1
|
Chen H, Yang C, Yan S, Liu X, Zhou L, Yuan X. Sarcopenia in cirrhosis: From pathophysiology to interventional therapy. Exp Gerontol 2024; 196:112571. [PMID: 39236869 DOI: 10.1016/j.exger.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Sarcopenia, characterized by the loss of skeletal muscle mass and function, is a significant complication in patients with cirrhosis. This condition not only exacerbates the overall morbidity and mortality associated with liver disease but also complicates patient management, increasing the risk of hospitalization, infections, and hepatic encephalopathy. Despite its clinical significance, sarcopenia in cirrhotic patients remains underdiagnosed and undertreated. This review aims to summarize current knowledge on the pathophysiology of sarcopenia in cirrhosis, including mechanisms such as altered metabolism, hormonal imbalances, and inflammation. Additionally, we explore diagnostic challenges and discuss emerging therapeutic strategies, including nutritional support, exercise, and pharmacological interventions. By highlighting the gaps in existing research and proposing directions for future studies, this review seeks to improve the management and outcomes of cirrhotic patients affected by sarcopenia.
Collapse
Affiliation(s)
- Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Fudan University, Shanghai, China
| | - Chenyun Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shijie Yan
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Xintao Liu
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
2
|
Wu S, Li L, Xi H, Wu X, He Y, Sun X, Wu L. Bibliometrics and knowledge mapping of the pathogenesis of hepatic encephalopathy in patients with liver cirrhosis. Heliyon 2024; 10:e34330. [PMID: 39145014 PMCID: PMC11320160 DOI: 10.1016/j.heliyon.2024.e34330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Background Hepatic encephalopathy is a common and serious complication of decompensated cirrhosis. It can considerably contribute to economic burden and impaired quality of life. However, its pathogenesis remains unclear. Method In this study, we aimed to visually analyse the research status and development trends in hepatic encephalopathy pathogenesis using bibliometrics and knowledge mapping. Information regarding publications between 1978 and 2022 were obtained from the Web of Science Core Collection. CiteSpace was used to analyse and present data by year, author, institution, country, journal, reference, and keyword. Results A total of 1578 publications on hepatic encephalopathy pathogenesis in patients with cirrhosis were retrieved from Web of Science Core Collection. A gradual increasing trend in annual publications has occurred. The collaborative network analysis results suggest the United States of America, the University of London, and Bajaj, Jasmohan S as the most influential country, institution, and author, respectively, in this research field. Notably, China appeariiuis to be the most promising country. Research on 'hepatology' garners the most significant papers in the field. Combined with reference co-citation and keyword co-occurrence analyses, we found that ammonia metabolism, gut microbiota, sarcopenia, and trace elements will become future research frontiers that are likely to be explored for a considerable length of time. Conclusion Future research directions in HE pathogenesis may target modulating the ammonia metabolism, the gut microbiota, sarcopenia, and trace elements.
Collapse
Affiliation(s)
- Shiyan Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Lu Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Heng Xi
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Xiaoping Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Yumei He
- North Sichuan Medical College, Nanchong, 623300, Sichuan Province, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Liping Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| |
Collapse
|
3
|
Ballester MP, Durmazer EN, Qi T, Jalan R. The Value of Ammonia as a Biomarker in Patients with Cirrhosis. Semin Liver Dis 2024; 44:356-368. [PMID: 39095029 PMCID: PMC11449525 DOI: 10.1055/a-2378-8942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with cirrhosis and plays a pivotal role in the pathogenesis of hepatic encephalopathy (HE). Despite being one of the main drivers of brain dysfunction, for many years international societies stated that increased blood ammonia does not add any diagnostic, staging, or prognostic value for HE in patients with cirrhosis. Nonetheless, in the last decades, evidence is emerging that supports the utility of ammonia for risk stratification, but its role in guiding HE diagnosis, staging, and treatment is unclear and there is equipoise in its use in clinical practice. This review provides the latest evidence on the value of ammonia as a biomarker in patients with cirrhosis. Although correct measurement of ammonia requires disciplined sample collection, it provides extremely useful clinical guidance for the diagnosis of HE, offers prognostic information, and it defines a therapeutic target.
Collapse
Affiliation(s)
- Maria Pilar Ballester
- Hepatology Unit, Digestive Disease Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Gastroenterology and Hepatology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Esra Nur Durmazer
- Department of Internal Medicine, Ege University Faculty of Medicine, Izmir, Turkey
| | - Tingting Qi
- Hepatology Unit, Department of Infectious Disease, Southern Medical University, Nanfang Hospital, Guangzhou, China
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| |
Collapse
|
4
|
Reichelt S, Merle U, Klauss M, Kahlert C, Lurje G, Mehrabi A, Czigany Z. Shining a spotlight on sarcopenia and myosteatosis in liver disease and liver transplantation: Potentially modifiable risk factors with major clinical impact. Liver Int 2024; 44:1483-1512. [PMID: 38554051 DOI: 10.1111/liv.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Muscle-wasting and disease-related malnutrition are highly prevalent in patients with chronic liver diseases (CLD) as well as in liver transplant (LT) candidates. Alterations of body composition (BC) such as sarcopenia, myosteatosis and sarcopenic obesity and associated clinical frailty were tied to inferior clinical outcomes including hospital admissions, length of stay, complications, mortality and healthcare costs in various patient cohorts and clinical scenarios. In contrast to other inherent detrimental individual characteristics often observed in these complex patients, such as comorbidities or genetic risk, alterations of the skeletal muscle and malnutrition are considered as potentially modifiable risk factors with a major clinical impact. Even so, there is only limited high-level evidence to show how these pathologies should be addressed in the clinical setting. This review discusses the current state-of-the-art on the role of BC assessment in clinical outcomes in the setting of CLD and LT focusing mainly on sarcopenia and myosteatosis. We focus on the disease-related pathophysiology of BC alterations. Based on these, we address potential therapeutic interventions including nutritional regimens, physical activity, hormone and targeted therapies. In addition to summarizing existing knowledge, this review highlights novel trends, and future perspectives and identifies persisting challenges in addressing BC pathologies in a holistic way, aiming to improve outcomes and quality of life of patients with CLD awaiting or undergoing LT.
Collapse
Affiliation(s)
- Sophie Reichelt
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital of Bonn, Bonn, Germany
| | - Uta Merle
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Klauss
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoltan Czigany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Yang J, Jiang S, Fan Q, Wen D, Liu Y, Wang K, Yang H, Guo C, Zhou X, Guo G, Shang Y, Han Y. Prevalence and effect on prognosis of sarcopenia in patients with primary biliary cholangitis. Front Med (Lausanne) 2024; 11:1346165. [PMID: 38487027 PMCID: PMC10937409 DOI: 10.3389/fmed.2024.1346165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Background Sarcopenia adversely affects the treatment outcomes in Cirrhosis and NAFLD. However, such research is limited in primary biliary cholangitis (PBC) patients. This study was performed to examine the prevalence of sarcopenia and its impact on PBC patients' prognoses. Methods This study enrolled confirmed PBC patients who had an abdominal CT scan. Sarcopenia was determined by the L3-skeletal muscle index with a Chinese population-based cut-off value. Laboratory test values and liver stiffness measurements values were obtained from the electronic medical records. Results In total, 174 PBC patients with a median age of 54 (IQR, 48, 62) years old, were enrolled. 45 (25.9%) patients among them were diagnosed with sarcopenia. Univariate and multivariate logistic regression results illustrated that male gender (OR = 9.152, 95%CI = 3.131-26.751, p < 0.001) and LSM ≥ 12.8 kPa (OR = 4.539, 95%CI = 1.651, 12.478, p = 0.003) were the independent risk factors of sarcopenia in PBC patients. In the prognosis analysis, sarcopenia was determined as a risk factor for indicating adverse events in PBC patients (HR = 4.058, 95%CI = 1.955-8.424, p < 0.001) by Cox proportional hazards regression. Conclusion The current findings illustrate that comprehensive evaluation and management of sarcopenia may contribute to the improvement of treatment outcomes and life quality of PBC patients.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuangshuang Jiang
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingling Fan
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Kemei Wang
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hui Yang
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Changcun Guo
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinmin Zhou
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guanya Guo
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ying Han
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Yoshitomi K, Hayashi T, Oe S, Shibata M, Honma Y, Harada M, Kooka Y. Child-Pugh grade deterioration stratified by the etiology after transcatheter arterial chemoembolization as initial treatment for hepatocellular carcinoma. Sci Rep 2024; 14:3707. [PMID: 38355630 PMCID: PMC10867004 DOI: 10.1038/s41598-024-53709-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). However, TACE can cause deterioration of liver functions. We aimed to identify the factors that influence deterioration of liver function after TACE. We retrospectively analyzed 262 patients who underwent TACE as initial treatment for HCC with Child-Pugh grade A. We divided them into three groups stratified by the etiology of underlying liver disease. Patients were classified into hepatitis B virus (HBV) group, hepatitis C virus (HCV) group, and non-HBV / non-HCV (NBNC) group. Liver functions at one month after TACE and time to Child-Pugh grade B or C were compared between the three groups. The HBV, HCV and NBNC groups contained 23, 123 and 116 patients, respectively. The decline in albumin level after TACE was significantly higher in NBNC group than other groups (p = 0.02). NBNC group showed a shorter time to Child-Pugh grade deterioration compared with HBV group and HCV group (p < 0.001). Multivariate Cox regression analysis showed that NBNC group was a significant factor for Child-Pugh grade deterioration (Hazard ratio 3.74, 95% confidence interval 1.89-7.40, p < 0.001). These results revealed that liver functions worsened most remarkably in NBNC group after TACE.
