1
|
Sun Y, Dai X, Yang J, Chen Y, Feng J, Shi X, Li X, Liu X. Deficiency of hepatokine orosomucoid1 aggravates NAFLD progression in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167654. [PMID: 39756714 DOI: 10.1016/j.bbadis.2024.167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Orosomucoid (ORM) is an important hepatokine that regulates metabolism. Previous report showed that isoform ORM2 but not ORM1 could downregulate lipogenic genes and ameliorate hepatic steatosis in obese mice, thereby categorizing ORM2 as a promising candidate for therapeutic intervention in nonalcoholic fatty liver disease (NAFLD). However, our previous studies found that mice lacking ORM1 gradually developed an obese phenotype with severe hepatic steatosis at the age of 24 weeks. Consequently, it remains imperative to further investigate the precise role of ORM1 in the context of NAFLD. The current study aims to assess the function and therapeutic prospects of ORM1 in NAFLD models induced by a high-fat diet (HFD) or a methionine- and choline-deficient diet (MCD), employing a series of loss- and gain-of-function experiments. The results showed that liver ORM levels elevated in fat NAFLD models but decreased in lean NAFLD models. Orm1-deficient mice fed either on HFD or MCD had significantly higher NAFLD activity score with more severe steatosis and ballooning, showing an aggravated NAFLD progression. However, liver-specific Orm1 overexpression in mice could not alleviate NAFLD when fed on HFD or MCD. These results suggest that systemic endogenous ORM1 is indispensable in protecting against the development of NAFLD; however, it may not serve as an effective localized therapeutic target for managing the disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - XianMin Dai
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - JinRun Yang
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - JiaYi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - XiaoFei Shi
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiang Li
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Ismaiel A, Ciornolutchii V, Herrera TE, Ismaiel M, Leucuta D, Popa S, Dumitrascu DL. Adiponectin as a biomarker in liver cirrhosis-A systematic review and meta-analysis. Eur J Clin Invest 2025; 55:e14328. [PMID: 39487742 PMCID: PMC11628646 DOI: 10.1111/eci.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Adiponectin, a key adipokine, shows promise as a non-invasive biomarker for liver cirrhosis by reflecting inflammation and metabolic changes, but conflicting findings highlight the need for a systematic review and meta-analysis to clarify its role. Our study aimed to evaluate adiponectin levels across various stages of liver cirrhosis, compare them with other chronic liver diseases (CLD) and hepatocellular carcinoma (HCC), and assess its potential as a diagnostic and prognostic biomarker. METHODS Our systematic search was conducted on September 2023 using PubMed, EMBASE and Scopus, searching for observational studies evaluating serum and plasma adiponectin levels in liver cirrhosis. Inclusion and exclusion criteria were applied, and study quality was assessed using the Newcastle-Ottawa Scale. To evaluate the overall effect size, we utilized a random-effects model along with a mean difference (MD) analysis. The principal summary outcome was the MD in adiponectin levels. RESULTS We included 16 articles involving 2617 subjects in our qualitative and quantitative synthesis. We found significantly higher adiponectin levels in liver cirrhosis patients (8.181 [95% CI 3.676, 12.686]), especially in Child-Pugh B individuals (13.294 [95% CI 4.955, 21.634]), compared to controls. Child-Pugh A patients did not show significant differences compared to controls. In addition, adiponectin levels were significantly elevated in primary biliary cholangitis (PBC) patients compared to controls (8.669 [95% CI .291, 17.047]), as well as in liver cirrhosis compared to other CLD patients (4.805 [95% CI 1.247, 8.363]), including non-alcoholic fatty liver disease (NAFLD) (8.532 [95% CI 3.422, 13.641]), but not viral hepatitis. No significant MD was observed between liver cirrhosis and HCC patients. CONCLUSION Adiponectin levels are significantly elevated in liver cirrhosis, especially in advanced stages, potentially serving as a biomarker for advanced cirrhosis. Adiponectin also differentiates cirrhosis from other CLD, including NAFLD. However, its role in distinguishing cirrhosis from viral hepatitis and HCC is limited.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine"Iuliu Hatieganu" University of Medicine and PharmacyCluj‐NapocaRomania
| | - Vera Ciornolutchii
- 2nd Department of Internal Medicine"Iuliu Hatieganu" University of Medicine and PharmacyCluj‐NapocaRomania
| | | | - Mohamed Ismaiel
- Department of General SurgeryAltnagelvin HospitalLondonderryUK
| | - Daniel‐Corneliu Leucuta
- Department of Medical Informatics and Biostatistics"Iuliu Hatieganu" University of Medicine and PharmacyCluj‐NapocaRomania
| | - Stefan‐Lucian Popa
- 2nd Department of Internal Medicine"Iuliu Hatieganu" University of Medicine and PharmacyCluj‐NapocaRomania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine"Iuliu Hatieganu" University of Medicine and PharmacyCluj‐NapocaRomania
| |
Collapse
|
3
|
Ren Y, Xiao K, Lu Y, Chen W, Li L, Zhao J. Deciphering the mechanism of Chaihu Shugan San in the treatment of nonalcoholic steatohepatitis using network pharmacology and molecular docking. J Pharm Pharmacol 2024; 76:1521-1533. [PMID: 39250725 DOI: 10.1093/jpp/rgae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES In China, there is a long history and rich clinical experience in treating nonalcoholic steatohepatitis (NASH) with traditional Chinese herbal medicines, including Chai Hu Shu Gan San. This study aims to investigate the potential regulatory effects of Chaihu Shugan San (CSS) on liver lipid metabolism and inflammatory damage in mice with experimental nonalcoholic steatohepatitis (NASH) induced by a choline-deficient high-fat diet (CDHFD). Utilizing network pharmacology, we systematically explore the mechanisms of action and therapeutic potential of CSS against NASH. METHODS Potential targets in CSS and targets for NASH were identified using online databases. Functional enrichment and protein-protein interaction analyses were conducted to identify hub-targeted genes and elucidate the underlying molecular mechanisms. The affinities of active compounds in CSS with hub-targeted genes were evaluated using molecular docking. Finally, hub-targeted genes were validated through real-time polymerase chain reaction, western blotting, and immunofluorescence in choline-deficient high-fat diet mice, both with and without CSS treatment. KEY FINDINGS CSS reduces serum ALT and AST levels in NASH mice(P < 0.05) and ameliorates ballooning degeneration in the livers of NASH mice, thereby lowering the NAS score(P < 0.05). Including naringenin, high-performance liquid chromatography/mass spectrometrys identified 12 chromatographic peaks. Based on network pharmacology analysis, CSS contains a total of 103 active compounds and 877 target genes. Transferase activity represents a potential mechanism for therapeutic intervention of CSS in NASH. The transcriptional levels and protein expression of the SIRT1 gene in NASH mice are significantly increased by CSS (P < 0.05). CONCLUSIONS Naringenin is probable active compound in CSS and SIRT1 is the hub gene by which CSS is involved in NASH treatment.
