1
|
Ding L, Huang J, Huang S. The significance of antibody to hepatitis B surface antigen in infection and clearance of hepatitis B virus. Hum Vaccin Immunother 2025; 21:2445283. [PMID: 39754388 DOI: 10.1080/21645515.2024.2445283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
One of the key features of chronic hepatitis B virus (HBV) infection is the inability to mount sufficient and coordinated adaptive immune responses against HBV. Recent studies on HBV-specific B cells and antibody to hepatitis B surface antigen (anti-HBs) have shed light on their role in the pathogenesis of chronic hepatitis B (CHB). Anti-HBs is recognized as a protective immune marker, both for HBV infection clearance and following vaccination, and it is also considered an important indicator of functional cure for CHB. Notably, functional impairment of HBV-specific B cells may be reversible. The restoration of HBV-specific B cell function, along with the induction of an anti-HBs antibody response, is regarded as pivotal for terminating chronic HBV infection and achieving functional cure. This article reviews the significance of anti-HBs in both the infection and clearance of HBV, and discusses the potential of neutralizing antibodies and therapeutic vaccines as promising future strategies.
Collapse
Affiliation(s)
- Ling Ding
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiwen Huang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ssebyatika G, Dinkelborg K, Ströh LJ, Hinte F, Corneillie L, Hueffner L, Guzman EM, Nankya PL, Plückebaum N, Fehlau L, Garn J, Meyer N, Prallet S, Mehnert AK, Kraft ARM, Verhoye L, Jacobsen C, Steinmann E, Wedemeyer H, Viejo-Borbolla A, Dao Thi VL, Pietschmann T, Lütgehetmann M, Meuleman P, Dandri M, Krey T, Behrendt P. Broadly neutralizing antibodies isolated from HEV convalescents confer protective effects in human liver-chimeric mice. Nat Commun 2025; 16:1995. [PMID: 40011441 DOI: 10.1038/s41467-025-57182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Hepatitis E virus (HEV) causes 3.3 million symptomatic cases and 44,000 deaths per year. Chronic infections can arise in immunocompromised individuals, and pregnant women may suffer from fulminant disease as a consequence of HEV infection. Despite these important implications for public health, no specific antiviral treatment has been approved to date. Here, we report combined functional, biochemical, and X-ray crystallographic studies that characterize the human antibody response in convalescent HEV patients. We identified a class of potent and broadly neutralizing human antibodies (bnAbs), targeting a quaternary epitope located at the tip of the HEV capsid protein pORF2 that contains an N-glycosylation motif and is conserved across members of the Hepeviridae. These glycan-sensitive bnAbs specifically recognize the non-glycosylated pORF2 present in infectious particles but not the secreted glycosylated form acting as antibody decoy. Our most potent bnAb protects human liver-chimeric mice from intraperitoneal HEV challenge and co-housing exposure. These results provide insights into the bnAb response to this important emerging pathogen and support the development of glycan-sensitive antibodies to combat HEV infection.
Collapse
Affiliation(s)
- George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Katja Dinkelborg
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Florian Hinte
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lucas Hueffner
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Elina M Guzman
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Prossie L Nankya
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lukas Fehlau
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jonathan Garn
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Nele Meyer
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Sarah Prallet
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Ann-Kathrin Mehnert
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carina Jacobsen
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Viet Loan Dao Thi
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Thomas Pietschmann
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maura Dandri
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
- Institute of Virology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
| | - Patrick Behrendt
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany.