Collapse
Affiliation(s)
- Kengo Yoshitomi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tsuguru Hayashi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirosemachi, Aoba-Ku, Sendai, 980-0873, Japan.
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Michihiko Shibata
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yohei Kooka
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirosemachi, Aoba-Ku, Sendai, 980-0873, Japan
| |
Collapse
|
8
|
Li Y, Guo Y, Wang X, Gao L. Association between sarcopenia and hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in patients with cirrhosis: a systematic review and meta-analysis. Abdom Radiol (NY) 2024; 49:575-585. [PMID: 37980601 DOI: 10.1007/s00261-023-04095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The association between the presence of sarcopenia in patients with cirrhosis and the onset of hepatic encephalopathy (HE) after transjugular intrahepatic portosystemic shunt (TIPS) is yet to be established. We conducted a systematic review and meta-analysis to provide a thorough summary of the available evidence on this association. METHODS A thorough search of the literature was performed in the PubMed, EMBASE, and Web of Science databases. The protocol was duly registered on PROSPERO (CRD42023398856). The hazard ratio (HR) and corresponding 95% confidence intervals (CIs) for the occurrence of HE after TIPS were extracted from studies comparing cirrhotic patients with and without sarcopenia. These data were then combined using a random-effect model. RESULTS A total of 1135 patients from seven cohort studies that met our eligibility criteria were included in the meta-analysis. Our findings indicate a significantly higher risk of post-TIPS HE among cirrhotic patients with sarcopenia compared to those without sarcopenia (HR, 2.35; 95% CIs 1.32-4.19; p = 0.004; I2 = 75%). The findings remained consistent across subgroups stratified by liver disease etiology, study location, and severity of hepatic dysfunction. CONCLUSION The study demonstrated that sarcopenia was strongly linked to an increased likelihood post-TIPS HE among cirrhotic patients.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Guo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Langli Gao
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Kumar A, Bellar A, Mishra S, Sekar J, Welch N, Dasarathy S. L-Isoleucine reverses hyperammonemia-induced myotube mitochondrial dysfunction and post-mitotic senescence. J Nutr Biochem 2024; 123:109498. [PMID: 37871767 PMCID: PMC10841977 DOI: 10.1016/j.jnutbio.2023.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Perturbations in the metabolism of ammonia, a cytotoxic endogenous metabolite, occur in a number of chronic diseases, with consequent hyperammonemia. Increased skeletal muscle ammonia uptake causes metabolic, molecular, and phenotype alterations including cataplerosis of (loss of tricarboxylic acid cycle (TCA) cycle intermediate) α-ketoglutarate (αKG), mitochondrial oxidative dysfunction, and senescence-associated molecular phenotype (SAMP). L-Isoleucine (Ile) is an essential, branched-chain amino acid (BCAA) that simultaneously provides acetyl-CoA as an oxidative substrate and succinyl-CoA for anaplerosis (providing TCA cycle intermediates). Our multiomics analyses in myotubes and skeletal muscle from hyperammonemic mice and human patients with cirrhosis showed perturbations in BCAA transporters and catabolism. We, therefore, determined if Ile reverses hyperammonemia-induced impaired mitochondrial oxidative function and SAMP. Studies were performed in differentiated murine C2C12 myotubes that were early passage, late passage (senescent), or those depleted of LAT1/SLC7A5 and human induced pluripotent stem cell-derived myotubes (hiPSCM). Ile reverses hyperammonemia-induced reduction in the maximum respiratory capacity, complex I, II, and III functions in early passage murine myotubes and hiPSCM. Consistently, low ATP content and impaired global protein synthesis (high energy requiring cellular process) during hyperammonemia are reversed by Ile in murine myotubes and hiPSCM. Lower abundance of critical regulators of protein synthesis in mTORC1 signaling, and increased phosphorylation of eukaryotic initiation factor 2α are also reversed by Ile. Genetic depletion studies showed that Ile responses are independent of the amino acid transporter LAT1/SLC7A5. Our studies show that Ile reverses the hyperammonemia-induced impaired mitochondrial oxidative function, cataplerosis, and SAMP in a LAT1/SLC7A5 transporter-independent manner.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Gastroenterology, Hepatology and Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
10
|
Terbah R, Testro A, Gow P, Majumdar A, Sinclair M. Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis-Pathogenesis, Implications and Therapeutic Opportunities. Nutrients 2023; 16:35. [PMID: 38201864 PMCID: PMC10780673 DOI: 10.3390/nu16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Malnutrition and sarcopenia are highly prevalent in patients with decompensated cirrhosis and are associated with poorer clinical outcomes. Their pathophysiology is complex and multifactorial, with protein-calorie malnutrition, systemic inflammation, reduced glycogen stores and hormonal imbalances all well reported. The direct contribution of portal hypertension to these driving factors is however not widely documented in the literature. This review details the specific mechanisms by which portal hypertension directly contributes to the development of malnutrition and sarcopenia in cirrhosis. We summarise the existing literature describing treatment strategies that specifically aim to reduce portal pressures and their impact on nutritional and muscle outcomes, which is particularly relevant to those with end-stage disease awaiting liver transplantation.
Collapse
Affiliation(s)
- Ryma Terbah
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Avik Majumdar
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
11
|
Maslennikov R, Alieva A, Poluektova E, Zharikov Y, Suslov A, Letyagina Y, Vasileva E, Levshina A, Kozlov E, Ivashkin V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J Gastroenterol 2023; 29:4236-4251. [PMID: 37545638 PMCID: PMC10401661 DOI: 10.3748/wjg.v29.i27.4236] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Decreased muscle mass and function, also known as sarcopenia, is common in patients with cirrhosis and is associated with a poor prognosis. Although the pathogenesis of this disorder has not been fully elucidated, a disordered gut-muscle axis probably plays an important role. Decreased barrier function of the gut and liver, gut dysbiosis, and small intestinal bacterial overgrowth (SIBO) can lead to increased blood levels of ammonia, lipopolysaccharides, pro-inflammatory mediators, and myostatin. These factors have complex negative effects on muscle mass and function. Drug interventions that target the gut microbiota (long-term use of rifaximin, lactulose, lactitol, or probiotics) positively affect most links of the compromised gut-muscle axis in patients with cirrhosis by decreasing the levels of hyperammonemia, bacterial translocation, and systemic inflammation and correcting gut dysbiosis and SIBO. However, although these drugs are promising, they have not yet been investigated in randomized controlled trials specifically for the treatment and prevention of sarcopenia in patients with cirrhosis. No data exist on the effects of fecal transplantation on most links of gut-muscle axis in cirrhosis; however, the results of animal experimental studies are promising.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Yana Letyagina
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Vasileva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
12
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
13
|
Tandon P, Zanetto A, Piano S, Heimbach JK, Dasarathy S. Liver transplantation in the patient with physical frailty. J Hepatol 2023; 78:1105-1117. [PMID: 37208097 PMCID: PMC10825673 DOI: 10.1016/j.jhep.2023.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/21/2023]
Abstract
Frailty is a decline in functional reserve across multiple physiological systems. A key component of frailty is sarcopenia, which denotes a loss of skeletal muscle mass and impaired contractile function that ultimately result in physical frailty. Physical frailty/sarcopenia are frequent and contribute to adverse clinical outcomes before and after liver transplantation. Frailty indices, including the liver frailty index, focus on contractile dysfunction (physical frailty), while cross-sectional image analysis of muscle area is the most accepted and reproducible measure to define sarcopenia. Thus, physical frailty and sarcopenia are interrelated. The prevalence of physical frailty/sarcopenia is high in liver transplant candidates and these conditions have been shown to adversely impact clinical outcomes including mortality, hospitalisations, infections, and cost of care both before and after transplantation. Data on the prevalence of frailty/sarcopenia and their sex- and age-dependent impact on outcomes are not consistent in patients on the liver transplant waitlist. Physical frailty and sarcopenic obesity are frequent in the obese patient with cirrhosis, and adversely affect outcomes after liver transplantation. Nutritional interventions and physical activity remain the mainstay of management before and after transplantation, despite limited data from large scale trials. In addition to physical frailty, there is recognition that a global evaluation including a multidisciplinary approach to other components of frailty (e.g., cognition, emotional, psychosocial) also need to be addressed in patients on the transplant waitlist. Recent advances in our understanding of the underlying mechanisms of sarcopenia and contractile dysfunction have helped identify novel therapeutic targets.
Collapse
Affiliation(s)
- Puneeta Tandon
- Division of Gastroenterology (Liver Unit), Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Italy
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine - DIMED, University and Hospital of Padova, Padova, Italy
| | - Julie K Heimbach
- William J von Liebig Transplant Center Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Liu Y, Ji F, Nguyen MH. Sarcopenia in cirrhosis: epidemiology, diagnosis, management and prognosis. Curr Opin Gastroenterol 2023; 39:131-139. [PMID: 37144530 DOI: 10.1097/mog.0000000000000922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW With the development of many international guidelines, research on sarcopenia has increased rapidly, showing that sarcopenia is predictive of adverse outcomes, including increased mortality and impaired mobility, in patients with cirrhosis. The purpose of this article is to review the current evidence concerning the epidemiology, diagnosis, management and predictive value of sarcopenia on the prognosis of patients with cirrhosis. RECENT FINDINGS Sarcopenia is a frequent and lethal complication of cirrhosis. Currently, abdominal computed tomography imaging is the most commonly used method to diagnose sarcopenia. In clinical practice, assessing muscle strength and physical performance, such as by measuring handgrip strength and gait speed, is of increasing interest. In addition to the necessary pharmacological therapy, adequate intake of protein, energy and micronutrients, as well as regular moderate-intensity exercise, can help to minimize sarcopenia. Sarcopenia has been shown to be a strong predictor of prognosis in patients with severe liver disease. SUMMARY A global consensus is needed on the definition and operational parameters for the diagnosis of sarcopenia. Further research should focus on developing standardized screening, management and treatment protocols for sarcopenia. Adding sarcopenia to existing models may better exploit the effect of sarcopenia on prognosis in patients with cirrhosis, which should be investigated further.