Collapse
Affiliation(s)
- Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Metabolic Associated Fatty Liver Disease, Capital Medical University, Beijing 100050, China
| |
Collapse
|
4
|
Guo Z, Yao Z, Huang B, Wu D, Li Y, Chen X, Lu Y, Wang L, Lv W. MAFLD-related hepatocellular carcinoma: Exploring the potent combination of immunotherapy and molecular targeted therapy. Int Immunopharmacol 2024; 140:112821. [PMID: 39088919 DOI: 10.1016/j.intimp.2024.112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People 's Hospital, Beijing 100044, China
| | - Bohao Huang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanbo Li
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaohan Chen
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, China.
| | - Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Yi X, Han L, Li L, Zhu H, Li M, Gao S. Adipokine/hepatokines profiling of fatty liver in adolescents and young adults: cross-sectional and prospective analyses of the BCAMS study. Hepatol Int 2024:10.1007/s12072-024-10736-9. [PMID: 39400684 DOI: 10.1007/s12072-024-10736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE The underlying connections between obesity and non-alcoholic fatty liver disease (NAFLD) are not fully understood. One potential link might be the imbalanced adipokines and hepatokines. We aimed to explore the associations between specific adipokines/hepatokines and NAFLD in Chinese youth and to determine how these biomarkers mediate the obesity-NAFLD relationship. METHODS We analyzed data from the 10-year follow-up visit of the Beijing Children and Adolescents Metabolic Syndrome (BCAMS) study (n = 509; mean age = 20.2 years) for a comprehensive metabolic risk assessment, including liver ultrasound and plasma measurements of adiponectin, leptin, fibroblast growth factor 21 (FGF21), retinol-binding protein 4 (RBP4), and angiopoietin-like protein 8 (ANGPTL8). Longitudinal analysis was performed on a subgroup (n = 307), with complete baseline (mean age = 12.2 years) and follow-up data. Mediation models assessed how obesity at baseline and follow-up influence NAFLD through these biomarkers. RESULTS Participants with NAFLD exhibited a high prevalence of central obesity (90.9%). Both cross-sectional and prospective analyses identified increased RBP4, FGF21, leptin, and decreased adiponectin levels as significant predictors of NAFLD. More adipokine/hepatokine abnormalities were linked to higher NAFLD risk. Furthermore, ratios reflecting adipokine/hepatokine imbalances, including leptin/adiponectin, FGF21/adiponectin, and RBP4/adiponectin, demonstrated stepwise changes correlating with NAFLD severity (all p < 0.05). Mediation analysis indicated that these four adipokines/hepatokines accounted for approximately 72.4% of the central obesity-NAFLD relationship and 80.1% in the subgroup analysis using baseline childhood data. CONCLUSIONS Dysregulated adipokines/hepatokines may explain the onset or progression of obesity-related NAFLD in youths. Higher RBP4, FGF21 and leptin, alongside lower adiponectin, could serve as early biomarkers for NAFLD.
Collapse
Affiliation(s)
- Xinghao Yi
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Lanwen Han
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People's Republic of China
| | - Lianxia Li
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People's Republic of China
| | - Haoxue Zhu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Ming Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Shan Gao
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| |
Collapse
|
6
|
Seubnooch P, Montani M, Dufour JF, Masoodi M. Spatial lipidomics reveals zone-specific hepatic lipid alteration and remodeling in metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100599. [PMID: 39032559 PMCID: PMC11388789 DOI: 10.1016/j.jlr.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Alteration in lipid metabolism plays a pivotal role in developing metabolic dysfunction-associated steatohepatitis (MASH). However, our understanding of alteration in lipid metabolism across liver zonation in MASH remains limited. Within this study, we investigated MASH-associated zone-specific lipid metabolism in a diet and chemical-induced MASH mouse model. Spatial lipidomics using mass spectrometry imaging in a MASH mouse model revealed 130 lipids from various classes altered across liver zonation and exhibited zone-specific lipid signatures in MASH. Triacylglycerols, diacylglycerols, sphingolipids and ceramides showed distinct zone-specific changes and re-distribution from pericentral to periportal localization in MASH. Saturated and monounsaturated fatty acids (FA) were the primary FA composition of increased lipids in MASH, while polyunsaturated FAs were the major FA composition of decreased lipids. We observed elevated fibrosis in the periportal region, which could be the result of observed metabolic alteration across zonation. Our study provides valuable insights into zone-specific hepatic lipid metabolism and demonstrates the significance of spatial lipidomics in understanding liver lipid metabolism. Identifying unique lipid distribution patterns may offer valuable insights into the pathophysiology of MASH and facilitate the discovery of diagnostic markers associated with liver zonation.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
7
|
Barrera F, Uribe J, Olvares N, Huerta P, Cabrera D, Romero-Gómez M. The Janus of a disease: Diabetes and metabolic dysfunction-associated fatty liver disease. Ann Hepatol 2024; 29:101501. [PMID: 38631419 DOI: 10.1016/j.aohep.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease and Diabetes Mellitus are two prevalent metabolic disorders that often coexist and synergistically contribute to the progression of each other. Several pathophysiological pathways are involved in the association, including insulin resistance, inflammation, and lipotoxicity, providing a foundation for understanding the complex interrelationships between these conditions. The presence of MASLD has a significant impact on diabetes risk and the development of microvascular and macrovascular complications, and diabetes significantly contributes to an increased risk of liver fibrosis progression in MASLD and the development of hepatocellular carcinoma. Moreover, both pathologies have a synergistic effect on cardiovascular events and mortality. Therapeutic interventions targeting MASLD and diabetes are discussed, considering lifestyle modifications, pharmacological agents, and emerging treatment modalities. The review also addresses the challenges in managing these comorbidities, such as the need for personalized approaches and the potential impact on cardiovascular health. The insights gleaned from this analysis can inform clinicians, researchers, and policymakers in developing integrated strategies for preventing, diagnosing, and managing these metabolic disorders.
Collapse
Affiliation(s)
- Francisco Barrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Javier Uribe
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nixa Olvares
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Programa de Immunogenética e Inmunología traslacional, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paula Huerta
- Programa de Medicina Interna, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile
| | - Daniel Cabrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Bernardo O Higgins, Santiago, Chile
| | - Manuel Romero-Gómez
- Enfermedades Digestivas y Ciberehd, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (CSIC/HUVR/US), Universidad de Sevilla, Sevilla, España.
| |
Collapse
|
8
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
9
|
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, Tilg H. Apelin and the gut microbiome: Potential interaction in human MASLD. Dig Liver Dis 2024; 56:932-940. [PMID: 38087672 DOI: 10.1016/j.dld.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS Investigating the role of APLN in MASLD. METHODS Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
11
|
Rajak S. Dynamics of cellular plasticity in non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta Mol Basis Dis 2024; 1870:167102. [PMID: 38422712 DOI: 10.1016/j.bbadis.2024.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
12
|
De Cól JP, de Lima EP, Pompeu FM, Cressoni Araújo A, de Alvares Goulart R, Bechara MD, Laurindo LF, Méndez-Sánchez N, Barbalho SM. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int J Mol Sci 2024; 25:3694. [PMID: 38612504 PMCID: PMC11011299 DOI: 10.3390/ijms25073694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.