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
3
|
Beretta M, Vesin B, Wei Y, Planchais C, Rosenbaum P, Ait-Goughoulte M, Pelletier N, Hardy D, Mouquet H, Bourgine M. Enhanced hepatitis B virus-specific immunity by combining neutralizing antibody therapy and DNA vaccination in a murine model of chronic hepatitis B virus infection. Hepatology 2024:01515467-990000000-01102. [PMID: 39652775 DOI: 10.1097/hep.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIMS Successful treatment of chronic HBV infection remains a great challenge due to the difficulty in inducing efficient immune responses. Here, we investigated the therapeutic potential of DNA vaccination combined with a potent HBV broadly neutralizing antibody targeting the small surface viral antigen. APPROACH AND RESULTS C57BL/6 mice were transduced with adeno-associated virus-HBV and were treated twice a week with HBV broadly neutralizing antibodies for 5 weeks. A DNA-based vaccine encoding the HBV core, envelope, and polymerase proteins was administered once to mice 3 weeks after initiating antibody therapy. The antiviral effects and antigen-specific immune responses were evaluated before and for 8 weeks after therapeutic vaccination. Vaccine administration with or without antibody treatment induced the development of functional HBV-specific CD8+ T cells and envelope-specific resident memory T cells in the liver. The combination of antibody treatment and DNA vaccination enhanced the recruitment of B and CD8+ T lymphocytes into the liver of HBV-carrier mice 2 weeks after vaccination. However, although still detectable 2 months after vaccination, HBV-specific CD8+ T cells showed an exhausted phenotype, suggesting that they are dysfunctional. In contrast, more effective control of antigenemia was observed following combination therapy, which was associated with the presence of HBs-specific memory B cells. CONCLUSIONS Although the combination therapy did not result in a functional cure, our findings indicate it produced additive effects on the development of HBV-specific T cells in the liver immediately following treatment, offering a better insight into the mechanisms underlying hepatic tolerance.
Collapse
Affiliation(s)
- Maxime Beretta
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benjamin Vesin
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yu Wei
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Rosenbaum
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Malika Ait-Goughoulte
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nadège Pelletier
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maryline Bourgine
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Yuen MF, Lim YS, Yoon KT, Lim TH, Heo J, Tangkijvanich P, Tak WY, Thanawala V, Cloutier D, Mao S, Arizpe A, Cathcart AL, Gupta SV, Hwang C, Gane E. VIR-2218 (elebsiran) plus pegylated interferon-alfa-2a in participants with chronic hepatitis B virus infection: a phase 2 study. Lancet Gastroenterol Hepatol 2024; 9:1121-1132. [PMID: 39389081 DOI: 10.1016/s2468-1253(24)00237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) remains a global concern, with current treatments achieving low rates of HBsAg seroclearance. VIR-2218 (elebsiran), a small interfering RNA agent against HBV transcripts, reduces HBsAg concentrations. We aimed to evaluate the safety and antiviral activity of VIR-2218 with and without pegylated interferon-alpha-2a treatment in participants with chronic HBV. METHODS This open-label, phase 2 study was conducted at 23 sites in six countries (New Zealand, Australia, Hong Kong, Thailand, South Korea, and Malaysia). Adults (aged 18-65 years) with chronic HBV infection without cirrhosis and with HBsAg more than 50 IU/mL and HBV DNA less than 90 IU/mL who were on continued nucleoside or nucleotide reverse transcriptase inhibitor (NRTI) therapy for 2 months or longer were eligible. Participants were enrolled into one of six cohorts to receive VIR-2218 200 mg subcutaneously every 4 weeks, with or without 180 μg subcutaneous pegylated interferon-alfa-2a once per week. Cohort 1 received six doses of VIR-2218 (total 20 weeks); cohort 2 received six doses of VIR-2218 starting at day 1, plus 12 doses of pegylated interferon-alfa-2a starting at week 12 (total 24 weeks); cohort 3 received six doses of VIR-2218 and 24 doses of pegylated interferon-alfa-2a (total 24 weeks); cohort 4 received six doses of VIR-2218 and up to 48 doses of pegylated interferon-alfa-2a (total 48 weeks); cohort 5 received up to 13 doses of VIR-2218 and up to 44 doses of pegylated interferon-alfa-2a (total 48 weeks); and cohort 6 received three doses of VIR-2218 and 12 doses of pegylated interferon-alfa-2a (total 12 weeks). The primary endpoints were the incidence of adverse events and clinical assessments (including results of laboratory tests). Secondary endpoints were the mean maximum reduction of serum HBsAg at any timepoint; the proportion of participants with serum HBsAg seroclearance at any timepoint and for more than 6 months after the end of treatment; and the proportion of participants with anti-HBs seroconversion at any timepoint. For patients who were HBeAg-positive, we also assessed the proportion with HBeAg seroclearance or anti-HBe seroconversion at any timepoint. This study is registered with ClinicalTrials.gov, NCT03672188, and is ongoing. FINDINGS Between July 2, 2020, and Nov 2, 2021, 124 individuals were screened for eligibility, 84 of whom were enrolled (15 in cohort 1, 15 in cohort 2, 18 in cohort 3, 18 in cohort 4, 13 in cohort 5, and five in cohort 6). Participants were predominantly HBeAg-negative, Asian, and male (66 [79%] participants were male and 18 [21%] were female). Most treatment emergent adverse events were grades 1-2. Three (20%) participants in cohort 1, four (27%) in cohort 2, eight (44%) in cohort 3, seven (39%) in cohort 4, six (46%) in cohort 5, and two (40%) in cohort 6 reported treatment-emergent adverse events related to VIR-2218. 