Collapse
Affiliation(s)
- Yi Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Fanpu Ji
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University
- Shaanxi Clinical Research Center of Infectious Diseases
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, PRC
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| |
Collapse
|
15
|
Attaway AH, Bellar A, Mishra S, Karthikeyan M, Sekar J, Welch N, Musich R, Singh SS, Kumar A, Menon A, King J, Langen R, Webster J, Scheraga R, Rochon K, Mears J, Naga Prasad SV, Hatzoglou M, Chakraborty AA, Dasarathy S. Adaptive exhaustion during prolonged intermittent hypoxia causes dysregulated skeletal muscle protein homeostasis. J Physiol 2023; 601:567-606. [PMID: 36533558 PMCID: PMC10286804 DOI: 10.1113/jp283700] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.
Collapse
Affiliation(s)
- Amy H. Attaway
- Department of Pulmonary Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Manikandan Karthikeyan
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Ryan Musich
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Avinash Kumar
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Aishwarya Menon
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Jasmine King
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Ramon Langen
- Department of Respiratory Medicine, Maastricht University Medical Center, Netherlands
| | - Justine Webster
- Department of Respiratory Medicine, Maastricht University Medical Center, Netherlands
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Jason Mears
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Diseases, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Maria Hatzoglou
- Department of Genomic Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Srinivasan Dasarathy
- Department of Pulmonary Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
16
|
Kumar R, Prakash SS, Priyadarshi RN, Anand U. Sarcopenia in Chronic Liver Disease: A Metabolic Perspective. J Clin Transl Hepatol 2022; 10:1213-1222. [PMID: 36381104 PMCID: PMC9634780 DOI: 10.14218/jcth.2022.00239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcopenia, a condition of low muscle mass, quality, and strength, is commonly found in patients with chronic liver disease (CLD) and is associated with adverse clinical outcomes including reduction in quality of life, increased mortality, and complications. A major contributor to sarcopenia in CLD is the imbalance in muscle protein turnover wherein changes in various metabolic factors such as hyperammonemia, amino acid deprivation, hormonal imbalance, gut dysbiosis, insulin resistance, chronic inflammation, etc. have important roles. In particular, hyperammonemia is a key mediator of the liver-gut axis and is known to contribute to sarcopenia by various mechanisms including increased expression of myostatin, increased phosphorylation of eukaryotic initiation factor 2a, cataplerosis of α-ketoglutarate, mitochondrial dysfunction, increased reactive oxygen species that decrease protein synthesis and increased autophagy-mediated proteolysis. Skeletal muscle is a major organ of insulin-induced glucose metabolism, and sarcopenia is closely linked to insulin resistance and metabolic syndrome. Patients with liver cirrhosis are in a hypermetabolic state that is associated with catabolism and depletion of amino acids, particularly branched-chain amino acids. Sarcopenia can have significant implications for nonalcoholic fatty liver disease, the most common form of CLD worldwide, because of the close link between metabolic syndrome and sarcopenia. This review discusses the potential metabolic derangement as a cause or effect of sarcopenia in CLD, as well as interorgan crosstalk, which that might help identifying a novel therapeutic strategies.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, India
- Correspondence to: Ramesh Kumar, Department of Gastroenterology, fourth floor, OPD Block, All India Institute of Medical Sciences, Patna 801507, India. ORCID: https://orcid.org/0000-0001-5136-4865. Tel: +91-7765803112, Fax: +91-11-26588663, E-mail:
| | - Sabbu Surya Prakash
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, India
| | | | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
17
|
Welch N, Singh SS, Musich R, Mansuri MS, Bellar A, Mishra S, Chelluboyina AK, Sekar J, Attaway AH, Li L, Willard B, Hornberger TA, Dasarathy S. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes. iScience 2022; 25:105325. [PMID: 36345342 PMCID: PMC9636548 DOI: 10.1016/j.isci.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan Musich
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - M. Shahid Mansuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Pichon C, Nachit M, Gillard J, Vande Velde G, Lanthier N, Leclercq IA. Impact of L-ornithine L-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations. Front Nutr 2022; 9:1051157. [PMID: 36466421 PMCID: PMC9709200 DOI: 10.3389/fnut.2022.1051157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in the world. Progression toward non-alcoholic steatohepatitis (NASH) is associated with alterations of skeletal muscle. One plausible mechanism for altered muscle compartment in liver disease is changes in ammonia metabolism. In the present study, we explored the hypothesis that NASH-associated hyperammonemia drives muscle changes as well as liver disease progression. MATERIALS AND METHODS In Alms1-mutant mice (foz/foz) fed a 60% fat diet (HFD) for 12 weeks; we investigated hepatic and muscular ammonia detoxification efficiency. We then tested the effect of an 8 week-long supplementation with L-ornithine L-aspartate (LOLA), a known ammonia-lowering treatment, given after either 4 or 12 weeks of HFD for a preventive or a curative intervention, respectively. We monitored body composition, liver and muscle state by micro computed tomography (micro-CT) as well as muscle strength by four-limb grip test. RESULTS According to previous studies, 12 weeks of HFD induced NASH in all foz/foz mice. Increase of hepatic ammonia production and alterations of urea cycle efficiency were observed, leading to hyperammonemia. Concomitantly mice developed marked myosteatosis. First signs of myopenia occurred after 20 weeks of diet. Early LOLA treatment given during NASH development, but not its administration in a curative regimen, efficiently prevented myosteatosis and muscle quality, but barely impacted liver disease or, surprisingly, ammonia detoxification. CONCLUSION Our study confirms the perturbation of hepatic ammonia detoxification pathways in NASH. Results from the interventional experiments suggest a direct beneficial impact of LOLA on skeletal muscle during NASH development, though it does not improve ammonia metabolism or liver disease.
Collapse
Affiliation(s)
- Camille Pichon
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Mohta S, Anand A, Sharma S, Qamar S, Agarwal S, Gunjan D, Singh N, Madhusudhan KS, Pandey RM, Saraya A. Randomised clinical trial: effect of adding branched chain amino acids to exercise and standard-of-care on muscle mass in cirrhotic patients with sarcopenia. Hepatol Int 2022; 16:680-690. [PMID: 35469091 PMCID: PMC9037580 DOI: 10.1007/s12072-022-10334-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The role of branched-chain amino acids (BCAA) in improving muscle mass in cirrhosis is presently debatable. AIMS To evaluate the role of BCAA in improving muscle mass in a double-blind randomized placebo-controlled trial in patients with cirrhosis having sarcopenia. METHODS Consecutive patients with cirrhosis with Child-Pugh score < 10 and sarcopenia were randomized to receive either 12 g/day of BCAA orally or a placebo (1:1) for 6 months in addition to a home-based exercise program (30 min/day), dietary counselling and standard medical therapy. Sarcopenia was defined according to gender-specific axial skeletal muscle index (SMI) cut-offs. The primary endpoint was a change in muscle mass based on CT scan (SMI) after 6 months of supplementation. RESULTS Sixty patients [mean age 41.6 ± 9.9 years; males (66.6%) of predominantly viral (40%) and alcohol-related (31.7%) cirrhosis] were randomized. Baseline clinical and demographic characters were similar except MELD score (10.2 ± 2.8 vs. 12.2 ± 3.5, p = 0.02) and calorie intake (1838.1 kcal ± 631.5 vs. 2217.5 kcal ± 707.3, p = 0.03), both being higher in the placebo arm. After adjusting for both baseline confounders, baseline SMI and protein intake, the change in SMI at 6 months was similar in both groups [mean adjusted difference (MAD) + 0.84, CI - 2.9; + 1.2, p = 0.42] by intention-to-treat analysis. The secondary outcomes including change in handgrip strength (p = 0.65), 6-m gait speed (p = 0.20), 6-min walk distance (p = 0.39) were similar in both arms. Four patients had minor adverse events in each arm. CONCLUSION Addition of BCAA to exercise, dietary counselling and standard medical therapy did not improve muscle mass in patients with cirrhosis having sarcopenia. (CTRI/2019/05/019269). TRIAL REGISTRATION NUMBER CTRI/2019/05/019269 (Clinical Trials Registry of India).
Collapse
Affiliation(s)
- Srikant Mohta
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Abhinav Anand
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sanchit Sharma
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sumaira Qamar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Samagra Agarwal
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| | | | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
20
|
Ebadi M, Tsien C, Bhanji RA, Dunichand-Hoedl AR, Rider E, Motamedrad M, Mazurak VC, Baracos V, Montano-Loza AJ. Myosteatosis in Cirrhosis: A Review of Diagnosis, Pathophysiological Mechanisms and Potential Interventions. Cells 2022; 11:cells11071216. [PMID: 35406780 PMCID: PMC8997850 DOI: 10.3390/cells11071216] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Myosteatosis, or pathological excess fat accumulation in muscle, has been widely defined as a lower mean skeletal muscle radiodensity on computed tomography (CT). It is reported in more than half of patients with cirrhosis, and preliminary studies have shown a possible association with reduced survival and increased risk of portal hypertension complications. Despite the clinical implications in cirrhosis, a standardized definition for myosteatosis has not yet been established. Currently, little data exist on the mechanisms by which excess lipid accumulates within the muscle in individuals with cirrhosis. Hyperammonemia may play an important role in the pathophysiology of myosteatosis in this setting. Insulin resistance, impaired mitochondrial oxidative phosphorylation, diminished lipid oxidation in muscle and age-related differentiation of muscle stem cells into adipocytes have been also been suggested as potential mechanisms contributing to myosteatosis. The metabolic consequence of ammonia-lowering treatments and omega-3 polyunsaturated fatty acids in reversing myosteatosis in cirrhosis remains uncertain. Factors including the population of interest, design and sample size, single/combined treatment, dosing and duration of treatment are important considerations for future trials aiming to prevent or treat myosteatosis in individuals with cirrhosis.