Collapse
Affiliation(s)
- Júlia Pauli De Cól
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Fernanda Moris Pompeu
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-080, Brazil;
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo 17500-000, Brazil
| |
Collapse
|
13
|
Yang Z, Zhang S, Liu X, Shu R, Shi W, Qu W, Liu D, Cai Z, Wang Y, Cheng X, Liu Y, Zhang XJ, Bai L, Li H, She ZG. Histone demethylase KDM1A promotes hepatic steatosis and inflammation by increasing chromatin accessibility in NAFLD. J Lipid Res 2024; 65:100513. [PMID: 38295985 PMCID: PMC10907224 DOI: 10.1016/j.jlr.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Siyao Zhang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xiang Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Rui Shu
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Shi
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weiyi Qu
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dianyu Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Zhiwei Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ye Wang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Yemao Liu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Villano G, Novo E, Turato C, Quarta S, Ruvoletto M, Biasiolo A, Protopapa F, Chinellato M, Martini A, Trevellin E, Granzotto M, Cannito S, Cendron L, De Siervi S, Guido M, Parola M, Vettor R, Pontisso P. The protease activated receptor 2 - CCAAT/enhancer-binding protein beta - SerpinB3 axis inhibition as a novel strategy for the treatment of non-alcoholic steatohepatitis. Mol Metab 2024; 81:101889. [PMID: 38307387 PMCID: PMC10864841 DOI: 10.1016/j.molmet.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-β), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS 1-PPA treatment was able to inhibit the PAR2 - C/EBP-β - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.
Collapse
Affiliation(s)
- Gianmarco Villano
- Dept. of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Italy
| | - Erica Novo
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | | | | | | | | | | | | | | | - Stefania Cannito
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | - Maria Guido
- Dept. of Medicine, University of Padova, Italy
| | - Maurizio Parola
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | |
Collapse
|
15
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Liu Y, Chen H, Yan X, Zhang J, Deng Z, Huang M, Gu J, Zhang J. MyD88 in myofibroblasts enhances nonalcoholic fatty liver disease-related hepatocarcinogenesis via promoting macrophage M2 polarization. Cell Commun Signal 2024; 22:86. [PMID: 38291436 PMCID: PMC10826060 DOI: 10.1186/s12964-024-01489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver diseases and has emerged as the leading factor in the pathogenesis of hepatocellular carcinoma (HCC). MyD88 contributes to the development of HCC. However, the underlying mechanism by which MyD88 in myofibroblasts regulates NAFLD-associated liver cancer development remains unknown. RESULTS Myofibroblast MyD88-deficient (SMAMyD88-/-) mice were protected from diet-induced obesity and developed fewer and smaller liver tumors. MyD88 deficiency in myofibroblasts attenuated macrophage M2 polarization and fat accumulation in HCC tissues. Mechanistically, MyD88 signaling in myofibroblasts enhanced CCL9 secretion, thereby promoting macrophage M2 polarization. This process may depend on the CCR1 receptor and STAT6/ PPARβ pathway. Furthermore, liver tumor growth was attenuated in mice treated with a CCR1 inhibitor. CCLl5 (homologous protein CCL9 in humans) expression was increased in myofibroblasts of HCC and was associated with shorter survival of patients with HCC. Thus, our results indicate that MyD88 in myofibroblasts promotes NAFLD-related HCC progression and may be a promising therapeutic target for HCC treatment. CONCLUSION This study demonstrates that MyD88 in myofibroblasts can promote nonalcoholic fatty liver disease-related hepatocarcinogenesis by enhancing macrophage M2 polarization, which might provide a potential molecular therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Haiqiang Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Xuanxuan Yan
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Jie Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China.
| |
Collapse
|
17
|
Ni Y, Lu M, Li M, Hu X, Li F, Wang Y, Xue D. Unraveling the underlying pathogenic factors driving nonalcoholic steatohepatitis and hepatocellular carcinoma: an in-depth analysis of prognostically relevant gene signatures in hepatocellular carcinoma. J Transl Med 2024; 22:72. [PMID: 38238845 PMCID: PMC10795264 DOI: 10.1186/s12967-024-04885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a progressive manifestation of nonalcoholic fatty liver disease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite the growing knowledge of NASH and HCC, the association between the two conditions remains to be fully explored. Bioinformatics has emerged as a valuable approach for identifying disease-specific feature genes, enabling advancements in disease prediction, prevention, and personalized treatment strategies. MATERIALS AND METHODS In this study, we utilized CellChat, copy number karyotyping of aneuploid tumors (CopyKAT), consensus Non-negative Matrix factorization (cNMF), Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), Monocle, spatial co-localization, single sample gene set enrichment analysis (ssGSEA), Slingshot, and the Scissor algorithm to analyze the cellular and immune landscape of NASH and HCC. Through the Scissor algorithm, we identified three cell types correlating with disease phenotypic features and subsequently developed a novel clinical prediction model using univariate, LASSO, and multifactor Cox regression. RESULTS Our results revealed that macrophages are a significant pathological factor in the development of NASH and HCC and that the macrophage migration inhibitory factor (MIF) signaling pathway plays a crucial role in cellular crosstalk at the molecular level. We deduced three prognostic genes (YBX1, MED8, and KPNA2), demonstrating a strong diagnostic capability in both NASH and HCC. CONCLUSION These findings shed light on the pathological mechanisms shared between NASH and HCC, providing valuable insights for the development of novel clinical strategies.
Collapse
Affiliation(s)
- Yuan Ni
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Maoqing Lu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Xixi Hu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yan Wang
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| | - Dong Xue
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
18
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. What Does Sarcopenia Have to Do with Nonalcoholic Fatty Liver Disease? Life (Basel) 2023; 14:37. [PMID: 38255652 PMCID: PMC10820621 DOI: 10.3390/life14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are global problems. The pathophysiological mechanisms that link the two entities of the disease are insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin, or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be bidirectional, so the main objective of the review was to determine the cause-and-effect relationship between the two diseases.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
19
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Franck M, John K, Al Aoua S, Rau M, Geier A, Schattenberg JM, Wedemeyer H, Schulze-Osthoff K, Bantel H. Hepatokine-based identification of fibrotic NASH and improved risk stratification in a multicentre cohort of NAFLD patients. Liver Int 2023; 43:2668-2679. [PMID: 37534777 DOI: 10.1111/liv.15686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND AIMS The presence of significant liver fibrosis associated with non-alcoholic steatohepatitis (NASH) is regarded as the major prognostic factor in non-alcoholic fatty liver disease (NAFLD). Identification of patients at risk for NASH with significant fibrosis is therefore important. Although the established fibrosis score FIB-4 is suitable to exclude advanced fibrosis, it does not allow the prediction of significant fibrosis in NAFLD patients. We therefore evaluated whether the hepatokine fibroblast growth factor 21 (FGF21), a regulator of glucose and lipid metabolism, might identify 'at-risk NASH' in NAFLD. METHODS FGF21 levels were assessed by enzyme-linked immunosorbent assay in sera from an exploration (n = 137) and a validation (n = 88) cohort of biopsy-proven NAFLD patients with different disease activity and fibrosis stages. In addition, we evaluated whether the use of FGF21 could improve risk stratification in NAFLD patients with low (<1.3) or intermediate (1.3-2.67) FIB-4. RESULTS FGF21 levels could significantly discriminate between NASH and non-alcoholic fatty liver (NAFL) patients, even in the absence of diabetes. Moreover, patients with NASH and fibrosis ≥F2 showed significantly higher FGF21 levels compared to NAFLD patients without significant fibrosis. Significantly elevated FGF21 levels could even be detected in NAFLD patients with NASH and significant fibrosis despite low or intermediate FIB-4. CONCLUSION Serological FGF21 detection might allow the identification of NAFLD patients at risk and improves patient stratification in combination with FIB-4.