12 (80%) participants in cohort 2, 12 (67%) in cohort 3, 14 (78%) in cohort 4, 13 (100%) in cohort 5, and three (60%) in cohort 6 reported treatment-emergent adverse events related to pegylated interferon-alfa-2a. Two (13%) participants in cohort 1 had elevations in alanine aminotransferase, compared with 13 (87%) participants in cohort 2, 15 (83%) in cohort 3, 17 (94%) in cohort 4, 11 (85%) in cohort 5, and three (60%) in cohort 6. The mean maximum change from baseline at any timepoint in HBsAg concentration was -2·0 log10 IU/mL (95% CI -2·1 to -1·8) in cohort 1, -2·2 log10 IU/mL (-2·5 to -1·8) in cohort 2, -2·5 log10 IU/mL (-2·8 to -2·1) in cohort 3, -2·4 log10 IU/mL (-3·1 to -1·8) in cohort 4, -3·0 log10 IU/mL (-3·7 to -2·3) in cohort 5, and -1·7 log10 IU/mL (-2·1 to -1·4) in cohort 6. 11 participants (one in cohort 2, one in cohort 3, five in cohort 4, and four in cohort 5) receiving VIR-2218 plus pegylated interferon-alfa-2a had HBsAg seroclearance at any timepoint. Of these, ten (91%; one in cohort 2, five in cohort 4, and four in cohort 5) had anti-HBs seropositivity. Six participants (one in cohort 2, three in cohort 4, and two in cohort 5) had sustained HBsAg seroclearance through to 24 weeks after the end of treatment. No participants receiving VIR-2218 monotherapy (cohort 1) or VIR-2218 plus pegylated interferon-alfa-2a 12-week regimen (cohort 6) had HBsAg seroclearance. 12 (42%) of 26 participants (one of four in cohort 1, two of six in cohort 2, four of seven in cohort 3, four of six in cohort 4, and one of three in cohort 5) who were HBeAg positive at baseline had HBeAg seroclearance or anti-HBe seroconversion. INTERPRETATION The results of this phase 2 study support further development of VIR-2218 as a potential therapy for patients with chronic HBV infection. Additional clinical trials of VIR-2218 with and without pegylated interferon-alfa-2a in combination with an HBsAg-targeting monoclonal antibody are ongoing. FUNDING Vir Biotechnology.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki Tae Yoon
- Liver Center, Pusan National University Yangsan Hospital, Yangsan, South Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Pusan National University College of Medicine, Yangsan, South Korea
| | - Tien-Huey Lim
- Department of Gastroenterology and Hepatology, Middlemore Hospital, Auckland, New Zealand
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Won Young Tak
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | - Edward Gane
- Department of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res 2024; 227:105902. [PMID: 38734210 DOI: 10.1016/j.antiviral.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Adaptive immunity to viral infections requires time to neutralize and clear viruses to resolve infection. Fast growing and pathogenic viruses are quickly established, are highly transmissible and cause significant disease burden making it difficult to mount effective responses, thereby prolonging infection. Antibody-based passive immunotherapies can provide initial protection during acute infection, assist in mounting an adaptive immune response, or provide protection for those who are immune suppressed or immune deficient. Historically, plasma-derived antibodies have demonstrated some success in treating diseases caused by viral pathogens; nonetheless, limitations in access to product and antibody titer reduce success of this treatment modality. Monoclonal antibodies (mAbs) have proven an effective alternative, as it is possible to manufacture highly potent and specific mAbs against viral targets on an industrial scale. As a result, innovative technologies to discover, engineer and manufacture specific and potent antibodies have become an essential part of the first line of treatment in pathogenic viral infections. However, a mAb targeting a specific epitope will allow escape variants to outgrow, causing new variant strains to become dominant and resistant to treatment with that mAb. Methods to mitigate escape have included combining mAbs into cocktails, creating bi-specific or antibody drug conjugates but these strategies have also been challenged by the potential development of escape mutations. New technologies in developing antibodies made as recombinant polyclonal drugs can integrate the strength of poly-specific antibody responses to prevent mutational escape, while also incorporating antibody engineering to prevent antibody dependent enhancement and direct adaptive immune responses.
