1
|
Sosa L, Espinoza LC, Valarezo E, Bozal N, Calpena A, Fábrega MJ, Baldomà L, Rincón M, Mallandrich M. Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules 2023; 28:5903. [PMID: 37570874 PMCID: PMC10420932 DOI: 10.3390/molecules28155903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, α-phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF-α, IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation.
Collapse
Affiliation(s)
- Lilian Sosa
- Microbiological Research Institute (IIM), National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Research Institute of Applied Sciences and Technology, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (E.V.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Eduardo Valarezo
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (E.V.)
| | - Núria Bozal
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Ana Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
- Departament Farmàcia, Tecnologia Farmacèutica, i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc of Biomedical Research of Barcelona, Pompeu Fabra University, 08003 Barcelona, Spain;
| | - Laura Baldomà
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
- Departament Farmàcia, Tecnologia Farmacèutica, i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Takano T, Kudo H, Eguchi S, Matsumoto A, Oka K, Yamasaki Y, Takahashi M, Koshikawa T, Takemura H, Yamagishi Y, Mikamo H, Kunishima H. Inhibitory effects of vaginal Lactobacilli on C andida albicans growth, hyphal formation, biofilm development, and epithelial cell adhesion. Front Cell Infect Microbiol 2023; 13:1113401. [PMID: 37201113 PMCID: PMC10188118 DOI: 10.3389/fcimb.2023.1113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.
Collapse
Affiliation(s)
- Tomonori Takano
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Hayami Kudo
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Shuhei Eguchi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Asami Matsumoto
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yukitaka Yamasaki
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Motomichi Takahashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Clinical Infectious Diseases, Kochi Medical School, Nankoku-shi, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
- *Correspondence: Hiroyuki Kunishima,
| |
Collapse
|
3
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
4
|
Kamli MR, Sabir JSM, Malik MA, Ahmad A. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase. Biomed Pharmacother 2022; 154:113569. [PMID: 35988423 DOI: 10.1016/j.biopha.2022.113569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Candida glabrata is the most frequently isolated non-albicans Candida species in clinical samples and is known to develop resistance to commonly used antifungal drugs. Human β defensins (hBDs) are antimicrobial peptides of immune systems and are active against a broad range of pathogens including Candida species. Herein, the antifungal effect of hBD-1 and its mechanism of action in C. glabrata was studied. The antifungal susceptibility of hBD-1 against C. glabrata was calculated by broth microdilution assay. To study the mechanism of antifungal action, the impact of hBD-1 on cell cycle, expression of oxidative stress enzymes, and membrane disintegration were assessed. The susceptibility results confirmed that hBD-1 possessed the minimum inhibitory concentration of 3.12 µg/mL and prevented the growth and caused yeast cell death to various extents. The peptide at subinhibitory and inhibitory concentrations blocked the cell cycle in C. glabrata in G0/G1 phase and disturbed the activity of primary and secondary antioxidant enzymes. Furthermore, at higher concentrations disruption of membrane integrity was observed. Altogether, hBD-1 showed candidicidal activity against C. glabrata and was able to induce oxidative stress and arrested cell cycle in C. auris and therefore has a potential to be developed as an antifungal drug against C. glabrata.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
5
|
Yamin D, Akanmu MH, Al Mutair A, Alhumaid S, Rabaan AA, Hajissa K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:188. [PMID: 36006280 PMCID: PMC9416642 DOI: 10.3390/tropicalmed7080188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A reliable estimate of Candida parapsilosis antifungal susceptibility in candidemia patients is increasingly important to track the spread of C. parapsilosis bloodstream infections and define the true burden of the ongoing antifungal resistance. A systematic review and meta-analysis (SRMA) were conducted aiming to estimate the global prevalence and identify patterns of antifungal resistance. A systematic literature search of the PubMed, Scopus, ScienceDirect and Google Scholar electronic databases was conducted on published studies that employed antifungal susceptibility testing (AFST) on clinical C. parapsilosis isolates globally. Seventy-nine eligible studies were included. Using meta-analysis of proportions, the overall pooled prevalence of three most important antifungal drugs; Fluconazole, Amphotericin B and Voriconazole resistant C. parapsilosis were calculated as 15.2% (95% CI: 9.2-21.2), 1.3% (95% CI: 0.0-2.9) and 4.7% (95% CI: 2.2-7.3), respectively. Based on study enrolment time, country/continent and AFST method, subgroup analyses were conducted for the three studied antifungals to determine sources of heterogeneity. Timeline and regional differences in C. parapsilosis prevalence of antifungal resistance were identified with the same patterns among the three antifungal drugs. These findings highlight the need to conduct further studies to assess and monitor the growing burden of antifungal resistance, to revise treatment guidelines and to implement regional surveillance to prevent further increase in C. parapsilosis drug resistance emerging recently.