Collapse
Affiliation(s)
- Martin Franck
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina John
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sherin Al Aoua
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monika Rau
- Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Geier
- Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Jörn M Schattenberg
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Hu Y, Zhou J. Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis. Genomics Inform 2023; 21:e45. [PMID: 38224712 PMCID: PMC10788356 DOI: 10.5808/gi.23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.
Collapse
Affiliation(s)
- Yue Hu
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen,518000, China
| | - Jun Zhou
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen,518000, China
| |
Collapse
|
22
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
23
|
Vachliotis ID, Valsamidis I, Polyzos SA. Tumor Necrosis Factor-Alpha and Adiponectin in Nonalcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5306. [PMID: 37958479 PMCID: PMC10650629 DOI: 10.3390/cancers15215306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as an important risk factor for hepatocellular carcinoma (HCC), whose prevalence is rising. Although the mechanisms of progression from NAFLD to HCC are not fully elucidated, tumor necrosis factor-α (TNF-α) and adiponectin, as well as their interplay, which seems to be antagonistic, may contribute to the pathophysiology of NAFLD-associated HCC. TNF-α initially aims to protect against hepatocarcinogenesis, but during the progression of NAFLD, TNF-α is increased, thus probably inducing hepatocarcinogenesis in the long-term, when NAFLD is not resolved. On the other hand, adiponectin, which is expected to exert anti-tumorigenic effects, is decreased during the progression of the disease, a trend that may favor hepatocarcinogenesis, but is paradoxically increased at end stage disease, i.e., cirrhosis and HCC. These observations render TNF-α and adiponectin as potentially diagnostic biomarkers and appealing therapeutic targets in the setting of NAFLD-associated HCC, possibly in combination with systematic therapy. In this regard, combination strategy, including immune checkpoint inhibitors (ICIs) with anti-TNF biologics and/or adiponectin analogs or medications that increase endogenous adiponectin, may warrant investigation against NAFLD-associated HCC. This review aims to summarize evidence on the association between TNF-α and adiponectin with NAFLD-associated HCC, based on experimental and clinical studies, and to discuss relevant potential therapeutic considerations.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Gastroenterology, 424 General Military Hospital, 56429 Thessaloniki, Greece
| | - Ioannis Valsamidis
- First Department of Internal Medicine, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
24
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
25
|
Crane H, Gofton C, Sharma A, George J. MAFLD: an optimal framework for understanding liver cancer phenotypes. J Gastroenterol 2023; 58:947-964. [PMID: 37470858 PMCID: PMC10522746 DOI: 10.1007/s00535-023-02021-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Hepatocellular carcinoma has a substantial global mortality burden which is rising despite advancements in tackling the traditional viral risk factors. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is the most prevalent liver disease, increasing in parallel with the epidemics of obesity, diabetes and systemic metabolic dysregulation. MAFLD is a major factor behind this sustained rise in HCC incidence, both as a single disease entity and often via synergistic interactions with other liver diseases. Mechanisms behind MAFLD-related HCC are complex but is crucially underpinned by systemic metabolic dysregulation with variable contributions from interacting disease modifiers related to environment, genetics, dysbiosis and immune dysregulation. MAFLD-related HCC has a distinct clinical presentation, most notably its common occurrence in non-cirrhotic liver disease. This is just one of several major challenges to effective surveillance programmes. The response of MAFLD-related HCC to immune-checkpoint therapy is currently controversial, and is further complicated by the high prevalence of MAFLD in individuals with HCC from viral aetiologies. In this review, we highlight the current data on epidemiology, clinical characteristics, outcomes and screening controversies. In addition, concepts that have arisen because of the MAFLD paradigm such as HCC in MAFLD/NAFLD non-overlapping groups, dual aetiology tumours and MAFLD sub-phenotypes is reviewed.
Collapse
Affiliation(s)
- Harry Crane
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia.
| | - Cameron Gofton
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, 6 Verdun Street, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6102, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Fujiwara N, Nakagawa H. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease. Cancer Sci 2023; 114:3825-3833. [PMID: 37545384 PMCID: PMC10551597 DOI: 10.1111/cas.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) continue to increase with the epidemics of obesity, and NAFLD is estimated to become the most prevalent etiology of hepatocellular carcinoma (HCC). Recently, NAFLD-HCC has been recognized to have clinico-histologically and molecularly distinct features from those from other etiologies, including a lower incidence rate of HCC and less therapeutic efficacy to immune checkpoint inhibitors (ICIs). Consistent with the clinical observations that up to 50% of NAFLD-HCC occurs in the absence of cirrhosis, the imbalance of pro- and antitumorigenic hepatic stellate cells termed as myHSC and cyHSC can contribute to the creation of an HCC-prone hepatic environment, independent of the absolute fibrosis abundance. Immune deregulations by accumulated metabolites in NAFLD-affected livers, such as a fatty-acid-induced loss of cytotoxic CD4 T cells serving for immune surveillance and "auto-aggressive" CXCR6+ CD8 T cells, may promote hepatocarcinogenesis and diminish therapeutic response to ICIs. Steatohepatitic HCC (SH-HCC), characterized by the presence of fat accumulation in tumor cells, ballooned tumor cells, Mallory-Denk body, interstitial fibrosis, and intratumor immune cell infiltration, may represent a metabolic reprogramming for adapting to a lipid-rich tumor microenvironment by downregulating CPT2 and leveraging its intermediates as an "oncometabolite." Genome-wide analyses suggested that SH-HCC may be more responsive to ICIs given its mutual exclusiveness with β-catenin mutation/activation that promotes immune evasion. Thus, further understanding of NAFLD-specific hepatocarcinogenesis and HCC would enable us to improve the current daily practice and eventually the prognoses of patients with NAFLD.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| | - Hayato Nakagawa
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| |
Collapse
|
27
|