Collapse
Affiliation(s)
- Maryam Ebadi
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Cynthia Tsien
- Ajmera Transplant Program, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Rahima A. Bhanji
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Abha R. Dunichand-Hoedl
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Elora Rider
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Maryam Motamedrad
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Vera C. Mazurak
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Vickie Baracos
- Department of Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada;
| | - Aldo J. Montano-Loza
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
- Correspondence: ; Tel.: +1-780-248-1892
| |
Collapse
|
21
|
Nahata M, Fujitsuka N, Sekine H, Shimobori C, Ohbuchi K, Iizuka S, Mogami S, Ohnishi S, Takeda H. Decline in Liver Mitochondria Metabolic Function Is Restored by Hochuekkito Through Sirtuin 1 in Aged Mice With Malnutrition. Front Physiol 2022; 13:848960. [PMID: 35299665 PMCID: PMC8921682 DOI: 10.3389/fphys.2022.848960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Malnutrition impairs basic daily activities and leads to physical frailty, which is aggravated in the elderly compared with young adults. It is also well-known that the elderly are more vulnerable to metabolic stress. Therefore, in this study, using a food restricted (FR) mouse, we aimed to evaluate the effect of aging on locomotor activity and liver metabolic function. Further, we also investigated the involvement of hepatic mitochondria in liver metabolic function during aging, as well as the therapeutic benefit of the traditional Japanese medicine, hochuekkito (HET). Our findings indicated that following food restriction provided as 30% of ad libitum intake for 5 days, the locomotor activity was lower in 23–26-month-old (aged) mice than in 9-week-old (young) mice. Further, compared with young mice, aged mice exhibited significant decreases in the levels of metabolites related to the urea cycle, mitochondrial function, and anti-oxidative stress. The livers of the aged mice also showed a greater decrease in mitochondrial DNA copy number than young mice. Furthermore, the gene expression levels of sirtuin 1 (SIRT1) and mitochondrial biogenesis-related regulators were attenuated in aged mice. However, these changes were partially restored by HET treatment, which also improved locomotor activity, and combined treatment with alanine resulted in more significant effects in this regard. Therefore, our findings suggested that the decrease in locomotor activity in aged FR mice was associated with a decline in the metabolic function of hepatic mitochondria via decreased SIRT1 expression, which was restored by HET treatment. This implies that enhancing the metabolic function of liver mitochondria can contribute to alleviating energy deficiency in the elderly.
Collapse
Affiliation(s)
- Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
- *Correspondence: Naoki Fujitsuka,
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Chika Shimobori
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shunsuke Ohnishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Gastroenterology, Tokeidai Memorial Hospital, Sapporo, Japan
| |
Collapse
|
22
|
Pivtorak K, Fedzhaga I, Pivtorak N, Vozniuk L, Klekot O. FAT AND MUSCLE COMPONENTS OF BODY WEIGHT AND THEIR RELATIONSHIP WITH THE CONCENTRATION OF SERUM ADIPOKINES IN PATIENTS WITH NONALCOHOLIC FATTY LIVER DISEASE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1289-1294. [PMID: 35758445 DOI: 10.36740/wlek202205210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: Identify differences in indexes of body fat and muscle masses, as well as blood adipokines in patients with nonalcoholic fatty liver disease, from gender-appropriate healthy men and women. PATIENTS AND METHODS Materials and methods: 135 patients with non-alcoholic fatty liver disease with normal, overweight and obesity and 20 almost healthy individuals for the control group were examined. Verification of the diagnosis was performed in accordance with the recommendations of the unified clinical protocol. An anthropometric examination of patients was performed according to the method, which included the determination of 48 anthropometric parameters. The formulas determined the absolute amount of adipose and muscle tissue. Levels of adipokines (leptin and adiponectin) were determined by enzyme-linked immunosorbent assay. RESULTS Results: According to Matiegka, body fat was 30.2-35.2% higher, and muscle body weight was 17.4-29.1% lower in patients with non-alcoholic fatty liver disease compared to healthy people. The concentration of leptin in the serum of patients with nonalcoholic fatty liver disease was statistically significantly higher (2.05-3.78 times) compared with almost healthy individuals. At the same time, the indicators of adiponectin concentration (1.54-1.92 times) and log A / L index (1.16-1.32 times) were lower. Correlations between changes in muscle mass and adipokines concentration have been established. CONCLUSION Conclusions: In addition to the known increase in body fat in non-alcoholic fatty liver disease, there has been established a significant decrease in muscle mass. A direct correlation between adiponectin concentration and an inverse correlation between leptin levels and muscle mass in patients with nonalcoholic fatty liver disease was found.
Collapse
Affiliation(s)
| | - Iryna Fedzhaga
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Natalya Pivtorak
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Larysa Vozniuk
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Olexandra Klekot
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| |
Collapse
|
23
|
Kumar A, Welch N, Mishra S, Bellar A, Silva RN, Li L, Singh SS, Sharkoff M, Kerr A, Chelluboyina AK, Sekar J, Attaway AH, Hoppel C, Willard B, Davuluri G, Dasarathy S. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence. JCI Insight 2021; 6:154089. [PMID: 34935641 PMCID: PMC8783680 DOI: 10.1172/jci.insight.154089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gangarao Davuluri
- Department of Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity and.,Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Wang Q, Guan K, Lv Y, Zhang Y, Yu Z, Kan Q. Disturbance of hepatocyte growth and metabolism in a hyperammonemia microenvironment. Arch Biochem Biophys 2021; 716:109109. [PMID: 34932992 DOI: 10.1016/j.abb.2021.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND We found through previous research that hyperammonemia can cause secondary liver damage. However, whether hepatocytes are target cells of ammonia toxicity and whether hyperammonemia affects hepatocyte metabolism remain unknown. AIMS The purpose of the current study is to examine whether the hepatocyte is a specific target cell of ammonia toxicity and whether hyperammonemia can interfere with hepatocyte metabolism. METHODS Cell viability and apoptosis were analyzed in primary hepatocytes and other cells that had been exposed to ammonium chloride. Western blotting was adopted to examine the expression of proteins related to ammonia transport. We also established a metabolomics method based on gas chromatography-mass spectrometry to understand the characteristics of the hepatocyte metabolic spectrum in a hyperammonemia microenvironment, to screen and identify differential metabolites, and to determine the differential metabolic pathway. Different technologies were used to verify the differential metabolic pathways. RESULTS Hepatocytes are target cells of ammonia toxicity. The mechanism is related to the ammonia transporter. Hyperammonemia interferes with hepatocyte metabolism, which leads to TCA cycle, urea cycle, and RNA synthesis disorder. CONCLUSIONS This study demonstrates that hepatocyte growth and metabolism are disturbed in a hyperammonemia microenvironment, which further deteriorates hepatocyte function.
Collapse
Affiliation(s)
- Qiongye Wang
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lv
- Department of Respiratory. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingxuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
25
|
Mey JT, Godin JP, Scelsi AR, Kullman EL, Malin SK, Yang S, Floyd ZE, Poulev A, Fielding RA, Ross AB, Kirwan JP. A Whole-Grain Diet Increases Whole-Body Protein Balance Compared with a Macronutrient-Matched Refined-Grain Diet. Curr Dev Nutr 2021; 5:nzab121. [PMID: 34805723 PMCID: PMC8598768 DOI: 10.1093/cdn/nzab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There are limited data from randomized control trials to support or refute the contention that whole-grains can enhance protein metabolism in humans. OBJECTIVES To examine: 1) the clinical effects of a whole-grain diet on whole-body protein turnover; 2) the cellular effects of whole-grains on protein synthesis in skeletal muscle cells; and 3) the population effects of whole-grain intake on age-related muscle loss. METHODS Adults with overweight/obesity (n = 14; age = 40 ± 7 y; BMI = 33 ± 5 kg/m2) were recruited into a crossover, randomized controlled trial (NCT01411540) in which isocaloric, macronutrient-matched whole-grain and refined-grain diets were fully provisioned for two 8-wk periods. Diets differed only in the presence of whole-grains (50 g/1000 kcal). Whole-body protein kinetics were assessed at baseline and after each diet in the fasted-state (13C-leucine) and integrated over 24 h (15N-glycine). In vitro studies using C2C12 cells assessed global protein synthesis by surface sensing of translation and anabolic signaling by Western blot. Complementary epidemiological assessments using the NHANES database assessed the effect of whole-grain intake on muscle function assessed by gait speed in older adults (n = 2783). RESULTS Integrated 24-h net protein balance was 3-fold higher on a whole-grain diet compared with a refined-grain diet (P = 0.04). A whole-grain wheat extract increased submaximal rates of global protein synthesis (27%, P < 0.05) in vitro. In a large sample of older adults, whole-grain intake was associated with greater muscle function (OR = 0.92; 95% CI: 0.86, 0.98). CONCLUSIONS Consuming 50 g/1000 kcal whole-grains per day promotes greater protein turnover and enhances net protein balance in adults. Whole-grains impact skeletal muscle at the cellular level, and are associated with greater muscle function in older adults. Collectively, these data point to a new mechanism whereby whole-grain consumption favorably enhances protein turnover and improves health outcomes.This clinical trial is registered on clinicaltrials.gov (identifier: NCT01411540).