Collapse
Affiliation(s)
- Dina Yamin
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Mutiat Hammed Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| |
Collapse
|
6
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
7
|
Keighley C, Cooley L, Morris AJ, Ritchie D, Clark JE, Boan P, Worth LJ. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern Med J 2021; 51 Suppl 7:89-117. [DOI: 10.1111/imj.15589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Caitlin Keighley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney Camperdown New South Wales Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology Westmead New South Wales Australia
- Southern IML Pathology, Sonic Healthcare Coniston New South Wales Australia
| | - Louise Cooley
- Department of Microbiology and Infectious Diseases Royal Hobart Hospital Hobart Tasmania Australia
- University of Tasmania Hobart Tasmania Australia
| | - Arthur J. Morris
- LabPLUS, Clinical Microbiology Laboratory Auckland City Hospital Auckland New Zealand
| | - David Ritchie
- Department of Clinical Haematology Peter MacCallum Cancer Centre and Royal Melbourne Hospital Melbourne Victoria Australia
| | - Julia E. Clark
- Department of Infection Management Queensland Children's Hospital, Children's Health Queensland Brisbane Queensland Australia
- Child Health Research Centre The University of Queensland Brisbane Queensland Australia
| | - Peter Boan
- PathWest Laboratory Medicine WA, Department of Microbiology Fiona Stanley Fremantle Hospitals Group Murdoch Western Australia Australia
- Department of Infectious Diseases Fiona Stanley Fremantle Hospitals Group Murdoch Western Australia Australia
| | - Leon J. Worth
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | |
Collapse
|
8
|
Qin J, Yang H, Shan Z, Jiang L, Zhang Q. Clinical efficacy and safety of antifungal drugs for the treatment of Candida parapsilosis infections: a systematic review and network meta-analysis. J Med Microbiol 2021; 70:001434. [PMID: 34633919 PMCID: PMC8604171 DOI: 10.1099/jmm.0.001434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023] Open
Abstract
Antifungal drugs have already been established as an effective treatment option for Candida parapsilosis infections, but there is no universal consensus on the ideal target for clinical efficacy and safety of antifungal drugs for the treatment of C. parapsilosis infections. Few studies have directly compared the efficacies of antifungal drugs for the treatment of C. parapsilosis infections. We hypothesize that different antifungal drugs offer differing clinical efficacy and safety for the treatment of C. parapsilosis infections. We performed a comprehensive network meta-analysis on different strategies for C. parapsilosis infection treatment and compared the clinical efficacy and safety of antifungal drugs as interventions for C. parapsilosis infections. The Cochrane Database of Systematic Reviews, Medline, Embase, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Technology of Chongqing VIP database, Wan Fang Data, and SinoMed databases were searched to identify appropriate randomized trials. Among the extracted C. parapsilosis cases, the survival and death rates with treatment of C. parapsilosis infection were compared among groups treated with different antifungal drugs. According to the evidence-network analysis, echinocandins were a better choice than other drugs for treating C. parapsilosis infections, and more importantly, caspofungin showed a more preferable effect for decreasing the risk of 30 day mortality. In conclusion, this study systematically evaluated the effectiveness and safety of antifungal drugs for the purpose of helping clinicians choose the most appropriate antifungal drugs. Future studies with larger samples are needed to evaluate the effects of patient factors on the clinical efficacy and safety of antifungal drugs for C. parapsilosis infections.