Collapse
Affiliation(s)
- Sheila M Keating
- GigaGen, Inc. (A Grifols Company), 75 Shoreway Road, San Carlos, CA, 94070, USA.
| | | |
Collapse
|
6
|
Ye X, Chen X, Liu H, Jiang Y, Yang C, Xu T, Chen Z, Wang Y, Chen F, Liu X, Yu H, Yuan Q, Xia N, Chen Y, Luo W. HBsAg and TLR7/8 dual-targeting antibody-drug conjugates induce sustained anti-HBV activity in AAV/HBV mice: a preliminary study. Antib Ther 2024; 7:249-255. [PMID: 39262443 PMCID: PMC11384142 DOI: 10.1093/abt/tbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a significant global health concern due to elevated immunosuppressive viral antigen levels, the host immune system's inability to manage HBV, and the liver's immunosuppressive conditions. While immunotherapies utilizing broadly reactive HBV neutralizing antibodies present potential due to their antiviral capabilities and Fc-dependent vaccinal effects, they necessitate prolonged and frequent dosing to achieve optimal therapeutic outcomes. Toll-like receptor 7/8 (TLR7/8) agonists have been demonstrated promise for the cure of chronic hepatitis B, but their systemic use often leads to intense side effects. In this study, we introduced immune-stimulating antibody conjugates which consist of TLR7/8 agonists 1-[[4-(aminomethyl)phenyl]methyl]-2-butyl-imidazo[4,5-c]quinolin-4-amine (IMDQ) linked to an anti-hepatitis B surface antigen (HBsAg) antibody 129G1, and designated as 129G1-IMDQ. Our preliminary study highlights that 129G1-IMDQ can prompt robust and sustained anti-HBsAg specific reactions with short-term administration. This underscores the conjugate's potential as an effective strategy for HBsAg clearance and seroconversion, offering a fresh perspective for a practical therapeutic approach in the functional cure of CHB. Highlights HBV-neutralizing antibody 129G1 was linked with a TLR7/8 agonist small molecule compound IMDQ.Treatment with 129G1-IMDQ has shown significant promise in lowering HBsAg levels in AAV/HBV mice.129G1-IMDQ were eliciting a strong and lasting anti-HBsAg immune response after short-term treatment in AAV/HBV mice.
Collapse
Affiliation(s)
- Xinya Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziyou Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yalin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fentian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Michler T, Zillinger J, Hagen P, Cheng F, Festag J, Kosinska A, Protzer U. The lack of HBsAg secretion does neither facilitate induction of antiviral T cell responses nor Hepatitis B Virus clearance in mice. Antiviral Res 2024; 226:105896. [PMID: 38679167 DOI: 10.1016/j.antiviral.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Immune tolerance to the hepatitis B virus (HBV) is crucial for developing chronic hepatitis B, and the HBV surface antigen (HBsAg) produced and secreted in high amounts is regarded as a key contributor. HBsAg is expressed in HBV-infected hepatocytes and those carrying an HBV integration. Whether either HBsAg secretion or the high antigen amount expressed in the liver determines its immunomodulatory properties, however, remains unclear. We, therefore, developed a novel HBV animal model that allowed us to study the role of secreted HBsAg. We introduced a previously described HBs mutation, C65S, abolishing HBsAg secretion into a replication-competent 1.3-overlength HBV genome and used adeno-associated virus vectors to deliver it to the mouse liver. The AAV-HBV established a carrier state of wildtype and C65S mutant HBV, respectively. We investigated antiviral B- and T-cell immunity in the HBV-carrier mice after therapeutic vaccination. Moreover, we compared the effect of a lacking HBsAg secretion with that of an antiviral siRNA. While missing HBsAg secretion allowed for higher levels of detectable anti-HBs antibodies after therapeutic vaccination, it did neither affect antiviral T-cell responses nor intrahepatic HBV gene expression, irrespective of the starting level. A treatment with HBV siRNA restricting viral antigen expression within hepatocytes, however, improved the antiviral efficacy of therapeutic vaccination, irrespective of the ability of HBV to secrete HBsAg. Our data indicate that clearing HBsAg from blood cannot significantly impact HBV persistence or T-cell immunity. This indicates that a restriction of hepatic viral antigen expression will be required to break HBV immunotolerance.