Collapse
Affiliation(s)
- Jacob T Mey
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - Amanda R Scelsi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emily L Kullman
- Health and Human Performance, Cleveland State University,
Cleveland, OH, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Alexander Poulev
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| | - Roger A Fielding
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | | | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
26
|
Guirguis RN, Nashaat EH, Yassin AE, Ibrahim WA, Saleh SA, Bahaa M, El-Meteini M, Fathy M, Dabbous HM, Montasser IF, Salah M, Mohamed GA. Impact of biliary complications on quality of life in live-donor liver transplant recipients. World J Hepatol 2021; 13:1405-1416. [PMID: 34786175 PMCID: PMC8568573 DOI: 10.4254/wjh.v13.i10.1405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite significant advancements in liver transplantation (LT) surgical procedures and perioperative care, post-LT biliary complications (BCs) remain a significant source of morbidity, mortality, and graft failure. In addition, data are conflicting regarding the health-related quality of life (HRQoL) of LT recipients. Thus, the success of LT should be considered in terms of both the survival and recovery of HRQoL.
AIM To assess the impact of BCs on the HRQoL of live-donor LT recipients (LDLT-Rs).
METHODS We retrospectively analysed data for 25 LDLT-Rs who developed BCs post-LT between January 2011 and December 2016 at our institution. The Short Form 12 version 2 (SF 12v2) health survey was used to assess their HRQoL. We also included 25 LDLT-Rs without any post-LT complications as a control group.
RESULTS The scores for HRQoL of LDLT-Rs who developed BCs were significantly higher than the norm-based scores in the domains of physical functioning (P = 0.003), role-physical (P < 0.001), bodily pain (P = 0.003), general health (P = 0.004), social functioning (P = 0.005), role-emotional (P < 0.001), and mental health (P < 0.001). No significant difference between the two groups regarding vitality was detected (P = 1.000). The LDLT-Rs with BCs had significantly lower scores than LDLT-Rs without BCs in all HRQoL domains (P < 0.001) and the mental (P < 0.001) and physical (P = 0.0002) component summary scores.
CONCLUSION The development of BCs in LDLT-Rs causes a lower range of improvement in HRQoL.
Collapse
Affiliation(s)
- Reginia Nabil Guirguis
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Ehab Hasan Nashaat
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Azza Emam Yassin
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Wesam Ahmed Ibrahim
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Shereen A Saleh
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Mohamed Bahaa
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Mahmoud El-Meteini
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Mohamed Fathy
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Hany Mansour Dabbous
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Iman Fawzy Montasser
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Manar Salah
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Ghada Abdelrahman Mohamed
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| |
Collapse
|
27
|
Welch N, Singh SS, Kumar A, Dhruba SR, Mishra S, Sekar J, Bellar A, Attaway AH, Chelluboyina A, Willard BB, Li L, Huo Z, Karnik SS, Esser K, Longworth MS, Shah YM, Davuluri G, Pal R, Dasarathy S. Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes. J Biol Chem 2021; 297:101023. [PMID: 34343564 PMCID: PMC8424232 DOI: 10.1016/j.jbc.2021.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shashi Shekhar Singh
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saugato Rahman Dhruba
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Saurabh Mishra
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinendiran Sekar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Annette Bellar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amy H Attaway
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aruna Chelluboyina
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda B Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ling Li
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn Esser
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle S Longworth
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and Department of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA.
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
28
|
Han JW, Kim DI, Nam HC, Chang UI, Yang JM, Song DS. Association between serum TNF-α and sarcopenia in liver cirrhosis. Clin Mol Hepatol 2021; 28:219-231. [PMID: 34281295 PMCID: PMC9013623 DOI: 10.3350/cmh.2021.0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background/Aims Sarcopenia is an independent prognostic factor of liver cirrhosis (LC). However, the association between LC-related systemic inflammation and sarcopenia is unclear. Methods Sprague-Dawley rats were treated with thioacetamide (TAA) or saline as a control. Rifaximin was administered to TAA-induced LC rats. Enzyme-linked immunosorbent assay was performed to measure inflammatory mediators in rat serum. RT-PCR was performed to measure the molecular expression in tissues. Hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to investigate tissue pathology. Serum tumor necrosis factor-α levels, liver stiffness (LS), and the L3 skeletal muscle index (L3SMI) were measured in 60 patients with chronic liver disease. Results LC and sarcopenia were successfully induced by TAA. Serum TNF-α levels were increased in LC rats and correlated with myostatin expression, muscle weight, and myofiber diameter. The expression of intestinal occludin and zona occludens-1 was reduced in LC rats and associated with serum TNF-α levels and sarcopenia. In patients with LS ≥7 kPa or sarcopenia, serum TNF-α levels were significantly increased, which was also confirmed when we raised the LS cutoff to 10 kPa. The L3SMI was inversely correlated with serum TNF-α levels in patients with LS ≥7 kPa. TNF-α was reduced by rifaximin, which might have resulted in reduced expression of muscular MuRF1 and myostatin and improvements in myofiber diameters within muscle tissues. Conclusions These results suggest that serum TNF-α is associated with LC-related sarcopenia. Rifaximin might be effective in reducing serum TNF-α levels and improving sarcopenia in LC, but these results need to be validated in future studies.
Collapse
Affiliation(s)
- Ji Won Han
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Da In Kim
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Chul Nam
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - U Im Chang
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Mo Yang
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, Gangadhariah M, Attaway A, Al Khafaji H, Wu X, Pathak V, Agrawal V, McMullen MR, Hornberger TA, Nagy LE, Davuluri G, Dasarathy S. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cell Physiol Biochem 2021; 55:91-116. [PMID: 33543862 DOI: 10.33594/000000327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are β-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by β-hydroxymethyl-butyrate treatment. CONCLUSION An innovative multiomics approach followed by experimental validation showed that β-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Pulmonology, Cleveland Clinic, Cleveland, OH, USA
| | - Hayder Al Khafaji
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vai Pathak
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA, .,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
30
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
31
|
Tandon P, Montano-Loza AJ, Lai JC, Dasarathy S, Merli M. Sarcopenia and frailty in decompensated cirrhosis. J Hepatol 2021; 75 Suppl 1:S147-S162. [PMID: 34039486 PMCID: PMC9125684 DOI: 10.1016/j.jhep.2021.01.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
In patients with decompensated cirrhosis, sarcopenia and frailty are prevalent. Although several definitions exist for these terms, in the field of hepatology, sarcopenia has commonly been defined as loss of muscle mass, and frailty has been broadly defined as the phenotypic manifestation of the loss of muscle function. Prompt recognition and accurate assessment of these conditions are critical as they are both strongly associated with morbidity, mortality, poor quality of life and worse post-liver transplant outcomes in patients with cirrhosis. In this review, we describe the complex pathophysiology that underlies the clinical phenotypes of sarcopenia and frailty, their association with decompensation, and provide an overview of tools to assess these conditions in patients with cirrhosis. When available, we highlight data focusing on patients with acutely decompensated cirrhosis, such as inpatients, as this is an area of unmet clinical need. Finally, we discuss management strategies to reverse and/or prevent the development of sarcopenia and frailty, which include adequate nutritional intake of calories and protein, as well as regular exercise of at least moderate intensity, with a mix of aerobic and resistance training. Key knowledge gaps in our understanding of sarcopenia and frailty in decompensated cirrhosis remain, including best methods to measure muscle mass and function in the inpatient setting, racial/ethnic variation in the development and presentation of sarcopenia and frailty, and optimal clinical metrics to assess response to therapeutic interventions that translate into a reduction in adverse outcomes associated with these conditions.
Collapse
Affiliation(s)
- Puneeta Tandon
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Canada.
| | - Aldo J Montano-Loza
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Canada
| | - Jennifer C Lai
- Divisions of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco, CA, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Manuela Merli
- Department of Clinical Medicine, Gastroenterology, Sapienza University of Rome, Italy.
| |
Collapse
|
32
|
Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol Res 2021; 70:293-305. [PMID: 33982576 DOI: 10.33549/physiolres.934648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to alpha-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (alpha-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.
