGPTL3 and LPL expression. ANGPTL3 correlated with steatosis grade, LPL, VDR, CYP27A1 and CYP2R1 expression. Plasma ANGPTL3 concentrations were positively associated with clinical/histological markers of NAFLD/NASH and with hepatic ANGPTL3 expression. Greater hepatic VDR expression was the main determinant of hepatic ANGPTL3 after adjusting for multiple confounders. CONCLUSIONS Hepatic ANGPTL3 expression correlates with greater VDR expression, presence and severity of NAFLD and translates in increased circulating ANGPTL3, likely as a result of its modulation by up-regulated hepatic VDR in NAFLD. This study provides novel insights to potential mechanisms underlying ANGPTLs-mediated ectopic fat accumulation and NAFLD development in obesity.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Flavia A Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Danila Capoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Maria G Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Bozic M, Caus M, Rodrigues-Diez RR, Pedraza N, Ruiz-Ortega M, Garí E, Gallel P, Panadés MJ, Martinez A, Fernández E, Valdivielso JM. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun 2020; 11:1943. [PMID: 32327648 PMCID: PMC7181766 DOI: 10.1038/s41467-020-15732-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Kidney fibrosis is a highly deleterious process and a final manifestation of chronic kidney disease. Alpha-(α)-synuclein (SNCA) is an actin-binding neuronal protein with various functions within the brain; however, its role in other tissues is unknown. Here, we describe the expression of SNCA in renal epithelial cells and demonstrate its decrease in renal tubules of murine and human fibrotic kidneys, as well as its downregulation in renal proximal tubular epithelial cells (RPTECs) after TGF-β1 treatment. shRNA-mediated knockdown of SNCA in RPTECs results in de novo expression of vimentin and α-SMA, while SNCA overexpression represses TGF-β1-induced mesenchymal markers. Conditional gene silencing of SNCA in RPTECs leads to an exacerbated tubulointerstitial fibrosis (TIF) in two unrelated in vivo fibrotic models, which is associated with an increased activation of MAPK-p38 and PI3K-Akt pathways. Our study provides an evidence that disruption of SNCA signaling in RPTECs contributes to the pathogenesis of renal TIF by facilitating partial epithelial-to-mesenchymal transition and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Milica Bozic
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| | - Maite Caus
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Pilar Gallel
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Maria José Panadés
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Elvira Fernández
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| |
Collapse
|
46
|
Lei Z, Yang L, Yang Y, Yang J, Niu Z, Zhang X, Song Q, Lei Y, Wu H, Guo J. Activation of Wnt/β-catenin pathway causes insulin resistance and increases lipogenesis in HepG2 cells via regulation of endoplasmic reticulum stress. Biochem Biophys Res Commun 2020; 526:764-771. [PMID: 32265032 DOI: 10.1016/j.bbrc.2020.03.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Wnt/β-catenin signaling is involved in glucose and lipid metabolism, but the mechanism is not clear yet. AIM The objective is to study mechanisms of Wnt/β-catenin signaling on regulating hepatocytes metabolism. METHODS Real-time qPCR, Western blot, and Oil-red O staining methods were used. RESULTS The Wnt/β-catenin signaling was activated in hepatocytes by CP21R7, and the level of phosphorylated IRS-1 (Ser307) and TRB3 were significantly increased, while the levels of phosphorylated IRS-1 (Tyr612) and phosphorylated Akt were decreased. Moreover, the expression of FGF21, FAS, SCD1, PPARγ and ADRP was significantly increased. The expression of ATF4, ATF5, eIF2α, GRP78, CHOP and phosphorylated level of PERK were also increased. The expression of FGF21 and TRB3 was significantly down-regulated, and the lipid droplets were notably reduced after the ER stress was inhibited by TUDCA. The expression of FGF21 was significantly decreased when the IRE1 pathway of the UPR was inhibited by STF-083010. CONCLUSIONS Activation of Wnt/β-catenin signaling pathway could cause insulin resistance and lipogenesis in hepatocytes via regulation of the IRE1 pathway of the ER stress and UPR, providing new targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou, 510080, PR China
| | - Jing Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Zhenpeng Niu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qi Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
47
|
The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes. Biomolecules 2020; 10:biom10030493. [PMID: 32213983 PMCID: PMC7175212 DOI: 10.3390/biom10030493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). Most of these genes were also upregulated by VDR/VitD in mouse livers in vivo. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) metabolomics demonstrated intracellular accumulation of triglycerides, with concomitant decreases in diglycerides and phosphatidates, at 8 and 24 h upon VDR activation. Significant alterations in phosphatidylcholines, increases in lyso-phosphatidylcholines and decreases in phosphatidylethanolamines and phosphatidylethanolamine plasmalogens were also observed. In conclusion, active VitD/VDR signaling in hepatocytes triggers an unanticipated coordinated gene response leading to triglyceride synthesis and to important perturbations in glycerolipids and phospholipids.