Butler AE, Ramanjaneya M, Moin ASM, Hunt SC, Atkin SL. Clinical improvement may not reflect metabolic homeostasis normalization in subjects with and without Roux-En-Y bariatric surgery after 12 years: comparison of surgical subjects to a lean cohort. Front Endocrinol (Lausanne) 2023; 14:1228853. [PMID: 37810875 PMCID: PMC10552523 DOI: 10.3389/fendo.2023.1228853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Background A 12-year study comparing clinical outcomes following Roux-en-Y bariatric surgery showed long-term weight loss with remission/prevention of type-2-diabetes (T2D), hypertension and dyslipidemia. However, it is unknown whether the underlying homeostatic metabolic processes involving hepatokines, adipokines and myokines also normalize. Using this 12-year study, we determined whether metabolic indices improved in post-surgical (BMI:34.4kg/m2) versus non-surgical comparator-subjects-with-obesity (BMI:43.8kg/m2) at 12-year follow-up (both cohorts with baseline diabetes), and if post-surgical subjects normalized their metabolic processes to those of a normal-weight cohort without diabetes. Methods Cross-sectional design. Plasma from a cohort of Roux-en-Y bariatric surgery (n=50) and non-surgery (n=76) comparator-subjects-with-obesity (both cohorts at 12-year follow-up) plus a normal-weight cohort (n=39) was assayed by Luminex immunoassay or ELISA for hepatokines [angiopoietin-like proteins-(ANGPTL3; ANGPTL4; ANGPTL6); fibroblast growth factors-(FGF19; FGF21; FGF23)]; adipokines [adipsin; adiponectin; FGF19] and myonectin. Results After age and gender adjustment, surgery versus comparator-subjects-with-obesity had lower BMI (34.4 ± 1.0 vs 43.8 ± 0.9kg/m2; p<0.0001), HbA1c (6.2 ± 0.3 vs 7.7 ± 0.2%; p<0.0001), insulin resistance (HOMA-IR, 2.0 ± 1.5 vs 10.8 ± 1.4; p<0.0001) fat mass (45.6 ± 2.2 vs 60.0 ± 2.0; p<0.0001), HDL-C (55.4 ± 2.6 vs 42.6 ± 2.3mg/dL; p<0.0001), triglycerides (130 ± 14 vs 187 ± 12mg/dL; p<0.0001) and higher adiponectin (25.9 ± 2.3 vs 15.7 ± 2.0µg/ml; p<0.001); Adipsin, ANGPTL3, ANGPTL4, ANGPTL6, FGF19, FGF21, FGF23 and myonectin did not differ. Surgery versus normal-weight group: higher ANGPTL4 (156 ± 6 vs 119 ± 7ng/mL; p<0.0001), higher FGF23 (96.4 ± 10.1 vs 50.9 ± 11.5pg/mL; p=0.007) and lower myonectin (744 ± 55 vs 969 ± 66ng/mL; p=0.002); adiponectin, adipsin ANGPTL3, ANGPTL6, FGF19, FGF21 did not differ. Non-surgery comparator-subjects-with-obesity versus normal-weight group: higher adipsin (1859 ± 94 vs 1314 ± 133ng/mL; p=0.0001), higher FGF23 (84.6 ± 8.5 vs 50.9 ± 11.5pg/mL; p<0.0001) and higher ANGPTL4 (171 ± 5 vs 119 ± 7ng/mL; p<0.0001); adiponectin ANGPTL3, ANGPTL6, FGF19, FGF21 and myonectin did not differ. Conclusion Bariatric surgery markedly improved anthropometric and metabolic features versus comparator-subjects-with-obesity at 12-year follow-up, indicating benefit of weight loss. However, despite weight loss, these patients still had class-1 obesity, as reflected in the adipokine, hepatokine and myokine markers of body homeostasis that did not completely normalize to indicative values of normal-weight subjects, suggesting either that this is the new normal for these patients or that weight loss to a BMI<25kg/m2 is needed for normalization of these parameters.
Collapse
Affiliation(s)
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake, UT, United States
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| |
Collapse
|
28
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Pinanga YD, Lee HA, Shin EA, Lee H, Pyo KH, Kim JE, Lee EH, Kim W, Kim S, Kim HY, Lee JW. TM4SF5-mediated abnormal food-intake behavior and apelin expression facilitate non-alcoholic fatty liver disease features. iScience 2023; 26:107625. [PMID: 37670786 PMCID: PMC10475478 DOI: 10.1016/j.isci.2023.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) engages in non-alcoholic steatohepatitis (NASH), although its mechanistic roles are unclear. Genetically engineered Tm4sf5 mice fed ad libitum normal chow or high-fat diet for either an entire day or a daytime-feeding (DF) pattern were analyzed for metabolic parameters. Compared to wild-type and Tm4sf5-/- knockout mice, hepatocyte-specific TM4SF5-overexpressing Alb-TGTm4sf5-Flag (TG) mice showed abnormal food-intake behavior during the mouse-inactive daytime, increased apelin expression, increased food intake, and higher levels of NASH features. DF or exogenous apelin injection of TG mice caused severe hepatic pathology. TM4SF5-mediated abnormal food intake was correlated with peroxisomal β-oxidation, mTOR activation, and autophagy inhibition, with triggering NASH phenotypes. Non-alcoholic fatty liver disease (NAFLD) patients' samples revealed a correlation between serum apelin and NAFLD activity score. Altogether, these observations suggest that hepatic TM4SF5 may cause abnormal food-intake behaviors to trigger steatohepatitic features via the regulation of peroxisomal β-oxidation, mTOR, and autophagy.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Ah Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Division of Gastroenterology and Hepatology, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwi Young Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Division of Gastroenterology and Hepatology, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Gao B, Chen Z, Shi M, Mo Y, Xiao H, Xie Y, Lin M, Chi X. Research landscape and frontiers of non-alcoholic steatohepatitis-associated hepatocellular carcinoma: a bibliometric and visual analysis. Front Pharmacol 2023; 14:1240649. [PMID: 37771721 PMCID: PMC10523561 DOI: 10.3389/fphar.2023.1240649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Due to the widespread prevalence of caloric excess and sedentary behavior on a global scale, there is a growing body of epidemiological evidence indicating that non-alcoholic steatohepatitis (NASH) has rapidly become a leading aetiology underlying of hepatocellular carcinoma (HCC). In light of the escalating incidence of NASH-associated HCC (NASH-HCC), it is imperative to mitigate the impending burden. While there has been an increase in global awareness regarding this issue, it has yet to be examined from a bibliometric standpoint. Therefore, this study seeks to provide a comprehensive bibliometric analysis to characterize the evolution of this field. Method: The present study utilized the Web of Science Core Collection (WoSCC) to identify publications pertaining to NASH-HCC over the past 2 decades. Employing Vosviewer 1.6.19, CiteSpace 6.2.R2, and the Analysis Platform of Bibliometrics, the study conducted an analysis of various dimensions including the quantity of publications, countries, institutions, journals, authors, co-references, keywords, and trend topics in this field. Results: A comprehensive analysis of 3,679 publications pertaining to NASH-HCC, published between 1 January 2002 and 1 April 2023, was conducted. The field in question experienced a rapid increase in publications, with the United States serving as the central hub. Collaboration between institutions was more extensive than that between countries. Notably, HEPATOLOGY (n = 30,168) emerged as the most impactful journal, and Zobair M. Younossi (n = 10,025) as the most frequently cited author in co-citations. The most commonly cited references were KLEINER DE, 2005, HEPATOLOGY (n = 630), followed by YOUNOSSI ZM, 2016, HEPATOLOGY (n = 493). The author keywords were categorized into three distinct clusters, namely, Cluster 1 (Mechanism), Cluster 2 (Factors), and Cluster 3 (Diagnosis). Analysis of high-frequency co-occurring keywords and topical trends revealed emphasis on molecular mechanisms in current research. "macrophages" and "tumor microenvironment" were active research hotspots at present in this field. Conclusion: A bibliometric analysis was performed for the first time on publications pertaining to non-alcoholic steatohepatitis-hepatocellular carcinoma, uncovering co-research networks, developmental trends, and current research hotspots. The emerging frontiers of this field focused on the macrophages and tumor microenvironment, especially the tumor-associated macrophages, offering a fresh perspective for future research directions.