Collapse
Affiliation(s)
- Jielin Qin
- Department of General Medicine, Department of Respiration and Intensive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Zhiming Shan
- Laboratory Department, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou Children Infection and Immunity Laboratory, Zhengzhou, Henan 450000, PR China
| | - Lingzhi Jiang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| | - Qingxian Zhang
- Department of General Medicine, Department of Respiration and Intensive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China
| |
Collapse
|
9
|
Sahu RK, Salem-Bekhit MM, Bhattacharjee B, Almoshari Y, Ikbal AMA, Alshamrani M, Bharali A, Salawi A, Widyowati R, Alshammari A, Elbagory I. Mucormycosis in Indian COVID-19 Patients: Insight into Its Patho-Genesis, Clinical Manifestation, and Management Strategies. Antibiotics (Basel) 2021; 10:1079. [PMID: 34572661 PMCID: PMC8468123 DOI: 10.3390/antibiotics10091079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Mucormycosis in patients who have COVID-19 or who are otherwise immunocompromised has become a global problem, causing significant morbidity and mortality. Infection is debilitating and fatal, leading to loss of organs and emotional trauma. Radiographic manifestations are not specific, but diagnosis can be made through microscopic examination of materials collected from necrotic lesions. Treatment requires multidisciplinary expertise, as the fungus enters through the eyes and nose and may even reach the brain. Use of the many antifungal drugs available is limited by considerations of resistance and toxicity, but nanoparticles can overcome such limitations by reducing toxicity and increasing bioavailability. The lipid formulation of amphotericin-B (liposomal Am-B) is the first-line treatment for mucormycosis in COVID-19 patients, but its high cost and low availability have prompted a shift toward surgery, so that surgical debridement to remove all necrotic lesions remains the hallmark of effective treatment of mucormycosis in COVID-19. This review highlights the pathogenesis, clinical manifestation, and management of mucormycosis in patients who have COVID-19.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, India;
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, India
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Alakesh Bharali
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Hatkhowapara, Guwahati 781017, India;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
10
|
Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J Fungi (Basel) 2021; 7:jof7080667. [PMID: 34436206 PMCID: PMC8398317 DOI: 10.3390/jof7080667] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is a yeast of increasing medical relevance, particularly in critically ill patients. It is the second most isolated Candida species associated with invasive candidiasis (IC) behind C. albicans. The attributed higher incidence is primarily due to an increase in the acquired immunodeficiency syndrome (AIDS) population, cancer, and diabetic patients. The elderly population and the frequent use of indwelling medical devices are also predisposing factors. This work aimed to review various virulence factors that facilitate the survival of pathogenic C. glabrata in IC. The available published research articles related to the pathogenicity of C. glabrata were retrieved and reviewed from four credible databases, mainly Google Scholar, ScienceDirect, PubMed, and Scopus. The articles highlighted many virulence factors associated with pathogenicity in C. glabrata, including adherence to susceptible host surfaces, evading host defences, replicative ageing, and producing hydrolytic enzymes (e.g., phospholipases, proteases, and haemolysins). The factors facilitate infection initiation. Other virulent factors include iron regulation and genetic mutations. Accordingly, biofilm production, tolerance to high-stress environments, resistance to neutrophil killings, and development of resistance to antifungal drugs, notably to fluconazole and other azole derivatives, were reported. The review provided evident pathogenic mechanisms and antifungal resistance associated with C. glabrata in ensuring its sustenance and survival.