Collapse
Affiliation(s)
- Thomas Michler
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| | - Jakob Zillinger
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Philipp Hagen
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Fuwang Cheng
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Julia Festag
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Anna Kosinska
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany.
| |
Collapse
|
8
|
Li H, Lu D, Chen J, Zhang J, Zhuo J, Lin Z, Cao C, Shen W, He C, Chen H, Hu Z, Sun Y, Wei X, Zhuang L, Zheng S, Xu X. Post-transplant hepatitis B virus reactivation impacts the prognosis of patients with hepatitis B-related hepatocellular carcinoma: a dual-centre retrospective cohort study in China. Int J Surg 2024; 110:2263-2274. [PMID: 38348848 PMCID: PMC11019990 DOI: 10.1097/js9.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/25/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Highly active hepatitis B virus (HBV) is known to be associated with poor outcomes in patients with hepatocellular carcinoma (HCC). This study aims to investigate the relationship between HBV status and HCC recurrence after liver transplantation. METHODS The study retrospectively analyzed HCC patients undergoing liver transplantation in two centres between January 2015 and December 2020. The authors reviewed post-transplant HBV status and its association with outcomes. RESULTS The prognosis of recipients with hepatitis B surface antigen (HBsAg) reappearance ( n =58) was poorer than those with HBsAg persistent negative ( n =351) and positive ( n =53). In HBsAg persistent positive group, recipients with HBV DNA reappearance or greater than 10-fold increase above baseline had worse outcomes than those without ( P <0.01). HBV reactivation was defined as (a) HBsAg reappearance or (b) HBV DNA reappearance or greater than 10-fold increase above baseline. After propensity score matching, the 5-year overall survival rate and recurrence-free survival rate after liver transplantation in recipients with HBV reactivation were significantly lower than those without (32.0% vs. 62.3%; P <0.01, and 16.4% vs. 63.1%; P <0.01, respectively). Moreover, HBV reactivation was significantly related to post-transplant HCC recurrence, especially lung metastasis. Cox regression analysis revealed that beyond Milan criteria, microvascular invasion and HBsAg-positive graft were independent risk factors for post-transplant HBV reactivation, and a novel nomogram was established accordingly with a good predictive efficacy (area under the time-dependent receiver operating characteristic curve=0.78, C-index =0.73). CONCLUSIONS Recipients with HBV reactivation had worse outcomes and higher tumour recurrence rates than those without. The nomogram could be used to evaluate the risk of post-transplant HBV reactivation effectively.