Collapse
Affiliation(s)
- Bowen Gao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiheng Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meijie Shi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huanming Xiao
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yubao Xie
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ming Lin
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoling Chi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Polyzos SA, Chrysavgis L, Vachliotis ID, Chartampilas E, Cholongitas E. Nonalcoholic fatty liver disease and hepatocellular carcinoma:Insights in epidemiology, pathogenesis, imaging, prevention and therapy. Semin Cancer Biol 2023; 93:20-35. [PMID: 37149203 DOI: 10.1016/j.semcancer.2023.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is estimated to be the third leading cause of cancer-related mortality and is characterized by low survival rates. Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of HCC, whose rates are increasing, owing to the increasing prevalence of NAFLD. The pathogenesis of NAFLD-associated HCC is multifactorial: insulin resistance, obesity, diabetes and the low-grade hepatic inflammation, which characterizes NAFLD, seem to play key roles in the development and progression of HCC. The diagnosis of NAFLD-associated HCC is based on imaging in the presence of liver cirrhosis, preferably computerized tomography or magnetic resonance imaging, but liver biopsy for histological confirmation is usually required in the absence of liver cirrhosis. Some preventive measures have been recommended for NAFLD-associated HCC, including weight loss, cessation of even moderate alcohol drinking and smoking, as well as the use of metformin, statins and aspirin. However, these preventive measures are mainly based on observational studies, thus they need validation in trials of different design before introducing in clinical practice. The treatment of NAFLD should be tailored on an individual basis and should be ideally determined by a multidisciplinary team. In the last two decades, new medications, including tyrosine kinase inhibitors and immune checkpoints inhibitors, have improved the survival of patients with advanced HCC, but trials specifically designed for patients with NAFLD-associated HCC are scarce. The aim of this review was to overview evidence on the epidemiology and pathophysiology of NAFLD-associated HCC, then to comment on imaging tools for its appropriate screening and diagnosis, and finally to critically summarize the currently available options for its prevention and treatment.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Lampros Chrysavgis
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, Athens, Greece
| | - Ilias D Vachliotis
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Chartampilas
- Department of Radiology, University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, Athens, Greece
| |
Collapse
|
32
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
33
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
34
|
Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19:336-349. [PMID: 37055547 DOI: 10.1038/s41574-023-00809-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.
Collapse
Affiliation(s)
- Marion Régnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| | - Thaïs Carbinatti
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
35
|
Calderon-Martinez E, Landazuri-Navas S, Vilchez E, Cantu-Hernandez R, Mosquera-Moscoso J, Encalada S, Al lami Z, Zevallos-Delgado C, Cinicola J. Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J Clin Med Res 2023; 15:200-207. [PMID: 37187717 PMCID: PMC10181349 DOI: 10.14740/jocmr4902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer and ranks sixth among all malignancies worldwide. Risk factors for HCC can be classified as infectious or behavioral. Viral hepatitis and alcohol abuse are currently the most common risk factors for HCC; however, nonalcoholic liver disease is expected to become the most common cause of HCC in upcoming years. HCC survival rates vary according to the causative risk factors. As in any malignancy, staging is crucial in making therapeutic decisions. The selection of a specific score should be individualized according to patient characteristics. In this review, we summarize the current data on epidemiology, risk factors, prognostic scores, and survival in HCC.
Collapse
Affiliation(s)
| | | | | | - Raul Cantu-Hernandez
- Department of Internal Medicine, Monterrey Institute of Technology and Higher Studies, Mexico
| | | | - Sebastian Encalada
- Department of Internal Medicine, University of the Americas, Quito, Ecuador
| | - Zahraa Al lami
- Department of Internal Medicine, University of Baghdad, College of Medicine, Iraq
| | | | - John Cinicola
- Department of Internal Medicine, UPMC Harrisburg, Harrisburg, PA, USA
| |
Collapse
|
36
|
Baldini F, Diab F, Serale N, Zeaiter L, Portincasa P, Diaspro A, Vergani L. Adipocyte-hepatocyte crosstalk in cellular models of obesity: Role of soluble factors. Life Sci 2023; 317:121464. [PMID: 36731646 DOI: 10.1016/j.lfs.2023.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Hepatic steatosis is often a consequence of obesity. Adipose tissue is an important endocrine regulator of metabolic homeostasis in the body. In obesity, adipocytes become hypertrophic and develop an inflammatory phenotype, altering the panel of secreted adipokines. Moreover, excess fatty acids are, in part, released by adipocytes and delivered to the liver. These multiple pathways of adipose-liver crosstalk contribute to the development and progression of liver disease: TNFα induces hepatocyte dysfunction, excess of circulating fatty acids promotes hepatic steatosis and inflammation, whilst adipokines mediate and exacerbate liver injury. In this study, we investigated in vitro the effects and mechanisms of the crosstalk between adipocytes and hepatocytes, as a function of the different adipocyte status (mature vs hypertrophic) being mediated by soluble factors. We employed the conditioned medium method to test how mature and hypertrophic adipocytes distinctively affect the liver, leading to metabolic dysfunction. The media collected from adipocytes were characterized by high triglyceride content and led to lipid accumulation and fat-dependent dysfunction in hepatocytes. The present findings seem to suggest that, in addition to triglycerides, other soluble mediators, cytokines, are released by mature and hypertrophic adipocytes and influence the metabolic status of liver cells. Understanding the precise factors involved in the pathogenesis and pathophysiology of NAFLD in obesity will provide important insights into the mechanisms responsible for the metabolic complications of obesity, paving the way for new possible approaches.
Collapse
Affiliation(s)
- Francesca Baldini
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Nadia Serale
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Lama Zeaiter
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6 - Torre di Francia, 16149 Genova, Italy.
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
37
|
Ye Q, Liu Y, Zhang G, Deng H, Wang X, Tuo L, Chen C, Pan X, Wu K, Fan J, Pan Q, Wang K, Huang A, Tang N. Deficiency of gluconeogenic enzyme PCK1 promotes metabolic-associated fatty liver disease through PI3K/AKT/PDGF axis activation in male mice. Nat Commun 2023; 14:1402. [PMID: 36918564 PMCID: PMC10015095 DOI: 10.1038/s41467-023-37142-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including steatosis, nonalcoholic steatohepatitis (NASH) and fibrosis. We demonstrated that phosphoenolpyruvate carboxykinase 1 (PCK1) plays a central role in MAFLD progression. Male mice with liver Pck1 deficiency fed a normal diet displayed hepatic lipid disorder and liver injury, whereas fibrosis and inflammation were aggravated in mice fed a high-fat diet with drinking water containing fructose and glucose (HFCD-HF/G). Forced expression of hepatic PCK1 by adeno-associated virus ameliorated MAFLD in male mice. PCK1 deficiency stimulated lipogenic gene expression and lipid synthesis. Moreover, loss of hepatic PCK1 activated the RhoA/PI3K/AKT pathway by increasing intracellular GTP levels, increasing secretion of platelet-derived growth factor-AA (PDGF-AA), and promoting hepatic stellate cell activation. Treatment with RhoA and AKT inhibitors or gene silencing of RhoA or AKT1 alleviated MAFLD progression in vivo. Hepatic PCK1 deficiency may be important in hepatic steatosis and fibrosis development through paracrine secretion of PDGF-AA in male mice, highlighting a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Qian Ye
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojun Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Tuo
- Department of Infectious Disease, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiangao Fan
- Department of Gastroenterology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Pan
- Department of Gastroenterology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Iwaki M, Kobayashi T, Nogami A, Saito S, Nakajima A, Yoneda M. Impact of Sarcopenia on Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15040891. [PMID: 36839249 PMCID: PMC9965462 DOI: 10.3390/nu15040891] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
With the increasing incidence of non-alcoholic fatty liver disease (NAFLD) and the aging of the population, sarcopenia is attracting attention as one of the pathological conditions involved in the development and progression of NAFLD. In NAFLD, sarcopenia is closely associated with insulin resistance and results from the atrophy of skeletal muscle, an insulin target organ. In addition, inflammatory cytokines that promote skeletal muscle protein breakdown, low adiponectin levels leading to decreased insulin sensitivity, and hyperleptinemia are also involved in NAFLD pathogenesis. The presence of sarcopenia is a prognostic factor and increases the risk of mortality in patients with cirrhosis and post-treatment liver cancer. Sarcopenia, the presence of which mainly occurs due to decreased muscle mass, combined with increased visceral fat, can lead to sarcopenia-associated obesity, which increases the risk of NASH, liver fibrosis, and cardiovascular disease. In order to treat sarcopenia, it is necessary to properly evaluate sarcopenia status. Patients with high BMI, as in sarcopenic obesity, may improve with caloric restriction. However, inadequate oral intake may lead to further loss of muscle mass. Aerobic and resistance exercise should also be used appropriately.