Collapse
Affiliation(s)
- Yahaya Hassan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano 700241, Nigeria;
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2373
| |
Collapse
|
11
|
Albayaty YN, Thomas N, Ramírez-García PD, Davis TP, Quinn JF, Whittaker MR, Prestidge CA. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Deliv Transl Res 2021; 11:1586-1597. [PMID: 33713317 DOI: 10.1007/s13346-021-00943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Infections caused by fungal biofilms with rapidly evolving resistance against the available antifungal agents are difficult to manage. These difficulties demand new strategies for effective eradication of biofilms from both biological and inert surfaces. In this study, polymeric micelles comprised of di-block polymer, poly-(ethylene glycol) methyl ether methacrylate and poly 2-(N,N-diethylamino) ethyl methacrylate polymer, P(PEGMA-b-DEAEMA), were observed to exhibit remarkable inhibitory effects on hyphal growth of Candida albicans (C. albicans) and C. tropicalis, thus preventing biofilm formation and removing existing biofilms. P(PEGMA-b-DEAEMA) micelles showed biofilm removal efficacy of > 40% and a 1.4-log reduction in cell viability of C. albicans in its single-species biofilms. In addition, micelles alone promoted high removal percentage in a mixed biofilm of C. albicans and C. tropicalis (~ 70%) and remarkably reduced cell viability of both strains. Co-delivery of fluconazole (Flu) and amphotericin B (AmB) with micelles showed synergistic effects on C. albicans biofilms (3-log reduction for AmB and 2.2-log reduction for Flu). Similar effects were noted on C. albicans planktonic cells when treated with the micellar system combined with AmB but not with Flu. Moreover, micelle-drug combinations showed an enhancement in the antibiofilm activity of Flu and AmB against dual-species biofilms. Furthermore, in vivo studies using Caenorhabditis elegans nematodes revealed no obvious toxicity of the micelles. Targeting morphologic transitions provides a new strategy for defeating fungal biofilms of polymorphic resistance strains and can be potentially used in counteracting Candida virulence.
Collapse
Affiliation(s)
- Yassamin N Albayaty
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville South, Woodville, SA, 5011, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville South, Woodville, SA, 5011, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
| | - Paulina D Ramírez-García
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia.
| |
Collapse
|
12
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
13
|
Nagy F, Tóth Z, Bozó A, Czeglédi A, Rebenku I, Majoros L, Kovács R. Fluconazole is not inferior than caspofungin, micafungin or amphotericin B in the presence of 50% human serum against Candida albicans and Candida parapsilosis biofilms. Med Mycol 2019; 57:573-581. [PMID: 30339227 DOI: 10.1093/mmy/myy108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2023] Open
Abstract
Biofilm formation is a relevant risk factor for mortality in candidemia. Data about serum-based susceptibility testing against Candida biofilms are scant; therefore, the activity of fluconazole, amphotericin B, caspofungin and micafungin was determined against Candida albicans and C. parapsilosis biofilms with or without 50% human serum using XTT-based assays. Serum caused a remarkable adverse effect regarding biofilm structure for both species. Additionally, the ratio of nonviable cells increased for C. parapsilosis biofilms, as confirmed by fluorescent microscopy and flow cytometry. Despite impaired biofilm development, traditionally biofilm-active antifungals, surprisingly, showed decreased activity against C. albicans biofilms in serum at concentrations ranging from 0.5 to 1 mg/l and from 0.015 to 1 mg/l for amphotericin B and echinocandins, respectively (P < .01-.05). However, C. parapsilosis showed higher susceptibility to these antifungals due to reduced biofilm mass and the fungicidal effect of serum at concentrations ranging from 0.015 to 1 mg/l and from 0.015 to 512 mg/l for amphotericin B and echinocandins, respectively (P < .01-.05). Fluconazole exerted better antifungal activity in serum than traditionally biofilm-active antifungals against both examined biofilms. For fluconazole, significant differences were observed in susceptibility between serum-treated and serum-free biofilms at concentrations ranging from 0.015 to 8 mg/l and from 0.03 to 512 mg/l for C. albicans and C. parapsilosis isolates, respectively (P < .01-.05). The high antifungal activity of fluconazole in 50% serum both against C. albicans and C. parapsilosis biofilms supports the utility of fluconazole prophylaxis to reduce the risk of catheter-associated fungal infections.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - András Czeglédi
