1
|
Vonada A, Grompe M. In vivo selection of hepatocytes. Hepatology 2024:01515467-990000000-01066. [PMID: 39787488 DOI: 10.1097/hep.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 01/12/2025]
Abstract
The liver is a highly regenerative organ capable of significant proliferation and remodeling during homeostasis and injury responses. Experiments of nature in rare genetic diseases have illustrated that healthy hepatocytes may have a selective advantage, outcompete diseased cells, and result in extensive liver replacement. This observation has given rise to the concept of therapeutic liver repopulation by providing an engineered selective advantage to a subpopulation of beneficial hepatocytes. In vivo selection can greatly enhance the efficiency of both gene and cell transplantation therapies for hepatic diseases. In vivo hepatocyte selection has also enabled the expansion of human hepatocytes in animals, creating novel models of human liver disease and biology. Finally, recent work has shown that somatic mutations produce clonal expansion of injury-resistant hepatocytes in most chronic liver diseases. In this review, we will address the role of hepatocyte selection in disease pathophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Anne Vonada
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
2
|
Graves LE, van Dijk EB, Zhu E, Koyyalamudi S, Wotton T, Sung D, Srinivasan S, Ginn SL, Alexander IE. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: Implications for gene therapy for congenital adrenal hyperplasia. Mol Ther Methods Clin Dev 2024; 32:101232. [PMID: 38558568 PMCID: PMC10979120 DOI: 10.1016/j.omtm.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia; however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct in vivo gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalized, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.
Collapse
Affiliation(s)
- Lara E. Graves
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Eva B. van Dijk
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Sundar Koyyalamudi
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Tiffany Wotton
- NSW Newborn Screening Program, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Dinah Sung
- NSW Newborn Screening Program, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Shubha Srinivasan
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
3
|
Duddy G, Courtis K, Horwood J, Olsen J, Horsler H, Hodgson T, Varsani-Brown S, Abdullah A, Denti L, Lane H, Delaqua F, Janzen J, Strom M, Rosewell I, Crawley K, Davies B. Donor template delivery by recombinant adeno-associated virus for the production of knock-in mice. BMC Biol 2024; 22:26. [PMID: 38302906 PMCID: PMC10836013 DOI: 10.1186/s12915-024-01834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The ability of recombinant adeno-associated virus to transduce preimplantation mouse embryos has led to the use of this delivery method for the production of genetically altered knock-in mice via CRISPR-Cas9. The potential exists for this method to simplify the production and extend the types of alleles that can be generated directly in the zygote, obviating the need for manipulations of the mouse genome via the embryonic stem cell route. RESULTS We present the production data from a total of 13 genetically altered knock-in mouse models generated using CRISPR-Cas9 electroporation of zygotes and delivery of donor repair templates via transduction with recombinant adeno-associated virus. We explore the efficiency of gene targeting at a total of 12 independent genetic loci and explore the effects of allele complexity and introduce strategies for efficient identification of founder animals. In addition, we investigate the reliability of germline transmission of the engineered allele from founder mice generated using this methodology. By comparing our production data against genetically altered knock-in mice generated via gene targeting in embryonic stem cells and their microinjection into blastocysts, we assess the animal cost of the two methods. CONCLUSIONS Our results confirm that recombinant adeno-associated virus transduction of zygotes provides a robust and effective delivery route for donor templates for the production of knock-in mice, across a range of insertion sizes (0.9-4.7 kb). We find that the animal cost of this method is considerably less than generating knock-in models via embryonic stem cells and thus constitutes a considerable 3Rs reduction.