Collapse
Affiliation(s)
- Huigang Li
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Di Lu
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Jinyan Chen
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | | | - Jianyong Zhuo
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Zuyuan Lin
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Chenghao Cao
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Wei Shen
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Chiyu He
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Hao Chen
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Zhihang Hu
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Yiyang Sun
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou
| | - Xuyong Wei
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
| | - Li Zhuang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou China
| | - Xiao Xu
- Zhejiang University School of Medicine
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou China
| |
Collapse
|
9
|
Lam R, Lim JK. Advances in discovery of novel investigational agents for functional cure of chronic hepatitis B: A comprehensive review of phases II and III therapeutic agents. World J Hepatol 2024; 16:331-343. [PMID: 38577537 PMCID: PMC10989302 DOI: 10.4254/wjh.v16.i3.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects over 295 million people globally and an estimated 1.6 million people in the United States. It is associated with significant morbidity and mortality due to cirrhosis, liver failure, and liver cancer. Antiviral therapy with oral nucleos(t)ide analogues is associated with high rates of virologic suppression, which in turn has been associated with a decreased risk of liver complications. However, current antiviral regimens are limited by concerns with adverse effects, adherence, resistance, long-term treatment, and ongoing risk for liver events. Novel investigational agents are currently in development and are targeted at achieving functional cure with sustained hepatitis B surface antigen (HBsAg) loss and suppression of HBV DNA. Herein we review key evidence from phases II and III trials defining the efficacy and safety profiles for key investigational agents for functional cure of chronic hepatitis B, including core/capsid inhibitors, entry inhibitors, RNA interference (siRNA/ASO), HBsAg inhibitors, Toll-like receptor agonists, checkpoint inhibitors, and therapeutic vaccines.
Collapse
Affiliation(s)
- Robert Lam
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Joseph K Lim
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
10
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Hepatitis B Surface Antigen Isoforms: Their Clinical Implications, Utilisation in Diagnosis, Prevention and New Antiviral Strategies. Pathogens 2024; 13:46. [PMID: 38251353 PMCID: PMC10818932 DOI: 10.3390/pathogens13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The hepatitis B surface antigen (HBsAg) is a multifunctional glycoprotein composed of large (LHB), middle (MHB), and small (SHB) subunits. HBsAg isoforms have numerous biological functions during HBV infection-from initial and specific viral attachment to the hepatocytes to initiating chronic infection with their immunomodulatory properties. The genetic variability of HBsAg isoforms may play a role in several HBV-related liver phases and clinical manifestations, from occult hepatitis and viral reactivation upon immunosuppression to fulminant hepatitis and hepatocellular carcinoma (HCC). Their immunogenic properties make them a major target for developing HBV vaccines, and in recent years they have been recognised as valuable targets for new therapeutic approaches. Initial research has already shown promising results in utilising HBsAg isoforms instead of quantitative HBsAg for correctly evaluating chronic infection phases and predicting functional cures. The ratio between surface components was shown to indicate specific outcomes of HBV and HDV infections. Thus, besides traditional HBsAg detection and quantitation, HBsAg isoform quantitation can become a useful non-invasive biomarker for assessing chronically infected patients. This review summarises the current knowledge of HBsAg isoforms, their potential usefulness and aspects deserving further research.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.B.); (D.M.); (M.C.)
| | | | | | | |
Collapse
|
11
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
13
|
Mouzannar K, Liang TJ. Development of a highly potent anti-HBs monoclonal antibody for HBV and HDV therapy: An improvement with unsettled questions. J Hepatol 2023; 79:1079-1081. [PMID: 37586647 PMCID: PMC11653528 DOI: 10.1016/j.jhep.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
14
|
Laupèze B, Vassilev V, Badur S. A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023; 17:1135-1147. [PMID: 37847193 DOI: 10.1080/17474124.2023.2268503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) is rarely cured using available treatments. Barriers to cure are: 1) persistence of reservoirs of hepatitis B virus (HBV) replication and antigen production (HBV DNA); 2) high burden of viral antigens that promote T cell exhaustion with T cell dysfunction; 3) CHB-induced impairment of immune responses. AREAS COVERED We discuss options for new therapies that could address one or more of the barriers to functional cure, with particular emphasis on the potential role of immunotherapy. EXPERT OPINION/COMMENTARY Ideally, a sterilizing cure for CHB would translate into finite therapies that result in loss of HBV surface antigen and eradication of HBV DNA. Restoration of a functional adaptive immune response, a key facet of successful CHB treatment, remains elusive. Numerous strategies targeting the high viral DNA and antigen burden and aiming to restore the host immune responses will enter clinical development in coming years. Most patients are likely to require combinations of several drugs, personalized according to virologic and disease characteristics, patient preference, accessibility, and affordability. The management of CHB is a global health priority. Expedited drug development requires collaborations between regulatory agencies, scientists, clinicians, and within the industry to facilitate testing of the best drug combinations.
Collapse
|