- Department Pharmacology, Faculty of Pharmacy, University of Debrecen, Hungary, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - István Rebenku
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary, 4032 Debrecen, Egyetem sq. 1., Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, 4032 Debrecen, Nagyerdei krt 98, Hungary
| |
Collapse
|
14
|
Nagy F, Bozó A, Tóth Z, Daróczi L, Majoros L, Kovács R. In vitro antifungal susceptibility patterns of planktonic and sessile Candida kefyr clinical isolates. Med Mycol 2019; 56:493-500. [PMID: 28992253 DOI: 10.1093/mmy/myx062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
The activity of fluconazole, amphotericin B, caspofungin and micafungin was determined using XTT-based fungal damage assays against planktonic cells, early and mature biofilms of Candida kefyr. Median MICs of planktonic cells were 0.25 mg/l, 0.25 mg/l, 0.5 mg/l, and 0.06 mg/l for fluconazole, amphotericin B, caspofungin, and micafungin, respectively. Fluconazole showed at least 50% fungal damage at ≥4 mg/l (51.5% ± 6.63% to 78.38% ± 1.44%) and at ≥128 mg/l (57.88% ± 9.2% to 67.25% ± 9.59%), while amphotericin B produced an even higher anti-biofilm effect at ≥0.5 mg/l (64.63% ± 6.79% to 79.5% ± 5.9%) and at ≥0.12 mg/l (77.63% ± 8.43% to 92.75% ± 1.89%) against early and mature biofilms, respectively. In case of micafungin, 50% fungal damage was observed at ≥0.06 mg/l (66.88% ± 10.16% to 98.63% ± 1.24%) and ≥0.25 mg/l (74.13% ± 10.77% to 99.38% ± 0.38%) for early and mature biofilms, respectively. Caspofungin-exposed cells showed an unexpected susceptibility pattern, that is, planktonic cells showed significantly decreased susceptibility at concentrations ranging from 0.015 mg/l to 1 mg/l compared to biofilms (P < .05-.01). The damage in planktonic cells and biofilms was comparable at higher concentrations. For planktonic cells and biofilms, 50% fungal damage was observed first at 0.5 mg/l (59.75% ± 3.16%) and at 0.06 mg/l (70.25% ± 10.95%), respectively. This unexpected pattern was confirmed using scanning electron microscopy. The unusual susceptibility pattern observed at lower caspofungin concentrations may explain the poorer outcome of caspofungin-treated C. kefyr infections documented in certain patient populations. As this phenomenon was markedly less apparent in case of micafungin, these data suggest that micafungin may be a more reliable option than caspofungin for the treatment of C. kefyr infections.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Lajos Daróczi
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Hungary
| |
Collapse
|
15
|
Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model. PLoS One 2019; 14:e0212426. [PMID: 30779771 PMCID: PMC6380555 DOI: 10.1371/journal.pone.0212426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Objective The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model. Methods Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC90) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL). Results In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC90 of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC90 of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log10 cfu recovered from the catheter tips (CA176: 3.6±0.3 log10 CFU, p≤0.0001; CA180: 3.8±0.1 log10 CFU, p≤0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log10 CFU, p≤0.0001; CG334: 5.1 log10 CFU, p≤0.0001) Conclusions For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains.
Collapse
|
16
|
Larkin EL, Dharmaiah S, Ghannoum MA. Biofilms and beyond: expanding echinocandin utility. J Antimicrob Chemother 2019; 73:i73-i81. [PMID: 29304214 DOI: 10.1093/jac/dkx451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Echinocandins have been in use for over 15 years, starting with the first approval in 2001. Current trends, such as increasing resistance to fluconazole and shifts toward non-albicans spp. of Candida, suggest a growing role for echinocandins, as reflected by recent (2016) updates to guidelines that recommend echinocandins as first-line treatment for candidaemia. The efficacy, tolerability, and safety of echinocandins and their target site of action (1,3-β-d-glucan synthesis) have prompted research into potential new uses, such as for treatment of biofilm infections, MDR Candida auris and dermatophytes. Moreover, new mycobiome discoveries linking inflammatory bowel disease (IBD; for instance Crohn's disease) to fungi have led to preliminary but encouraging data regarding echinocandin therapy and treatment of IBD. In this article, we will review the available evidence and potential utility of echinocandins and 1,3-β-d-glucan synthesis inhibition in these areas of emerging interest.