Collapse
Affiliation(s)
- Graham Duddy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | | | - Jessica Olsen
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Helen Horsler
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Tina Hodgson
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | | | - Laura Denti
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hollie Lane
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Fabio Delaqua
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Julia Janzen
- Transnetyx Inc, 8110 Cordova Rd. Suite 119, Cordova, TN, 38016, USA
| | - Molly Strom
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Ian Rosewell
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Benjamin Davies
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Duff C, Alexander IE, Baruteau J. Gene therapy for urea cycle defects: An update from historical perspectives to future prospects. J Inherit Metab Dis 2024; 47:50-62. [PMID: 37026568 PMCID: PMC10953416 DOI: 10.1002/jimd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
5
|
Cunningham SC, van Dijk EB, Zhu E, Sugden M, Mandwie M, Siew S, Devanapalli B, Tolun AA, Klein A, Wilson L, Aryamanesh N, Gissen P, Baruteau J, Bhattacharya K, Alexander IE. Recapitulation of Skewed X-Inactivation in Female Ornithine Transcarbamylase-Deficient Primary Human Hepatocytes in the FRG Mouse: A Novel System for Developing Epigenetic Therapies. Hum Gene Ther 2023; 34:917-926. [PMID: 37350098 DOI: 10.1089/hum.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Realization of the immense therapeutic potential of epigenetic editing requires development of clinically predictive model systems that faithfully recapitulate relevant aspects of the target disease pathophysiology. In female patients with ornithine transcarbamylase (OTC) deficiency, an X-linked condition, skewed inactivation of the X chromosome carrying the wild-type OTC allele is associated with increased disease severity. The majority of affected female patients can be managed medically, but a proportion require liver transplantation. With rapid development of epigenetic editing technology, reactivation of silenced wild-type OTC alleles is becoming an increasingly plausible therapeutic approach. Toward this end, privileged access to explanted diseased livers from two affected female infants provided the opportunity to explore whether engraftment and expansion of dissociated patient-derived hepatocytes in the FRG mouse might produce a relevant model for evaluation of epigenetic interventions. Hepatocytes from both infants were successfully used to generate chimeric mouse-human livers, in which clusters of primary human hepatocytes were either OTC positive or negative by immunohistochemistry (IHC), consistent with clonal expansion from individual hepatocytes in which the mutant or wild-type OTC allele was inactivated, respectively. Enumeration of the proportion of OTC-positive or -negative human hepatocyte clusters was consistent with dramatic skewing in one infant and minimal to modest skewing in the other. Importantly, IHC and fluorescence-activated cell sorting analysis of intact and dissociated liver samples from both infants showed qualitatively similar patterns, confirming that the chimeric mouse-human liver model recapitulated the native state in each infant. Also of importance was the induction of a treatable metabolic phenotype, orotic aciduria, in mice, which correlated with the presence of clonally expanded OTC-negative primary human hepatocytes. We are currently using this unique model to explore CRISPR-dCas9-based epigenetic targeting strategies in combination with efficient adeno-associated virus (AAV) gene delivery to reactivate the silenced functional OTC gene on the inactive X chromosome.
Collapse
Affiliation(s)
- Sharon C Cunningham
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Eva B van Dijk
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Maya Sugden
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Susan Siew
- Department of Gastroenterology, James Fairfax Institute of Paediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Beena Devanapalli
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, Australia
| | - Adviye Ayper Tolun
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, Australia
| | - Anne Klein
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
| | - Laurence Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, Australia
| | - Nader Aryamanesh
- Embryology Research Unit, Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Julien Baruteau
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Kaustuv Bhattacharya
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Faculty of Medicine and Health, Children's Medical Research Institute, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
6
|
Ibrahim MS, Gold JI, Woodall A, Yilmaz BS, Gissen P, Stepien KM. Diagnostic and Management Issues in Patients with Late-Onset Ornithine Transcarbamylase Deficiency. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1368. [PMID: 37628367 PMCID: PMC10453542 DOI: 10.3390/children10081368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is the most common inherited disorder of the urea cycle and, in general, is transmitted as an X-linked recessive trait. Defects in the OTC gene cause an impairment in ureagenesis, resulting in hyperammonemia, which is a direct cause of brain damage and death. Patients with late-onset OTCD can develop symptoms from infancy to later childhood, adolescence or adulthood. Clinical manifestations of adults with OTCD vary in acuity. Clinical symptoms can be aggravated by metabolic stressors or the presence of a catabolic state, or due to increased demands upon the urea. A prompt diagnosis and relevant biochemical and genetic investigations allow the rapid introduction of the right treatment and prevent long-term complications and mortality. This narrative review outlines challenges in diagnosing and managing patients with late-onset OTCD.