Collapse
Affiliation(s)
- M Holeček
- Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
33
|
Davuluri G, Welch N, Sekar J, Gangadhariah M, Alchirazi KA, Mohan ML, Kumar A, Kant S, Thapaliya S, Stine M, McMullen MR, McCullough RL, Stark GR, Nagy LE, Prasad SVN, Dasarathy S. Activated Protein Phosphatase 2A Disrupts Nutrient Sensing Balance Between Mechanistic Target of Rapamycin Complex 1 and Adenosine Monophosphate-Activated Protein Kinase, Causing Sarcopenia in Alcohol-Associated Liver Disease. Hepatology 2021; 73:1892-1908. [PMID: 32799332 PMCID: PMC8847884 DOI: 10.1002/hep.31524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | | | | | - Maradumane L Mohan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Samjhana Thapaliya
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - McKenzie Stine
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | | | - George R. Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH,Address correspondence to: Srinivasan Dasarathy MD, Gastroenterology and Hepatology, NE4 208 Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164442980, Fax 2164453889; Sathyamangla V Naga Prasad PhD, Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164443734, Fax: 2164458204
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH,Address correspondence to: Srinivasan Dasarathy MD, Gastroenterology and Hepatology, NE4 208 Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164442980, Fax 2164453889; Sathyamangla V Naga Prasad PhD, Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, , Tel: 2164443734, Fax: 2164458204
| |
Collapse
|
34
|
Amino acids in acute-on-chronic liver failure: Another piece of the puzzle? J Hepatol 2021; 74:1015-1017. [PMID: 33622546 DOI: 10.1016/j.jhep.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/04/2022]
|
35
|
Marasco G, Dajti E, Ravaioli F, Brocchi S, Rossini B, Alemanni LV, Peta G, Bartalena L, Golfieri R, Festi D, Colecchia A, Renzulli M. Clinical impact of sarcopenia assessment in patients with liver cirrhosis. Expert Rev Gastroenterol Hepatol 2021; 15:377-388. [PMID: 33196344 DOI: 10.1080/17474124.2021.1848542] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Sarcopenia is defined as loss of skeletal muscle mass, strength, and function, and it is associated with increased morbidity and mortality in patients with chronic liver disease.Areas covered: The aim of this review is to provide a detailed report on the pathophysiological mechanisms underlying sarcopenia in cirrhotic patients, the several imaging methods available for the assessment of sarcopenia and the clinical studies evaluating the prognostic role of sarcopenia presence in cirrhotic patients.Expert opinion: Sarcopenia pathogenesis is complex and multifaceted, as chronic catabolic conditions, increased energy expenditure, reduced appetite, side effects of multiple therapies, alterations in circulating levels of hormones, low protein synthesis, presence of ascites or portosystemic shunts are all factors contributing to muscle atrophy in cirrhotic patients. Computed tomography scan is the most validated method to evaluate muscle mass and quality. Sarcopenia is associated with a higher rate waitlist mortality, hepatic encephalopathy, and lower quality of life in patients with liver cirrhosis. Future studies should make an effort to unify and validate liver disease-specific cutoffs for the definition of sarcopenia.
Collapse
Affiliation(s)
- Giovanni Marasco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Elton Dajti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefano Brocchi
- Radiology Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Benedetta Rossini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Giuliano Peta
- Radiology Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Laura Bartalena
- Radiology Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Rita Golfieri
- Radiology Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Davide Festi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Antonio Colecchia
- Unit of Gastroenterology, Borgo Trento University Hospital of Verona, Verona, Italy
| | - Matteo Renzulli
- Radiology Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy
| |
Collapse
|
36
|
Kim Y. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11030250. [PMID: 33803020 PMCID: PMC8002763 DOI: 10.3390/life11030250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcopenia is characterized by a skeletal muscle disorder with progressive and generalized loss of muscle mass and function, and it increases the risk of adverse outcomes with considerable prevalence in patients with chronic liver disease. Sarcopenia in chronic liver disease underlies complicated and multifactorial mechanisms for pathogenesis, including alterations in protein turnover, hyperammonemia, energy disposal, hormonal changes, and chronic inflammation. The key contribution to sarcopenia in patients with chronic liver diseases can be the hyperammonemia-induced upregulation of myostatin, which causes muscle atrophy via the expression of atrophy-related genes. Several clinical studies on emerging treatment options for sarcopenia have been reported, but only a few have focused on patients with chronic liver diseases, with mostly nutritional and behavioral interventions being carried out. The inhibition of the myostatin-activin receptor signaling pathway and hormonal therapy might be the most promising therapeutic options in combination with an ammonia-lowering approach in sarcopenic patients with chronic liver diseases. This review focuses on current and emerging treatment options for sarcopenia in chronic liver diseases with underlying mechanisms to counteract this condition.
Collapse
Affiliation(s)
- Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
37
|
Yang YJ, Kim DJ. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int J Mol Sci 2021; 22:ijms22052604. [PMID: 33807573 PMCID: PMC7961345 DOI: 10.3390/ijms22052604] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
- Correspondence:
| |
Collapse
|
38
|
Allen SL, Quinlan JI, Dhaliwal A, Armstrong MJ, Elsharkawy AM, Greig CA, Lord JM, Lavery GG, Breen L. Sarcopenia in chronic liver disease: mechanisms and countermeasures. Am J Physiol Gastrointest Liver Physiol 2021; 320:G241-G257. [PMID: 33236953 PMCID: PMC8609568 DOI: 10.1152/ajpgi.00373.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcopenia, a condition of low muscle mass, quality, and strength, is commonly found in patients with cirrhosis and is associated with adverse clinical outcomes including reduction in quality of life, increased mortality, and posttransplant complications. In chronic liver disease (CLD), sarcopenia is most commonly defined through the measurement of the skeletal muscle index of the third lumbar spine. A major contributor to sarcopenia in CLD is the imbalance in muscle protein turnover, which likely occurs due to a decrease in muscle protein synthesis and an elevation in muscle protein breakdown. This imbalance is assumed to arise due to several factors including accelerated starvation, hyperammonemia, amino acid deprivation, chronic inflammation, excessive alcohol intake, and physical inactivity. In particular, hyperammonemia is a key mediator of the liver-gut axis and is known to contribute to mitochondrial dysfunction and an increase in myostatin expression. Currently, the use of nutritional interventions such as late-evening snacks, branched-chain amino acid supplementation, and physical activity have been proposed to help the management and treatment of sarcopenia. However, little evidence exists to comprehensively support their use in clinical settings. Several new pharmacological strategies, including myostatin inhibition and the nutraceutical Urolithin A, have recently been proposed to treat age-related sarcopenia and may also be of use in CLD. This review highlights the potential molecular mechanisms contributing to sarcopenia in CLD alongside a discussion of existing and potential new treatment strategies.
Collapse
Affiliation(s)
- Sophie L. Allen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan I. Quinlan
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Amritpal Dhaliwal
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Matthew J. Armstrong
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Ahmed M. Elsharkawy
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Carolyn A. Greig
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G. Lavery
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,6Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,7Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partner, Birmingham, United Kingdom
| | - Leigh Breen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Sciarrone SS, Zanetto A, Russo FP, Germani G, Gambato M, Battistella S, Pellone M, Shalaby S, Burra P, Senzolo M. Malnourished cirrhotic patient: what should we do? Minerva Gastroenterol (Torino) 2021; 67:11-22. [PMID: 33784807 DOI: 10.23736/s2724-5985.20.02776-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malnutrition and sarcopenia have a high prevalence in cirrhotic patients. Frailty generally overlaps with malnutrition and sarcopenia in cirrhosis, leading to increased morbidity and mortality. Rapid nutritional screening assessment should be performed in all patients with cirrhosis, and more specific tests for sarcopenia should be performed in those at high risk. The pathogenesis of malnutrition in cirrhosis is complex and multifactorial and it is not just due to reduction in protein and calorie intake. Nutritional management in malnourished patients with cirrhosis should be undertaken by a multidisciplinary team to achieve adequate protein/calorie intake. While the role of branched-chained amino acids remains somewhat contentious in achieving a global benefit of decreasing mortality- and liver-related events, these latter and vitamin supplements, are recommended for those with advanced liver disease. Novel strategies to reverse sarcopenia such as hormone supplementation, long-term ammonia-lowering agents and myostatin antagonists, are currently under investigation. Malnutrition, sarcopenia and frailty are unique, inter-related and multidimensional problems in cirrhosis which require special attention, prompt assessment and appropriate management as they significantly impact morbidity and mortality.
Collapse
Affiliation(s)
- Salvatore S Sciarrone
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Alberto Zanetto
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Francesco P Russo
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Giacomo Germani
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Martina Gambato
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Sara Battistella
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Monica Pellone
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Sarah Shalaby
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Patrizia Burra
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Marco Senzolo
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy -
| |
Collapse
|
40
|
Feng L, Liao H, Liu J, Xu C, Zhong K, Zhu H, Guo S, Guo Y, Han L, Li H, Wang Y. Inhibition of PI3K/Akt/mTOR pathway by ammonium chloride induced apoptosis and autophagy in MAC-T cell. Res Vet Sci 2021; 136:622-630. [PMID: 33930632 DOI: 10.1016/j.rvsc.2021.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/20/2020] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Ammonia is a harmful gas with a pungent odor, participates in the regulation of a variety of apoptosis and autophagy, which in turn affects the growth and differentiation of cells. To test the regulation of NH3 on the apoptosis and autophagy of mammary epithelial cells, we selected NH4Cl as NH3 donor in vitro model. MTT and CCK-8 assay kits were employed to detect cell activity. Real-time quantitative PCR and western blot methods were used to detect the abundance of inflammatory molecules, apoptosis markers, and autophagy genes. We selected TUNEL kit and the Annexin-FITC/PI method to detect apoptosis. TEM analysis was used to detect autophagic vesicles, and MDC stain evaluated the formation of autophagosome. The results indicated that NH4Cl reduced cell viability in a concentration-dependent manner and promoted cell inflammatory response, apoptosis, and autophagy. NH4Cl stimulation notable increased the autophagosomes number. Interestingly, we also detected that the addition of LY294002 and Rapamycin inhibited the PI3K/Akt pathway and the mTOR pathway, respectively, resulting in changes in both apoptosis and autophagy. Therefore, we draw a conclusion that NH3 may regulate the apoptosis and autophagic response of bovine mammary epithelial cells through the PI3K/Akt/mTOR signaling pathway. Further investigations on ammonia's function in other physiological respects, will be critical to provide theoretical help for the improvement of production performance. It will be also helpful for controlling the harmful gas ammonia concentration in the livestock house to protect the health of dairy cows.