Collapse
Affiliation(s)
- Emily L Larkin
- Center for Medical Mycology, 11100 Euclid Ave, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sharvari Dharmaiah
- Center for Medical Mycology, 11100 Euclid Ave, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, 11100 Euclid Ave, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
17
|
Fujimoto K, Takemoto K. Efficacy of liposomal amphotericin B against four species of Candida biofilms in an experimental mouse model of intravascular catheter infection. J Infect Chemother 2018; 24:958-964. [DOI: 10.1016/j.jiac.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023]
|
18
|
Okada N, Azuma M, Imanishi M, Zamami Y, Kirino Y, Nakamura T, Teraoka K, Abe M, Ishizawa K. Potential Usefulness of Early Potassium Supplementation for Preventing Severe Hypokalemia Induced by Liposomal Amphotericin B in Hematologic Patients: A Retrospective Study. Clin Ther 2018; 40:252-260. [PMID: 29305017 DOI: 10.1016/j.clinthera.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Liposomal amphotericin B (L-AMB) is an essential antifungal agent for patients with hematologic diseases; however, the drug causes severe hypokalemia at a high frequency. Meanwhile, there is little evidence regarding the risk factors for L-AMB-induced severe hypokalemia, and the prevention protocol has not been established. The goal of this study was to identify the risk factors related to severe hypokalemia induced by L-AMB in hematologic patients. METHODS Seventy-eight hematologic patients with a first administration of L-AMB were enrolled in the study. Eleven patients who had serum potassium levels <3.0 mmol/L before L-AMB administration and 12 patients who received L-AMB administration within 3 days were excluded. Patients who had a serum potassium level <3.0 mmol/L during L-AMB administration were classified into a hypokalemia group (n = 26), and those who had a serum potassium level ≥3.0 mmol/L were classified into a non-hypokalemia group (n = 29). The patient characteristics were analyzed retrospectively. In addition, the usefulness of potassium supplementation was analyzed for those patients who received potassium formulations (non-hypokalemia group, n = 15; hypokalemia group, n = 24). FINDINGS Twenty-six patients had hypolalemia after L-AMB administration. Hypokalemia with serum potassium levels <3.0 mmol/L was observed ~7 days after starting L-AMB administration. The patient characteristics, L-AMB dose, and L-AMB administration period did not differ between the 2 groups. In the patients who received potassium formulations, the period between starting L-AMB administration and starting potassium supplementation was significantly shorter in the non-hypokalemia group than in the hypokalemia group (median, 0 vs 4 days, respectively; P < 0.01); the potassium dose was not different between the 2 groups. A receiver-operating characteristic curve revealed that the cutoff time for the start of potassium supplementation to reduce the incidence of L-AMB-induced hypokalemia was 3 days. Multivariate logistic regression analysis revealed that beginning potassium supplementation within 2 days from the start of L-AMB administration was an independent factor reducing the risk of L-AMB-induced hypokalemia (odds ratio, 0.094 [95% CI, 0.019-0.47]). IMPLICATIONS This study showed that starting administration of a potassium formulation within 2 days from the start of L-AMB administration was a risk reduction factor for L-AMB-induced hypokalemia. This finding indicates that early potassium supplementation should be incorporated into the regimen of hypokalemia management when L-AMB is used.