Collapse
Affiliation(s)
- Majitha Seyed Ibrahim
- Department of Chemical Pathology, Teaching Hospital Batticaloa, Batticaloa 30000, Sri Lanka
| | - Jessica I. Gold
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alison Woodall
- Adult Inherited Metabolic Diseases, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Berna Seker Yilmaz
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Seker Yilmaz B, Gissen P. Genetic Therapy Approaches for Ornithine Transcarbamylase Deficiency. Biomedicines 2023; 11:2227. [PMID: 37626723 PMCID: PMC10452060 DOI: 10.3390/biomedicines11082227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder with high unmet needs, as current dietary and medical treatments may not be sufficient to prevent hyperammonemic episodes, which can cause death or neurological sequelae. To date, liver transplantation is the only curative choice but is not widely available due to donor shortage, the need for life-long immunosuppression and technical challenges. A field of research that has shown a great deal of promise recently is gene therapy, and OTCD has been an essential candidate for different gene therapy modalities, including AAV gene addition, mRNA therapy and genome editing. This review will first summarise the main steps towards clinical translation, highlighting the benefits and challenges of each gene therapy approach, then focus on current clinical trials and finally outline future directions for the development of gene therapy for OTCD.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
8
|
Lučanský V, Holubeková V, Kolková Z, Halašová E, Samec M, Golubnitschaja O. Multi-faceted CRISPR/Cas technological innovation aspects in the framework of 3P medicine. EPMA J 2023; 14:201-217. [PMID: 37275547 PMCID: PMC10201107 DOI: 10.1007/s13167-023-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Since 2009, the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Brussels) promotes the paradigm change from reactive approach to predictive, preventive, and personalized medicine (PPPM/3PM) to protect individuals in sub-optimal health conditions from the health-to-disease transition, to increase life-quality of the affected patient cohorts improving, therefore, ethical standards and cost-efficacy of healthcare to great benefits of the society at large. The gene-editing technology utilizing CRISPR/Cas gene-editing approach has demonstrated its enormous value as a powerful tool in a broad spectrum of bio/medical research areas. Further, CRISPR/Cas gene-editing system is considered applicable to primary and secondary healthcare, in order to prevent disease spread and to treat clinically manifested disorders, involving diagnostics of SARS-Cov-2 infection and experimental treatment of COVID-19. Although the principle of the proposed gene editing is simple and elegant, there are a lot of technological challenges and ethical considerations to be solved prior to its broadly scaled clinical implementation. This article highlights technological innovation beyond the state of the art, exemplifies current achievements, discusses unsolved technological and ethical problems, and provides clinically relevant outlook in the framework of 3PM.
Collapse
Affiliation(s)
- Vincent Lučanský
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubeková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
He X, Zhang Z, Xue J, Wang Y, Zhang S, Wei J, Zhang C, Wang J, Urip BA, Ngan CC, Sun J, Li Y, Lu Z, Zhao H, Pei D, Li CK, Feng B. Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response. Nat Commun 2022; 13:7275. [PMID: 36434000 PMCID: PMC9700734 DOI: 10.1038/s41467-022-34898-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
AAV-delivered CRISPR/Cas9 (AAV-CRISPR) has shown promising potentials in preclinical models to efficiently insert therapeutic gene sequences in somatic tissues. However, the AAV input doses required were prohibitively high and posed serious risk of toxicity. Here, we performed AAV-CRISPR mediated homology-independent knock-in at a new target site in mAlb 3'UTR and demonstrated that single dose of AAVs enabled long-term integration and expression of hF9 transgene in both adult and neonatal hemophilia B mice (mF9 -/-), yielding high levels of circulating human Factor IX (hFIX) and stable hemostasis restoration during entire 48-week observation period. Furthermore, we achieved hemostasis correction with a significantly lower AAV dose (2 × 109 vg/neonate and 1 × 1010 vg/adult mouse) through liver-specific gene knock-in using hyperactive hF9R338L variant. The plasma antibodies against Cas9 and AAV in the neonatal mice receiving low-dose AAV-CRISPR were negligible, which lent support to the development of AAV-CRISPR mediated somatic knock-in for treating inherited diseases.