Collapse
|
39
|
Gu X, Wang L, Liu S, Shan T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism 2023; 139:155379. [PMID: 36538987 DOI: 10.1016/j.metabol.2022.155379] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Skeletal muscle plays important roles in normal biological activities and whole-body energy homeostasis in humans. The growth and development of skeletal muscle also directly influence meat production and meat quality in animal production. Therefore, regulating the development and homeostasis of skeletal muscle is crucial for human health and animal production. Adipose tissue, which includes white adipose tissue (WAT) and brown adipose tissue (BAT), not only functions as an energy reserve but also has attracted substantial attention because of its role as an endocrine organ. The novel signalling molecules known as "adipokines" and "lipokines" that are secreted by adipose tissue were identified through the secretomic technique, which broadened our understanding of the previously unknown crosstalk between adipose tissue and skeletal muscle. In this review, we summarize and discuss the secretory role of adipose tissues, both WAT and BAT, as well as the regulatory roles of various adipokines and lipokines in skeletal muscle development and homeostasis. We suggest that adipokines and lipokines have potential as drug candidates for the treatment of skeletal muscle dysfunction and related metabolic diseases and as promising nutrients for improving animal production.
Collapse
Affiliation(s)
- Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
40
|
Tang Q, Liu Q, Li Y, Mo L, He J. CRELD2, endoplasmic reticulum stress, and human diseases. Front Endocrinol (Lausanne) 2023; 14:1117414. [PMID: 36936176 PMCID: PMC10018036 DOI: 10.3389/fendo.2023.1117414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
CRELD2, a member of the cysteine-rich epidermal growth factor-like domain (CRELD) protein family, is both an endoplasmic reticulum (ER)-resident protein and a secretory factor. The expression and secretion of CRELD2 are dramatically induced by ER stress. CRELD2 is ubiquitously expressed in multiple tissues at different levels, suggesting its crucial and diverse roles in different tissues. Recent studies suggest that CRELD2 is associated with cartilage/bone metabolism homeostasis and pathological conditions involving ER stress such as chronic liver diseases, cardiovascular diseases, kidney diseases, and cancer. Herein, we first summarize ER stress and then critically review recent advances in the knowledge of the characteristics and functions of CRELD2 in various human diseases. Furthermore, we highlight challenges and present future directions to elucidate the roles of CRELD2 in human health and disease.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jinhan He,
| |
Collapse
|
41
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
42
|
Yang B, Lu L, Zhou D, Fan W, Barbier-Torres L, Steggerda J, Yang H, Yang X. Regulatory network and interplay of hepatokines, stellakines, myokines and adipokines in nonalcoholic fatty liver diseases and nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:1007944. [PMID: 36267567 PMCID: PMC9578007 DOI: 10.3389/fendo.2022.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.
Collapse
Affiliation(s)
- Bing Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Zhou
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Justin Steggerda
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
43
|
Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14194651. [PMID: 36230573 PMCID: PMC9562923 DOI: 10.3390/cancers14194651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor survival rate and quality of life, while available treatments remain generally limited. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) originally emerged as drugs for the management of diabetes, but have also been shown to alleviate cardiorenal risk. Furthermore, they have demonstrated a wide range of extraglycemic effects that led to their evaluation as potential therapies for a variety of diseases beyond diabetes, such as obesity, neurogenerative disorders and nonalcoholic fatty liver disease. Given the presence of the GLP-1 receptor in hepatocytes, animal data suggest that GLP-1 RAs could regulate molecular pathways that are deeply involved in the genesis and progression of HCC, including inflammatory responses, tumor cell proliferation and oxidative stress, through direct and indirect effects on liver cells. However, future studies must assess several aspects of the benefit-to-risk ratio of the use of GLP-1 RAs in patients with HCC, including co-administration with approved systemic therapies, the incidence of gastrointestinal side effects in a high-risk population, and weight loss management in individuals with poor nutritional status and high rates of cancer cachexia. In this narrative review, we discuss the potential role of GLP-1 analogs in the treatment of HCC, focusing on the molecular mechanisms that could justify a possible benefit, but also referring to the potential clinical implications and areas for future research.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-330-3156; Fax: +30-231-099-4638
| |
Collapse
|
44
|
Qiu H, Song E, Hu Y, Li T, Ku KC, Wang C, Cheung BMY, Cheong LY, Wang Q, Wu X, Hoo RLC, Wang Y, Xu A. Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:1003-1023. [PMID: 35931383 PMCID: PMC9490100 DOI: 10.1016/j.jcmgh.2022.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD. METHODS The clinical association of autotaxin with the severity of NAFLD was analyzed in 125 liver biopsy-proven NAFLD patients. C57BL/6N mice or fibroblast growth factor 21 (FGF21)-null mice were fed a high-fat diet or a choline-deficient diet to investigate the role of the autotaxin-FGF21 axis in NAFLD development by hepatic knockdown and antibody neutralization. Huh7 cells were used to investigate the autocrine effects of autotaxin. RESULTS Serum autotaxin levels were associated positively with histologic scores and NAFLD severity. Hepatocytes, but not adipocytes, were the major contributor to increased circulating autotaxin in both patients and mouse models with NAFLD. In mice, knocking-down hepatic autotaxin or treatment with a neutralizing antibody against autotaxin significantly reduced high-fat diet-induced NAFLD and high fat- and choline-deficient diet-induced nonalcoholic steatohepatitis and fibrosis, accompanied by a marked increase of serum FGF21. Mechanistically, autotaxin inhibited the transcriptional activity of peroxisome proliferator-activated receptor α through LPA-induced activation of extracellular signal-regulated kinas, thereby leading to suppression of hepatic FGF21 production. The therapeutic benefit of anti-autotaxin neutralizing antibody against NAFLD was abrogated in FGF21-null mice. CONCLUSIONS Liver-secreted autotaxin acts in an autocrine manner to exacerbate NAFLD through LPA-induced suppression of the peroxisome proliferator-activated receptor α-FGF21 axis and is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Han Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Ching Ku
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernard M Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
HCC Mortality Trends-In with ALD (and NAFLD) and Out with HCV. Dig Dis Sci 2022; 67:3483-3484. [PMID: 35288830 DOI: 10.1007/s10620-022-07434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/09/2022]
|
46
|