Collapse
Affiliation(s)
- Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.
| | - Momoyo Azuma
- Department of Infection Control and Prevention, Tokushima University Hospital, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Kirino
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Toshimi Nakamura
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kazuhiko Teraoka
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
19
|
Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp. Pathogens 2017; 6:pathogens6040062. [PMID: 29194382 PMCID: PMC5750586 DOI: 10.3390/pathogens6040062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background: candidiasis is the primary fungal infection encountered in patients undergoing prolonged hospitalization, and the fourth leading cause of nosocomial bloodstream infections. One of the most important Candida spp. virulence factors is the ability to form biofilms, which are extremely refractory to antimicrobial therapy and very difficult to treat with the traditional antifungal therapies. It is known that the prophylaxis or treatment of a systemic candidiasis are recurrently taken without considering the possibility of a Candida spp. biofilm-related infections. Therefore, it is important to assess the effectiveness of the available drugs and which formulations have the best performance in these specific infections. Methods: 24-h-biofilms of four Candida spp. and their response to two amphotericin B (AmB) pharmaceutical formulations (liposomal and deoxycholate) were evaluated. Results: generally, Candida glabrata was the less susceptible yeast species to both AmBs. MBECs revealed that it is therapeutically more appealing to use AmB-L than AmB-Deox for all Candida spp. biofilms, since none of the determined concentrations of AmB-L reached 10% of the maximum daily dose, but both formulations showed a very good capacity in the biomass reduction. Conclusions: the liposomal formulation presents better performance in the eradication of the biofilm cells for all the species in comparison with the deoxycholate formulation.
Collapse
|
20
|
Gandra RM, Mc Carron P, Fernandes MF, Ramos LS, Mello TP, Aor AC, Branquinha MH, McCann M, Devereux M, Santos ALS. Antifungal Potential of Copper(II), Manganese(II) and Silver(I) 1,10-Phenanthroline Chelates Against Multidrug-Resistant Fungal Species Forming the Candida haemulonii Complex: Impact on the Planktonic and Biofilm Lifestyles. Front Microbiol 2017; 8:1257. [PMID: 28744261 PMCID: PMC5504357 DOI: 10.3389/fmicb.2017.01257] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Candida haemulonii, Candida haemulonii var. vulnera and Candida duobushaemulonii, which form the C. haemulonii complex, are emerging etiologic agents of fungal infections known to be resistant to the most commonly used antifungals. The well-established anti-Candida potential of metal complexes containing 1,10-phenanthroline (phen) ligands encouraged us to evaluate different copper(II), manganese(II), and silver(I) phen chelates for their ability to inhibit planktonic growth and biofilm of C. haemulonii species complex. Two novel coordination complexes, {[Cu(3,6,9-tdda)(phen)2].3H2O.EtOH}n and [Ag2(3,6,9-tdda)(phen)4].EtOH (3,6,9-tddaH2 = 3,6,9-trioxaundecanedioic acid), were synthesized in a similar fashion to the other, previously documented, sixteen copper(II), manganese(II), and silver(I) chelates employed herein. Three isolates of each C. haemulonii species complex were used and the effect of the metal chelates on viability was determined utilizing the CLSI standard protocol and on biofilm-growing cells using the XTT assay. Cytotoxicity of the chelates was evaluated by the MTT assay, employing lung epithelial cells. The majority of the metal chelates were capable of interfering with the viability of planktonic-growing cells of all the fungal isolates. The silver complexes were the most effective drugs (overall geometric mean of the minimum inhibitory concentration (GM-MIC) ranged from 0.26 to 2.16 μM), followed by the manganese (overall GM-MIC ranged from 0.87 to 10.71 μM) and copper (overall GM-MIC ranged from 3.37 to >72 μM) chelates. The manganese chelates (CC50 values ranged from 234.51 to >512 μM) were the least toxic to the mammalian cells, followed by the silver (CC50 values ranged from 2.07 to 13.63 μM) and copper (CC50 values ranged from 0.53 to 3.86 μM) compounds. When tested against mature biofilms, the chelates were less active, with MICs ranging from 2- to 33-fold higher levels when compared to the planktonic MIC counterparts. Importantly, manganese(II), copper(II), and silver(I) phen chelates are relatively cheap and easy to synthesize and they offer significant antifungal chemotherapeutic potential for the treatment of highly resistant pathogens.