Collapse
Affiliation(s)
- Xiangjun He
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenjie Zhang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyi Xue
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China ,grid.9227.e0000000119573309Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Siqi Zhang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junkang Wei
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenzi Zhang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Jue Wang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Anugerah Urip
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Christopher Ngan
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junjiang Sun
- grid.410711.20000 0001 1034 1720Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co.Ltd, Guangzhou, 510555 China
| | - Zhiqian Lu
- grid.412528.80000 0004 1798 5117Department of Cardiothoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Hui Zhao
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.10784.3a0000 0004 1937 0482The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000 China
| | - Duanqing Pei
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China ,grid.494629.40000 0004 8008 9315Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024 China
| | - Chi-Kong Li
- grid.10784.3a0000 0004 1937 0482Department of Pediatrics, Hong Kong Children’s Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Feng
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, MOE Key Lab, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China ,grid.10784.3a0000 0004 1937 0482The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000 China
| |
Collapse
|
10
|
Scharre S, Posset R, Garbade SF, Gleich F, Seidl MJ, Druck A, Okun JG, Gropman AL, Nagamani SCS, Hoffmann GF, Kölker S, Zielonka M. Predicting the disease severity in male individuals with ornithine transcarbamylase deficiency. Ann Clin Transl Neurol 2022; 9:1715-1726. [PMID: 36217298 PMCID: PMC9639638 DOI: 10.1002/acn3.51668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Ornithine transcarbamylase deficiency (OTC-D) is an X-linked metabolic disease and the most common urea cycle disorder. Due to high phenotypic heterogeneity, ranging from lethal neonatal hyperammonemic events to moderate symptoms and even asymptomatic individuals, the prediction of the disease course at an early disease stage is very important to individually adjust therapies such as medical treatment or liver transplantation. In this translational study, we developed a severity-adjusted classification system based on in vitro residual enzymatic OTC activity. METHODS Applying a cell-based expression system, residual enzymatic OTC activities of 71 pathogenic OTC variants were spectrophotometrically determined and subsequently correlated with clinical and biochemical outcome parameters of 119 male individuals with OTC-D (mOTC-D) as reported in the UCDC and E-IMD registries. RESULTS Integration of multiple data sources enabled the establishment of a robust disease prediction model for mOTC-D. Residual enzymatic OTC activity not only correlates with age at first symptoms, initial peak plasma ammonium concentration and frequency of metabolic decompensations but also predicts mortality. The critical threshold of 4.3% residual enzymatic activity distinguishes a severe from an attenuated phenotype. INTERPRETATION Residual enzymatic OTC activity reliably predicts the disease severity in mOTC-D and could thus serve as a tool for severity-adjusted evaluation of therapeutic strategies and counselling patients and parents.