Collapse
|
48
|
Vitamin D Deficiency Aggravates Hepatic Oxidative Stress and Inflammation during Chronic Alcohol-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5715893. [PMID: 32184917 PMCID: PMC7063183 DOI: 10.1155/2020/5715893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D deficiency has been reported in alcoholics. This study is aimed at evaluating the effects of vitamin D deficiency on chronic alcohol-induced liver injury in mice. Mice were fed with modified Lieber-DeCarli liquid diets for 6 weeks to establish an animal model of chronic alcohol-induced liver injury. In the VDD+EtOH group, mice were fed with modified diets, in which vitamin D was depleted. Vitamin D deficiency aggravated alcohol-induced liver injury. Furthermore, vitamin D deficiency aggravated hepatocyte apoptosis during alcohol-induced liver injury. Although it has a little effect on hepatic TG content, vitamin D deficiency promoted alcohol-induced hepatic GSH depletion and lipid peroxidation. Further analysis showed that vitamin D deficiency further increased alcohol-induced upregulation of hepatic inducible nitric oxide synthase (inos), two NADPH oxidase subunits p47phox and gp91phox, and heme oxygenase- (HO-) 1. By contrast, vitamin D deficiency attenuated alcohol-induced upregulation of hepatic antioxidant enzyme genes, such as superoxide dismutase (sod) 1 and gshpx. In addition, vitamin D deficiency significantly elevated alcohol-induced upregulation of hepatic proinflammatory cytokines and chemokines. Taken together, these results suggest that vitamin D deficiency aggravates hepatic oxidative stress and inflammation during chronic alcohol-induced liver injury.
Collapse
|
49
|
Zhang H, Shen Z, Lin Y, Zhang J, Zhang Y, Liu P, Zeng H, Yu M, Chen X, Ning L, Mao X, Cen L, Yu C, Xu C. Vitamin D receptor targets hepatocyte nuclear factor 4α and mediates protective effects of vitamin D in nonalcoholic fatty liver disease. J Biol Chem 2020; 295:3891-3905. [PMID: 32051143 DOI: 10.1074/jbc.ra119.011487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have suggested a link between vitamin D deficiency and increased risk for nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms have remained unclear. Here, using both clinical samples and experimental rodent models along with several biochemical approaches, we explored the specific effects and mechanisms of vitamin D deficiency in NAFLD pathology. Serum vitamin D levels were significantly lower in individuals with NAFLD and in high-fat diet (HFD)-fed mice than in healthy controls and chow-fed mice, respectively. Vitamin D supplementation ameliorated HFD-induced hepatic steatosis and insulin resistance in mice. Hepatic expression of vitamin D receptor (VDR) was up-regulated in three models of NAFLD, including HFD-fed mice, methionine/choline-deficient diet (MCD)-fed mice, and genetically obese (ob/ob) mice. Liver-specific VDR deletion significantly exacerbated HFD- or MCD-induced hepatic steatosis and insulin resistance and also diminished the protective effect of vitamin D supplementation on NAFLD. Mechanistic experiments revealed that VDR interacted with hepatocyte nuclear factor 4 α (HNF4α) and that overexpression of HNF4α improved HFD-induced NAFLD and metabolic abnormalities in liver-specific VDR-knockout mice. These results suggest that vitamin D ameliorates NAFLD and metabolic abnormalities by activating hepatic VDR, leading to its interaction with HNF4α. Our findings highlight a potential value of using vitamin D for preventing and managing NAFLD by targeting VDR.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiming Lin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longgui Ning
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinli Mao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Linhai 317000, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
50
|
Liu T, Xu L, Chen FH, Zhou YB. Association of serum vitamin D level and nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 2020; 32:140-147. [PMID: 31895886 DOI: 10.1097/meg.0000000000001486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We aimed to explore the potential link of serum vitamin D level with nonalcoholic fatty liver disease (NAFLD). PubMed, Embase and the Cochrane Library database were searched until the end of February 2018. Clinical studies with sufficient data investigating the relationship between serum vitamin D and NAFLD were included. The outcome data were processed to make an overall estimate of combined standardized mean differences (SMD) and pooled odds ratio (OR)/hazard ratios with 95% confidence intervals (CIs). Of the 309 initially retrieved studies, 15 studies of high quality involving a total of 20 096 participants (including 7803 NAFLD patients) were included in this meta-analysis. Meta-analysis of continuous data indicated that NAFLD patients had averagely 0.90 ng/ml lower levels of 25-hydroxyvitamin D compared with the non-NAFLD subjects (SMD -0.90; 95% CI: -1.29 to -0.52). Parallelly, pooled dichotomous data revealed that serum vitamin D level is negatively associated with NAFLD (OR = 0.64, 95% CI = 0.54-0.77), albeit with substantial heterogeneity. Next, subgroup analysis showed that Western NAFLD patients were more likely to be vitamin D deficient (OR = 0.60, 95% CI = 0.46-0.78). Finally, meta-regression showed that sample size, ethnic background, and diagnosis of NAFLD were possible sources of heterogeneity in the meta-analysis. Our results revealed that serum vitamin D level was inversely associated with an increased risk of NAFLD. Patients with hypovitaminosis D might benefit from extra supplement of vitamin D against the risk of NAFLD.
Collapse
Affiliation(s)
- Tian Liu
- Department of Ultrasonography, Jinhua Municipal Hospital, Jinhua, China
| | | | | | | |
Collapse
|