Collapse
Affiliation(s)
- Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hang Liao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China; University of Dublin Trinity College School of Biochemistry and Immunology, Dublin, Ireland
| | - Jingsong Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chunmei Xu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heshui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yujie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
41
|
Hey P, Gow P, Testro AG, Apostolov R, Chapman B, Sinclair M. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN 2021; 41:13-22. [PMID: 33487256 DOI: 10.1016/j.clnesp.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Sarcopenia, defined as loss of muscle mass, strength and function, is associated with adverse clinical outcomes in patients with cirrhosis. Despite improved understanding of the multifaceted pathogenesis, there are few established therapies to treat or prevent muscle loss in this population. This narrative review examines the available literature investigating the role of nutraceuticals for the prevention or treatment of muscle wasting in chronic liver disease. METHODS A comprehensive search or Medline and PubMED databases was conducted. Reference lists were screened to identify additional articles. RESULTS A number of nutritional supplements and vitamins target the specific metabolic derangements that contribute to sarcopenia in cirrhosis including altered amino acid metabolism, hyperammonaemia and inflammation. Branched chain amino acid (BCAA) supplementation has proposed anabolic effects through dual pathways of enhanced ammonia clearance and stimulation of muscle protein synthesis. l-carnitine also has multimodal effects on muscle and shows promise as a therapy for muscle loss through anti-inflammatory, antioxidant and ammonia lowering properties. Other nutraceuticals including l-ornithine l-aspartate, omega-3 polyunsaturated fatty acids and zinc and vitamin D supplementation, may similarly have positive effects on muscle homeostasis, however further evidence to support their use in cirrhotic populations is required. CONCLUSION Nutraceuticals offer a promising and likely safe adjunct to standard care for sarcopenia in cirrhosis. While there is most evidence to support the use of BCAA and l-carnitine supplementation, further well-designed clinical trials are needed to elucidate their efficacy as a therapy for muscle loss in this population.
Collapse
Affiliation(s)
- Penelope Hey
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Adam G Testro
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Ross Apostolov
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Brooke Chapman
- The University of Melbourne, Parkville, Victoria, Australia; Department of Nutrition and Dietetics, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia.
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
42
|
Liver fibrosis-induced muscle atrophy is mediated by elevated levels of circulating TNFα. Cell Death Dis 2021; 12:11. [PMID: 33414474 PMCID: PMC7791043 DOI: 10.1038/s41419-020-03353-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Liver cirrhosis is a critical health problem associated with several complications, including skeletal muscle atrophy, which adversely affects the clinical outcome of patients independent of their liver functions. However, the precise mechanism underlying liver cirrhosis-induced muscle atrophy has not been elucidated. Here we show that serum factor induced by liver fibrosis leads to skeletal muscle atrophy. Using bile duct ligation (BDL) model of liver injury, we induced liver fibrosis in mice and observed subsequent muscle atrophy and weakness. We developed culture system of human primary myotubes that enables an evaluation of the effects of soluble factors on muscle atrophy and found that serum from BDL mice contains atrophy-inducing factors. This atrophy-inducing effect of BDL mouse serum was mitigated upon inhibition of TNFα signalling but not inhibition of myostatin/activin signalling. The BDL mice exhibited significantly up-regulated serum levels of TNFα when compared with the control mice. Furthermore, the mRNA expression levels of Tnf were markedly up-regulated in the fibrotic liver but not in the skeletal muscles of BDL mice. The gene expression analysis of isolated nuclei revealed that Tnf is exclusively expressed in the non-fibrogenic diploid cell population of the fibrotic liver. These findings reveal the mechanism through which circulating TNFα produced in the damaged liver mediates skeletal muscle atrophy. Additionally, this study demonstrated the importance of inter-organ communication that underlies the pathogenesis of liver cirrhosis.
Collapse
|
43
|
Puri P, Dhiman RK, Taneja S, Tandon P, Merli M, Anand AC, Arora A, Acharya SK, Benjamin J, Chawla YK, Dadhich S, Duseja A, Eapan C, Goel A, Kalra N, Kapoor D, Kumar A, Madan K, Nagral A, Pandey G, Rao PN, Saigal S, Saraf N, Saraswat VA, Saraya A, Sarin SK, Sharma P, Shalimar, Shukla A, Sidhu SS, Singh N, Singh SP, Srivastava A, Wadhawan M. Nutrition in Chronic Liver Disease: Consensus Statement of the Indian National Association for Study of the Liver. J Clin Exp Hepatol 2021; 11:97-143. [PMID: 33679050 PMCID: PMC7897902 DOI: 10.1016/j.jceh.2020.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malnutrition and sarcopenia are common in patients with chronic liver disease and are associated with increased risk of decompensation, infections, wait-list mortality and poorer outcomes after liver transplantation. Assessment of nutritional status and management of malnutrition are therefore essential to improve outcomes in patients with chronic liver disease. This consensus statement of the Indian National Association for Study of the Liver provides a comprehensive review of nutrition in chronic liver disease and gives recommendations for nutritional screening and treatment in specific clinical scenarios of malnutrition in cirrhosis in adults as well as children with chronic liver disease and metabolic disorders.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- ASM, appendicular skeletal muscle mass
- BCAA, branched chain amino acids
- BIA, bioimpedance analysis
- BMD, bone mineral densitometry
- BMI, body mass index
- CLD, chronic liver disease
- CS, corn-starch
- CT, computed tomography
- CTP, Child–Turcotte–Pugh
- DEXA, dual-energy X-ray absorptiometry
- EASL, European Association for the Study of the Liver
- ESPEN, European society for Clinical Nutrition and Metabolism
- GSD, glycogen storage disease
- HGS, hand-grip strength
- IBW, ideal body weight
- IEM, inborn error of metabolism
- INASL, Indian National Association for Study of the Liver
- L3, third lumbar
- LFI, Liver Frailty Index
- MCT, medium-chain triglyceride
- MELD, model for end-stage liver disease
- MLD, metabolic liver disease
- MRI, magnetic resonance imaging
- RDA, recommended daily allowance
- REE, NASH
- RFH-NPT, Royal Free Hospital-Nutritional Prioritizing Tool
- SMI, skeletal muscle index
- Sarcopenia
- TEE, total energy expenditure
- chronic liver disease
- cirrhosis
- malnutrition
- non-alcoholic liver disease, resting energy expenditure
- nutrition
Collapse
Affiliation(s)
- Pankaj Puri
- Fortis Escorts Liver & Digestive Diseases Institute, New Delhi, 110025, India
| | - Radha K. Dhiman
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Puneeta Tandon
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Manuela Merli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, 00185, Italy
| | - Anil C. Anand
- Kalinga Institute of Medical Sciences, Bhubhaneswar, 751024, Odisha, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Subrat K. Acharya
- Fortis Escorts Liver & Digestive Diseases Institute, New Delhi, 110025, India
| | - Jaya Benjamin
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, 110070, India
| | - Yogesh K. Chawla
- Kalinga Institute of Medical Sciences, Bhubhaneswar, 751024, Odisha, India
| | - Sunil Dadhich
- Department of Gastroenterology SN Medical College, Jodhpur, 342003, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - C.E. Eapan
- Department of Gastroenterology, Christian Medical College, Vellore, 632004, India
| | - Amit Goel
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naveen Kalra
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dharmesh Kapoor
- Department of Gastroenterology, Global Hospital, Hyderabad, 500004, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Kaushal Madan
- Max Smart Super Speciality Hospital, New Delhi, India
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital, Mumbai, 400026, India
| | - Gaurav Pandey
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Padaki N. Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, 500082, India
| | - Sanjiv Saigal
- Department of Hepatology, Medanta Hospital, Gurugram, 122001, India
| | - Neeraj Saraf
- Department of Hepatology, Medanta Hospital, Gurugram, 122001, India
| | - Vivek A. Saraswat
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Shiv K. Sarin
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, 110070, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, 400022, India
| | - Sandeep S. Sidhu
- Department of Gastroenterology, SPS Hospital, Ludhiana, 141001, India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, 753007, India
| | - Anshu Srivastava
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BL Kapur Memorial Hospital, New Delhi, 110005, India
| |
Collapse
|
44
|
Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, Aguirre F, Tacchi F, Simon F, Cabello-Verrugio C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1617805. [PMID: 33149804 PMCID: PMC7603619 DOI: 10.1155/2020/1617805] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a pathology that contains a broad liver dysfunctions spectrum. These alterations span from noninflammatory isolated steatosis until nonalcoholic steatohepatitis (NASH), a more aggressive form of the disease characterized by steatosis, inflammatory status, and varying liver degrees fibrosis. NAFLD is the most prevalent chronic liver disease worldwide. The causes of NAFLD are diverse and include genetic and environmental factors. The presence of NASH is strongly associated with cirrhosis development and hepatocellular carcinoma, two conditions that require liver transplantation. The liver alterations during NAFLD are well described. Interestingly, this pathological condition also affects other critical tissues and organs, such as skeletal muscle and even the cardiovascular, renal, and nervous systems. Oxidative stress (OS) is a harmful state present in several chronic diseases, such as NAFLD. The purpose of this review is to describe hepatic and extrahepatic dysfunctions in NAFLD. We will also review the influence of OS on the physiopathological events that affect the critical function of the liver and peripheral tissues.