Collapse
Affiliation(s)
- Svenja Scharre
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Roland Posset
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Sven F. Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Florian Gleich
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Marie J. Seidl
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Ann‐Catrin Druck
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Jürgen G. Okun
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Andrea L. Gropman
- Division of Neurodevelopmental Pediatrics and Neurogenetics, Children's National Health System and The George Washington School of MedicineWashingtonDistrict of ColumbiaUSA
| | - Sandesh C. S. Nagamani
- Department of Molecular and Human GeneticsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| | - Georg F. Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Matthias Zielonka
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
- Heidelberg Research Center for Molecular Medicine (HRCMM)HeidelbergGermany
| |
Collapse
|
11
|
Duff C, Baruteau J. Modelling urea cycle disorders using iPSCs. NPJ Regen Med 2022; 7:56. [PMID: 36163209 PMCID: PMC9513077 DOI: 10.1038/s41536-022-00252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
12
|
Luo Y, Lu H, Peng D, Ruan X, Chen YE, Guo Y. Liver-humanized mice: A translational strategy to study metabolic disorders. J Cell Physiol 2022; 237:489-506. [PMID: 34661916 PMCID: PMC9126562 DOI: 10.1002/jcp.30610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
The liver is the metabolic core of the whole body. Tools commonly used to study the human liver metabolism include hepatocyte cell lines, primary human hepatocytes, and pluripotent stem cells-derived hepatocytes in vitro, and liver genetically humanized mouse model in vivo. However, none of these systems can mimic the human liver in physiological and pathological states satisfactorily. Liver-humanized mice, which are established by reconstituting mouse liver with human hepatocytes, have emerged as an attractive animal model to study drug metabolism and evaluate the therapeutic effect in "human liver" in vivo because the humanized livers greatly replicate enzymatic features of human hepatocytes. The application of liver-humanized mice in studying metabolic disorders is relatively less common due to the largely uncertain replication of metabolic profiles compared to humans. Here, we summarize the metabolic characteristics and current application of liver-humanized mouse models in metabolic disorders that have been reported in the literature, trying to evaluate the pros and cons of using liver-humanized mice as novel mouse models to study metabolic disorders.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021; 3:100300. [PMID: 34159305 PMCID: PMC8203845 DOI: 10.1016/j.jhepr.2021.100300] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.
Collapse
Key Words
- AAT, α1-antitrypsin
- AAV, adeno-associated virus
- AHP, acute hepatic porphyrias
- AIP, acute intermittent porphyria
- ALAS1, aminolevulic synthase 1
- APCs, antigen-presenting cells
- ASGCT, American Society of Gene and Cell Therapy
- ASGPR, asialoglycoprotein receptor
- ASOs, antisense oligonucleotides
- Ad, adenovirus
- CBS, cystathionine β-synthase
- CN, Crigel-Najjar
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9, CRISPR associated protein 9
- DSBs, double-strand breaks
- ERT, enzyme replacement therapy
- FH, familial hypercholesterolemia
- FSP27, fat-specific protein 27
- GO, glycolate oxidase
- GSD1a, glycogen storage disorder 1a
- GT, gene therapy
- GUSB, β-glucuronidase
- GalNAc, N-acetyl-D-galactosamine
- HDAd, helper-dependent adenovirus
- HDR, homology-directed repair
- HT, hereditary tyrosinemia
- HemA/B, haemophilia A/B
- IDS, iduronate 2-sulfatase
- IDUA, α-L-iduronidase
- IMLD, inherited metabolic liver diseases
- ITR, inverted terminal repetition
- LDH, lactate dehydrogenase
- LDLR, low-density lipoprotein receptor
- LNP, Lipid nanoparticles
- LTR, long terminal repeat
- LV, lentivirus
- MMA, methylmalonic acidemia
- MPR, metabolic pathway reprograming
- MPS type I, MPSI
- MPS type VII, MPSVII
- MPS, mucopolysaccharidosis
- NASH, non-alcoholic steatohepatitis
- NHEJ, non-homologous end joining
- NHPs, non-human primates
- Non-viral vectors
- OLT, orthotopic liver transplantation
- OTC, ornithine transcarbamylase
- PA, propionic acidemia
- PB, piggyBac
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PFIC3, progressive familial cholestasis type 3
- PH1, Primary hyperoxaluria type 1
- PKU, phenylketonuria
- RV, retrovirus
- S/MAR, scaffold matrix attachment regions
- SB, Sleeping Beauty
- SRT, substrate reduction therapy
- STK25, serine/threonine protein kinase 25
- TALEN, transcription activator-like effector nucleases
- TTR, transthyretin
- UCD, urea cycle disorders
- VLDLR, very-low-density lipoprotein receptor
- WD, Wilson’s disease
- ZFN, zinc finger nucleases
- apoB/E, apolipoprotein B/E
- dCas9, dead Cas9
- efficacy
- gene addition
- gene editing
- gene silencing
- hepatocytes
- immune response