Collapse
Affiliation(s)
- Rafael M Gandra
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,The Inorganic Pharmaceutical and Biomimetic Research Centre, Focas Research Institute, Dublin Institute of TechnologyDublin, Ireland
| | - Pauraic Mc Carron
- The Inorganic Pharmaceutical and Biomimetic Research Centre, Focas Research Institute, Dublin Institute of TechnologyDublin, Ireland.,Chemistry Department, Maynooth University, National University of IrelandMaynooth, Ireland
| | - Mariana F Fernandes
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lívia S Ramos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Thaís P Mello
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Ana Carolina Aor
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Malachy McCann
- Chemistry Department, Maynooth University, National University of IrelandMaynooth, Ireland
| | - Michael Devereux
- The Inorganic Pharmaceutical and Biomimetic Research Centre, Focas Research Institute, Dublin Institute of TechnologyDublin, Ireland
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
21
|
Kawai A, Yamagishi Y, Mikamo H. Time-Lapse Tracking of Candida tropicalis Biofilm Formation and the Antifungal Efficacy of Liposomal Amphotericin B. Jpn J Infect Dis 2017; 70:559-564. [PMID: 28674314 DOI: 10.7883/yoken.jjid.2016.574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Candida species bloodstream infection, or candidemia, remains an important health issue with high morbidity and mortality. Bloodstream infections caused by Candida species are often associated with the ability of Candida to form biofilms on medical devices, such as central venous catheters. Non-albicans Candida species have been increasing gradually in clinical settings. Another Candida species, C. tropicalis, has a propensity to form biofilms and is also an independent risk factor for high morbidity and mortality in hospitalized patients. This study was conducted to investigate the process of biofilm formation by C. tropicalis and the antifungal activity of liposomal amphotericin B (LAB) against both forming biofilms and developed biofilms using time-lapse imaging. We found that C. tropicalis has a high capacity for hyphal growth and gas generation due to its high metabolic activity. Thus, we visually observed the formation of aggressive C. tropicalis biofilms, which are fast-growing biofilms. We found that LAB acts immediately and completely inhibits forming biofilms. Furthermore, we demonstrated that LAB was effective against developed C. tropicalis biofilms by reducing the growth of hyphae and morphological changes. These results suggest that LAB may be effective for the treatment of infections caused by catheter-related C. tropicalis biofilms.
Collapse
Affiliation(s)
- Akira Kawai
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine
| |
Collapse
|
22
|
Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J. Comparison of the antifungal activity of micafungin and amphotericin B against Candida tropicalis biofilms. J Antimicrob Chemother 2016; 71:2498-501. [PMID: 27147303 DOI: 10.1093/jac/dkw162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Candida tropicalis is the fourth most common cause of candidaemia in hospitalized patients and associated mortality is high. C. tropicalis frequently causes biofilm-related infections. Echinocandins and amphotericin B show potent in vitro activity against C. albicans biofilms, but their activity against C. tropicalis biofilms has received little attention. METHODS We studied production of biofilm by 54 C. tropicalis isolates from blood and the antifungal susceptibility of these isolates to micafungin, amphotericin B and liposomal amphotericin B. Biofilm production was measured using the crystal violet assay to determine biomass and the XTT reduction assay to determine metabolic activity. The antifungal susceptibility of planktonic and sessile cells was measured using the EUCAST EDef 7.2 procedure and XTT reduction assay, respectively. The sessile MIC endpoint of SMIC80 was defined as an 80% reduction in the metabolic activity of the biofilm treated with the antifungal compared with the control well. RESULTS The three drugs were very active against the isolates in planktonic form, with micafungin showing the highest activity (P < 0.001). Micafungin was the most active agent against C. tropicalis biofilms (P < 0.001). In contrast, liposomal amphotericin B showed poor antifungal activity. CONCLUSIONS Micafungin was the most active drug against C. tropicalis biofilm. Although the echinocandins and liposomal amphotericin B are considered very active against Candida spp. biofilms, this is not true for C. tropicalis, as liposomal amphotericin B showed poor antifungal activity against biofilms.
Collapse
Affiliation(s)
- Laura Judith Marcos-Zambrano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|