Collapse
Affiliation(s)
- Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Camila Huerta-Salgado
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
45
|
Translation Regulation by eIF2α Phosphorylation and mTORC1 Signaling Pathways in Non-Communicable Diseases (NCDs). Int J Mol Sci 2020; 21:ijms21155301. [PMID: 32722591 PMCID: PMC7432514 DOI: 10.3390/ijms21155301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) are medical conditions that, by definition, are non-infectious and non-transmissible among people. Much of current NCDs are generally due to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption, smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction pathways. Alterations in cell and physiological signaling and transcriptional control pathways have been well studied in several human NCDs, but these same pathways also regulate expression and function of the protein synthetic machinery and mRNA translation which have been less well investigated. Alterations in expression of specific translation factors, and disruption of canonical mRNA translational regulation, both contribute to the pathology of many NCDs. The two most common pathological alterations that contribute to NCDs discussed in this review will be the regulation of eukaryotic initiation factor 2 (eIF2) by the integrated stress response (ISR) and the mammalian target of rapamycin complex 1 (mTORC1) pathways. Both pathways integrally connect mRNA translation activity to external and internal physiological stimuli. Here, we review the role of ISR control of eIF2 activity and mTORC1 control of cap-mediated mRNA translation in some common NCDs, including Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive pulmonary disease (COPD), and cardiac diseases. Our goal is to provide insights that further the understanding as to the important role of translational regulation in the pathogenesis of these diseases.
Collapse
|
46
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. Int J Mol Sci 2020; 21:E5254. [PMID: 32722100 PMCID: PMC7432211 DOI: 10.3390/ijms21155254] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia in patients with liver cirrhosis (LC) has been attracting much attention these days because of the close linkage to adverse outcomes. LC can be related to secondary sarcopenia due to protein metabolic disorders and energy metabolic disorders. LC is associated with profound alterations in gut microbiota and injuries at the different levels of defensive mechanisms of the intestinal barrier. Dysbiosis refers to a state in which the diversity of gut microbiota is decreased by decreasing the bacterial species and the number of bacteria that compose the gut microbiota. The severe disturbance of intestinal barrier in LC can result in dysbiosis, several bacterial infections, LC-related complications, and sarcopenia. Here in this review, we will summarize the current knowledge of the relationship between sarcopenia and dysbiosis in patients with LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya 6638136, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| | | | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| |
Collapse
|
47
|
Dunn MA, Rogal SS, Duarte-Rojo A, Lai JC. Physical Function, Physical Activity, and Quality of Life After Liver Transplantation. Liver Transpl 2020; 26:702-708. [PMID: 32128971 PMCID: PMC8063858 DOI: 10.1002/lt.25742] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 12/21/2022]
Abstract
Robust physical activity after liver transplantation is an important determinant of longterm health, similar in its importance to the value of pretransplant activity for withstanding the immediate stress of transplantation. Although transplantation normally enables rapid recovery of liver synthetic and metabolic functions, the recovery of physical capacity and performance to normal levels is delayed and often incomplete. Anatomic measurements of sarcopenia and the physical performance indicators of frailty both tend to improve slowly, and they may, in fact, decrease further in the posttransplant period, especially when the common extrahepatic drivers of muscle loss, such as the elements of the metabolic syndrome, persist or intensify after transplantation. Posttransplant exercise improves fitness, which is a conclusion based on 2 observational studies and 3 randomized trials that assessed endpoints of strength testing, energy expenditure in metabolic equivalents, and peak or maximal oxygen uptake. Importantly, 1 controlled trial found that exercise also improved quality of life (QOL) measured by the Short Form 36 survey, consistent with multiple reports of the value of social support and engagement in sports activity for improving posttransplant QOL. Developing evidence-based standards for post-liver transplant physical activity baseline testing and sustainment of intensity and quality is a key unmet need in transplant hepatology. At present, it is reasonable for transplant teams to assess fitness and design a tailored exercise program when a recipient is first discharged, to record and reinforce progress at all posttransplant visits, and to set realistic longterm performance goals that will often achieve recommended standards for the healthy general population.
Collapse
Affiliation(s)
- Michael A. Dunn
- Center for Liver Diseases, Department of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Shari S. Rogal
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA,Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Andres Duarte-Rojo
- Center for Liver Diseases, Department of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Jennifer C. Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
48
|
Barbero-Becerra VJ, López-Méndez I, Romo-Araiza A, Visag-Castillo V, Chávez-Tapia NC, Uribe M, Juárez-Hernandez E. Sarcopenia in chronic liver diseases: a translational overview. Expert Rev Gastroenterol Hepatol 2020; 14:355-366. [PMID: 32299261 DOI: 10.1080/17474124.2020.1757427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sarcopenia refers to a progressive and generalized muscle mass and strength loss. In liver diseases, it has been related to worse outcomes and high risk of decompensations. AREAS COVERED Sarcopenia is caused by a set of cellular processes in the muscle such as denervation, mitochondrial dysfunction, endotoxemia and inflammation; which are manifested through the alteration of several proteolytic pathways such as lysosomal, proteasomal and caspase systems. In autophagy, myostatin and oxidative stress; such as hyperammonemia, contributes importantly to liver sarcopenia through loss of muscle mass already demonstrated in in vitro and in vivo models. In addition, hormones and the regulation of the intestinal microbiota, influence in a not less important magnitude. In the clinical setting, early identification of sarcopenia has been established as a mandatory item to prevent progression of muscle mass loss; however, diagnostic methods have extreme variation according to methodology, population, etiology and severity of liver disease. Reversing sarcopenia should be an integral therapeutic strategy. EXPERT OPINION Clinical and nutritional interventions should be adapted to liver injury etiology and stage of disease, each of them shares a similar sarcopenia development pathway. There are specific biomarkers that condition or exacerbate loss of skeletal muscle.
Collapse
Affiliation(s)
| | - Iván López-Méndez
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico
| | | | - Víctor Visag-Castillo
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico
| | - Norberto C Chávez-Tapia
- Translational Research Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico.,Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico
| | - Eva Juárez-Hernandez
- Translational Research Unit, Medica Sur Clinic & Foundation , Mexico City, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México , Mexico City, Mexico
| |
Collapse
|
49
|
Bellar A, Welch N, Dasarathy S. Exercise and physical activity in cirrhosis: opportunities or perils. J Appl Physiol (1985) 2020; 128:1547-1567. [PMID: 32240017 DOI: 10.1152/japplphysiol.00798.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reduced exercise capacity and impaired physical performance are observed in nearly all patients with liver cirrhosis. Physical activity and exercise are physiological anabolic stimuli that can reverse dysregulated protein homeostasis or proteostasis and potentially increase muscle mass and contractile function in healthy subjects. Cirrhosis is a state of anabolic resistance, and unlike the beneficial responses to exercise reported in physiological states, there are few systematic studies evaluating the response to exercise in cirrhosis. Hyperammonemia is a mediator of the liver-muscle axis with net skeletal muscle ammonia uptake in cirrhosis causing signaling perturbations, mitochondrial dysfunction with decreased ATP content, modifications of contractile proteins, and impaired ribosomal function, all of which contribute to anabolic resistance in cirrhosis and have the potential to impair the beneficial responses to exercise. English language-publications in peer-reviewed journals that specifically evaluated the impact of exercise in cirrhosis were reviewed. Most studies evaluated responses to endurance exercise, and readouts included peak or maximum oxygen utilization, grip strength, and functional capacity. Endurance exercise for up to 12 wk is clinically tolerated in well-compensated cirrhosis. Data on the safety of resistance exercise are conflicting. Nutritional supplements enhance the benefits of exercise in healthy subjects but have not been evaluated in cirrhosis. Whether the beneficial physiological responses with endurance exercise and increase in muscle mass with resistance exercise that occur in healthy subjects also occur in cirrhotics is not known. Specific organ-system responses, changes in body composition, or improved long-term clinical outcomes with exercise in cirrhosis need evaluation.
Collapse
Affiliation(s)
- Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
50
|
Bunchorntavakul C, Reddy KR. Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther 2020; 51:64-77. [PMID: 31701570 DOI: 10.1111/apt.15571] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Malnutrition/sarcopenia and frailty are common in patients with cirrhosis and are associated with poor outcomes. AIM To provide an overview of data on the importance, assessment and management of malnutrition/sarcopenia and frailty in cirrhosis. METHODS A literature search was conducted in PubMed and other sources, using the search terms "sarcopenia," "muscle," "malnutrition," "cirrhosis," "liver" and "frailty" from inception to April 2019, to identify the relevant studies and international guidelines. RESULTS The prevalence of malnutrition/sarcopenia in cirrhosis is 23%-60%. Frailty generally overlaps with malnutrition/sarcopenia in cirrhosis, leading to increased morbidity and mortality. Rapid nutritional screening assessment should be performed in all patients with cirrhosis, and more specific tests for sarcopenia should be performed in those at high risk. The pathogenesis of malnutrition/sarcopenia in cirrhosis is complex/multifactorial and not just reduction in protein/calorie intake. Hyperammonemia appears to be the main driver of sarcopenia in cirrhosis through several molecular signalling pathways. Nutritional management in malnourished patients with cirrhosis should be undertaken by a multidisciplinary team to achieve adequate protein/calorie intake. While the role of branched-chained amino acids remains somewhat contentious in achieving a global benefit of decreasing mortality- and liver-related events, they, and vitamin supplements, are recommended for those with advanced liver disease. Novel strategies to reverse sarcopenia such as hormone supplementation, long-term ammonia-lowering agents and myostatin antagonists, are currently under investigation. CONCLUSIONS Malnutrition/sarcopenia and frailty are unique, inter-related and multi-dimensional problems in cirrhosis which require special attention, prompt assessment and appropriate management as they significantly impact morbidity and mortality.
Collapse
Affiliation(s)
- Chalermrat Bunchorntavakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|