- lncRNA, long non-coding RNA
- miRNAs, microRNAs
- siRNA, small-interfering RNA
- toxicity
- viral vectors
Collapse
Affiliation(s)
- Sheila Maestro
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | | | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| |
Collapse
|
14
|
Sugahara G, Yamasaki C, Yanagi A, Furukawa S, Ogawa Y, Fukuda A, Enosawa S, Umezawa A, Ishida Y, Tateno C. Humanized liver mouse model with transplanted human hepatocytes from patients with ornithine transcarbamylase deficiency. J Inherit Metab Dis 2021; 44:618-628. [PMID: 33336822 PMCID: PMC8247293 DOI: 10.1002/jimd.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is a metabolic and genetic disease caused by dysfunction of the hepatocytic urea cycle. To develop new drugs or therapies for OTCD, it is ideal to use models that are more closely related to human metabolism and pathology. Primary human hepatocytes (HHs) isolated from two patients (a 6-month-old boy and a 5-year-old girl) and a healthy donor were transplanted into host mice (hemi-, hetero-OTCD mice, and control mice, respectively). HHs were isolated from these mice and used for serial transplantation into the next host mouse or for in vitro experiments. Histological, biochemical, and enzyme activity analyses were performed. Cultured HHs were treated with ammonium chloride or therapeutic drugs. Replacement rates exceeded 80% after serial transplantation in both OTCD mice. These highly humanized OTCD mice showed characteristics similar to OTCD patients that included increased blood ammonia levels and urine orotic acid levels enhanced by allopurinol. Hemi-OTCD mice showed defects in OTC expression and significantly low enzymatic activities, while hetero-OTCD mice showed residual OTC expression and activities. A reduction in ammonium metabolism was observed in cultured HHs from OTCD mice, and treatment with the therapeutic drug reduced the ammonia levels in the culture medium. In conclusion, we established in vivo OTC mouse models with hemi- and hetero-patient HHs. HHs isolated from the mice were useful as an in vitro model of OTCD. These OTC models could be a source of valuable patient-derived hepatocytes that would enable large scale and reproducible experiments using the same donor.
Collapse
Affiliation(s)
- Go Sugahara
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Chihiro Yamasaki
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Ami Yanagi
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Suzue Furukawa
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Yuko Ogawa
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Akinari Fukuda
- National Center for Child Health and DevelopmentTokyoJapan
| | - Shin Enosawa
- Division for Advanced Medical SciencesNational Center for Child Health and DevelopmentTokyoJapan
| | - Akihiro Umezawa
- Regenerative MedicineNational Center for Child Health and DevelopmentTokyoJapan
| | - Yuji Ishida
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
- Research Center for Hepatology and GastroenterologyHiroshima UniversityHiroshimaJapan
| | - Chise Tateno
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
- Research Center for Hepatology and GastroenterologyHiroshima UniversityHiroshimaJapan
| |
Collapse
|
15
|
He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl) 2021; 99:593-617. [PMID: 33594520 PMCID: PMC7885987 DOI: 10.1007/s00109-020-02034-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.
Collapse
Affiliation(s)
- Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Brian Anugerah Urip
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Chun Christopher Ngan
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510320, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
16
|
Genome editing in the human liver: Progress and translational considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:257-288. [PMID: 34175044 DOI: 10.1016/bs.pmbts.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver-targeted genome editing offers the prospect of life-long therapeutic benefit following a single treatment and is set to rapidly supplant conventional gene addition approaches. Combining progress in liver-targeted gene delivery with genome editing technology, makes this not only feasible but realistically achievable in the near term. However, important challenges remain to be addressed. These include achieving therapeutic levels of editing, particularly in vivo, avoidance of off-target effects on the genome and the potential impact of pre-existing immunity to bacteria-derived nucleases, when used to improve editing rates. In this chapter, we outline the unique features of the liver that make it an attractive target for genome editing, the impact of liver biology on therapeutic efficacy, and disease specific challenges, including whether the approach targets a cell autonomous or non-cell autonomous disease. We also discuss strategies that have been used successfully to achieve genome editing outcomes in the liver and address translational considerations as genome editing technology moves into the clinic.