Kumar R, García-Compeán D, Maji T. Hepatogenous diabetes: Knowledge, evidence, and skepticism. World J Hepatol 2022; 14:1291-1306. [PMID: 36158904 PMCID: PMC9376767 DOI: 10.4254/wjh.v14.i7.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The diabetogenic potential of liver cirrhosis (LC) has been known for a long time, and the name "hepatogenous diabetes" (HD) was coined in 1906 to define the condition. Diabetes mellitus (DM) that develops as a consequence of LC is referred to as HD. In patients with LC, the prevalence rates of HD have been reported to vary from 21% to 57%. The pathophysiological basis of HD seems to involve insulin resistance (IR) and pancreatic β-cell dysfunction. The neurohormonal changes, endotoxemia, and chronic inflammation of LC initially create IR; however, the toxic effects eventually lead to β-cell dysfunction, which marks the transition from impaired glucose tolerance to HD. In addition, a number of factors, including sarcopenia, sarcopenic obesity, gut dysbiosis, and hyperammonemia, have recently been linked to impaired glucose metabolism in LC. DM is associated with complications and poor outcomes in patients with LC, although the individual impact of each type 2 DM and HD is unknown due to a lack of categorization of diabetes in most published research. In fact, there is much skepticism within scientific organizations over the recognition of HD as a separate disease and a consequence of LC. Currently, T2DM and HD are being treated in a similar manner although no standardized guidelines are available. The different pathophysiological basis of HD may have an impact on treatment options. This review article discusses the existence of HD as a distinct entity with high prevalence rates, a strong pathophysiological basis, clinical and therapeutic implications, as well as widespread skepticism and knowledge gaps.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Diego García-Compeán
- Department of Gastroenterology, University Hospital, Universidad Autónoma de Nuevo León, México, Monterrey 64700, México
| | - Tanmoy Maji
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| |
Collapse
|
47
|
Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2022; 2022:1254014. [PMID: 35811662 PMCID: PMC9259243 DOI: 10.1155/2022/1254014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25-30% population worldwide, which progresses from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma, and has complications such as cardiovascular events. Liver biopsy is still the gold standard for the diagnosis of NAFLD, with some limitations, such as invasive, sampling deviation, and empirical judgment. Therefore, it is urgent to develop noninvasive diagnostic biomarkers. Currently, a large number of NAFLD-related serum biomarkers have been identified, including apoptosis, inflammation, fibrosis, adipokines, hepatokines, and omics biomarkers, which could effectively diagnose NASH and exclude patients with progressive fibrosis. We summarized serum biomarkers and combined diagnostic panels of NAFLD, to provide some guidance for the noninvasive diagnosis and further clinical studies.
Collapse
|
48
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
49
|
Novo E, Cappon A, Villano G, Quarta S, Cannito S, Bocca C, Turato C, Guido M, Maggiora M, Protopapa F, Sutti S, Provera A, Ruvoletto M, Biasiolo A, Foglia B, Albano E, Pontisso P, Parola M. SerpinB3 as a Pro-Inflammatory Mediator in the Progression of Experimental Non-Alcoholic Fatty Liver Disease. Front Immunol 2022; 13:910526. [PMID: 35874657 PMCID: PMC9304805 DOI: 10.3389/fimmu.2022.910526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease worldwide. In 20-30% of patients, NAFLD can progress into non-alcoholic steatohepatitis (NASH), eventually leading to fibrosis, cirrhosis and hepatocellular carcinoma development. SerpinB3 (SB3), a hypoxia-inducible factor-2α dependent cysteine protease inhibitor, is up-regulated in hepatocytes during progressive NAFLD and proposed to contribute to disease progression. In this study we investigated the pro-inflammatory role of SB3 by employing phorbol-myristate acetate-differentiated human THP-1 macrophages exposed in vitro to human recombinant SB3 (hrSB3) along with mice overexpressing SB3 in hepatocytes (TG/SB3) or knockout for SB3 (KO/SB3) in which NASH was induced by feeding methionine/choline deficient (MCD) or a choline-deficient, L-amino acid defined (CDAA) diets. In vivo experiments showed that the induction of NASH in TG/SB3 mice was characterized by an impressive increase of liver infiltrating macrophages that formed crown-like aggregates and by an up-regulation of hepatic transcript levels of pro-inflammatory cytokines. All these parameters and the extent of liver damage were significantly blunted in KO/SB3 mice. In vitro experiments confirmed that hrSB3 stimulated macrophage production of M1-cytokines such as TNFα and IL-1β and reactive oxygen species along with that of TGFβ and VEGF through the activation of the NF-kB transcription factor. The opposite changes in liver macrophage activation observed in TG/SB3 or KO/SB3 mice with NASH were associated with a parallel modulation in the expression of triggering receptor expressed on myeloid cells-2 (TREM2), CD9 and galectin-3 markers, recently detected in NASH-associated macrophages. From these results we propose that SB3, produced by activated/injured hepatocytes, may operate as a pro-inflammatory mediator in NASH contributing to the disease progression.
Collapse
Affiliation(s)
- Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Andrea Cappon
- Department of Medicine, University of Padova, Padova, Italy
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences – DISCOG, University of Padova, Padova, Italy
| | - Santina Quarta
- Department of Medicine, University of Padova, Padova, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Francesca Protopapa
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Salvatore Sutti
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Emanuele Albano
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, Padova, Italy
- *Correspondence: Patrizia Pontisso, ; Maurizio Parola,
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
- *Correspondence: Patrizia Pontisso, ; Maurizio Parola,
| |
Collapse
|
50
|
Yamaguchi T, Yoshida K, Murata M, Suwa K, Tsuneyama K, Matsuzaki K, Naganuma M. Smad3 Phospho-Isoform Signaling in Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23116270. [PMID: 35682957 PMCID: PMC9181097 DOI: 10.3390/ijms23116270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis with insulin resistance, oxidative stress, lipotoxicity, adipokine secretion by fat cells, endotoxins (lipopolysaccharides) released by gut microbiota, and endoplasmic reticulum stress. Together, these factors promote NAFLD progression from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and eventually end-stage liver diseases in a proportion of cases. Hepatic fibrosis and carcinogenesis often progress together, sharing inflammatory pathways. However, NASH can lead to hepatocarcinogenesis with minimal inflammation or fibrosis. In such instances, insulin resistance, oxidative stress, and lipotoxicity can directly lead to liver carcinogenesis through genetic and epigenetic alterations. Transforming growth factor (TGF)-β signaling is implicated in hepatic fibrogenesis and carcinogenesis. TGF-β type I receptor (TβRI) and activated-Ras/c-Jun-N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3 to create two phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TβRI/pSmad3C signaling terminates cell proliferation, while constitutive Ras activation and JNK-mediated pSmad3L promote hepatocyte proliferation and carcinogenesis. The pSmad3L signaling pathway also antagonizes cytostatic pSmad3C signaling. This review addresses TGF-β/Smad signaling in hepatic carcinogenesis complicating NASH. We also discuss Smad phospho-isoforms as biomarkers predicting HCC in NASH patients with or without cirrhosis.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
- Correspondence: ; Tel.: +81-72-804-0101; Fax: +81-72-804-2524
| | - Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Koichi Tsuneyama
- Department of Pathology & Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan;
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| |
Collapse
|