Collapse
|
17
|
Zabulica M, Srinivasan RC, Akcakaya P, Allegri G, Bestas B, Firth M, Hammarstedt C, Jakobsson T, Jakobsson T, Ellis E, Jorns C, Makris G, Scherer T, Rimann N, van Zuydam NR, Gramignoli R, Forslöw A, Engberg S, Maresca M, Rooyackers O, Thöny B, Häberle J, Rosen B, Strom SC. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol Ther 2021; 29:1903-1917. [PMID: 33484963 PMCID: PMC8116578 DOI: 10.1016/j.ymthe.2021.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient’s own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.
Collapse
Affiliation(s)
- Mihaela Zabulica
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | | | - Pinar Akcakaya
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Burcu Bestas
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | | | - Tomas Jakobsson
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Towe Jakobsson
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Tanja Scherer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Natalie R van Zuydam
- Department of Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Anna Forslöw
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Engberg
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Olav Rooyackers
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Barry Rosen
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Stephen C Strom
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden.
| |
Collapse
|
18
|
Chen HM, Resendes R, Ghodssi A, Sookiasian D, Tian M, Dollive S, Adamson-Small L, Avila N, Tazearslan C, Thompson JF, Ellsworth JL, Francone O, Seymour A, Wright JB. Molecular characterization of precise in vivo targeted gene integration in human cells using AAVHSC15. PLoS One 2020; 15:e0233373. [PMID: 32453743 PMCID: PMC7250422 DOI: 10.1371/journal.pone.0233373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Targeted gene integration via precise homologous recombination (HR)-based gene editing has the potential to correct genetic diseases. AAV (adeno-associated virus) can mediate nuclease-free gene integration at a disease-causing locus. Therapeutic application of AAV gene integration requires quantitative molecular characterization of the edited sequence that overcome technical obstacles such as excess episomal vector genomes and lengthy homology arms. Here we describe a novel molecular methodology that utilizes quantitative next-generation sequencing to characterize AAV-mediated targeted insertion and detects the presence of unintended mutations. The methods described here quantify targeted insertion and query the entirety of the target locus for the presence of insertions, deletions, single nucleotide variants (SNVs) and integration of viral components such as inverted terminal repeats (ITR). Using a humanized liver murine model, we demonstrate that hematopoietic stem-cell derived AAVHSC15 mediates in vivo targeted gene integration into human chromosome 12 at the PAH (phenylalanine hydroxylase) locus at 6% frequency, with no sign of co-incident random mutations at or above a lower limit of detection of 0.5% and no ITR sequences at the integration sites. Furthermore, analysis of heterozygous variants across the targeted locus using the methods described shows a pattern of strand cross-over, supportive of an HR mechanism of gene integration with similar efficiencies across two different haplotypes. Rapid advances in the application of AAV-mediated nuclease-free target integration, or gene editing, as a new therapeutic modality requires precise understanding of the efficiency and the nature of the changes being introduced to the target genome at the molecular level. This work provides a framework to be applied to homologous recombination gene editing platforms for assessment of introduced and natural sequence variation across a target site.
Collapse
Affiliation(s)
- Huei-Mei Chen
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Rachel Resendes
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Azita Ghodssi
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | | | - Michael Tian
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Serena Dollive
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | | | - Nancy Avila
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Cagdas Tazearslan
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - John F. Thompson
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Jeff L. Ellsworth
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Omar Francone
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Albert Seymour
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
| | - Jason B. Wright
- Homology Medicines Inc., Bedford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
|