1
|
Kamitaki N, Hujoel MLA, Mukamel RE, Gebara E, McCarroll SA, Loh PR. A sequence of SVA retrotransposon insertions in ASIP shaped human pigmentation. Nat Genet 2024; 56:1583-1591. [PMID: 39048794 PMCID: PMC11319198 DOI: 10.1038/s41588-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Retrotransposons comprise about 45% of the human genome1, but their contributions to human trait variation and evolution are only beginning to be explored2,3. Here, we find that a sequence of SVA retrotransposon insertions in an early intron of the ASIP (agouti signaling protein) gene has probably shaped human pigmentation several times. In the UK Biobank (n = 169,641), a recent 3.3-kb SVA insertion polymorphism associated strongly with lighter skin pigmentation (0.22 [0.21-0.23] s.d.; P = 2.8 × 10-351) and increased skin cancer risk (odds ratio = 1.23 [1.18-1.27]; P = 1.3 × 10-28), appearing to underlie one of the strongest common genetic influences on these phenotypes within European populations4-6. ASIP expression in skin displayed the same association pattern, with the SVA insertion allele exhibiting 2.2-fold (1.9-2.6) increased expression. This effect had an unusual apparent mechanism: an earlier, nonpolymorphic, human-specific SVA retrotransposon 3.9 kb upstream appeared to have caused ASIP hypofunction by nonproductive splicing, which the new (polymorphic) SVA insertion largely eliminated. Extended haplotype homozygosity indicated that the insertion allele has risen to allele frequencies up to 11% in European populations over the past several thousand years. These results indicate that a sequence of retrotransposon insertions contributed to a species-wide increase, then a local decrease, of human pigmentation.
Collapse
Affiliation(s)
- Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward Gebara
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Kim B, Kim DS, Shin JG, Leem S, Cho M, Kim H, Gu KN, Seo JY, You SW, Martin AR, Park SG, Kim Y, Jeong C, Kang NG, Won HH. Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nat Commun 2024; 15:4874. [PMID: 38849341 PMCID: PMC11161515 DOI: 10.1038/s41467-024-49031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Evidence for adaptation of human skin color to regional ultraviolet radiation suggests shared and distinct genetic variants across populations. However, skin color evolution and genetics in East Asians are understudied. We quantified skin color in 48,433 East Asians using image analysis and identified associated genetic variants and potential causal genes for skin color as well as their polygenic interplay with sun exposure. This genome-wide association study (GWAS) identified 12 known and 11 previously unreported loci and SNP-based heritability was 23-24%. Potential causal genes were determined through the identification of nonsynonymous variants, colocalization with gene expression in skin tissues, and expression levels in melanocytes. Genomic loci associated with pigmentation in East Asians substantially diverged from European populations, and we detected signatures of polygenic adaptation. This large GWAS for objectively quantified skin color in an East Asian population improves understanding of the genetic architecture and polygenic adaptation of skin color and prioritizes potential causal genes.
Collapse
Affiliation(s)
- Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Dan Say Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Joong-Gon Shin
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Sangseob Leem
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Minyoung Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hanji Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Ki-Nam Gu
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Jung Yeon Seo
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Seung Won You
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02141, USA
| | - Sun Gyoo Park
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Yunkwan Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nae Gyu Kang
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea.
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
3
|
Ng JY, Zhou H, Li T, Chew FT. Comparisons between wrinkles and photo-ageing detected and self-reported by the participant or identified by trained assessors reveal insights from Chinese individuals in the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. J Physiol Anthropol 2024; 43:14. [PMID: 38762735 PMCID: PMC11102249 DOI: 10.1186/s40101-024-00361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Changes develop on the facial skin as a person ages. Other than chronological time, it has been discovered that gender, ethnicity, air pollution, smoking, nutrition, and sun exposure are notable risk factors that influence the development of skin ageing phenotypes such as wrinkles and photo-ageing. These risk factors can be quantified through epidemiological collection methods. We previously studied wrinkles and photo-ageing in detail using photo-numeric scales. The analysis was performed on the ethnic Chinese skin by three trained assessors. Recent studies have shown that it is possible to use self-reported data to identify skin-related changes including skin colour and skin cancer. In order to investigate the association between risk factors and skin ageing phenotypic outcomes in large-scale epidemiological studies, it would be useful to evaluate whether it is also possible for participants to self-report signs of ageing on their skin. AIM We have previously identified several validated photo-numeric scales for wrinkling and photo-ageing to use on ethnic Chinese skin. Using these scales, our trained assessors grade wrinkling and photo-ageing with moderately high inter-assessor concordance and agreement. The main objective of this study involves letting participants grade self-reported wrinkling and photo-ageing using these same scales. We aim to compare the concordance and agreement between signs of skin ageing by the participant and signs of ageing identified by our assessors. METHOD Three trained assessors studied facial photo-ageing on 1081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. Self-reported facial photo-ageing data by the same 1081 participants were also collated and the two sets of data are compared. RESULTS Here, we found that self-reported signs of photo-ageing are concordant with photo-ageing detected by our assessors. This finding is consistent whether photo-ageing is evaluated through studying wrinkle variations (Spearman's rank correlation (ρ) value: 0.246-0.329) or through studying dyspigmentation patterns (Spearman's rank correlation (ρ) value 0.203-0.278). When studying individual wrinkles, both participants and assessors often detect the presence of the same wrinkle (Spearman's rank correlation (ρ) value 0.249-0.366). A weak-to-fair level of agreement between both participants and assessors (Cohen's kappa (κ) values: 0.041-0.233) persists and is statistically significant after accounting for agreements due to chance. Both the participant and the assessor are largely consistent in evaluating the extent of photo-ageing (area under curve (AUC) values 0.689-0.769) and in discerning between the presence or absence of a given facial wrinkle (area under curve (AUC) values 0.601-0.856). CONCLUSION When we analyse the overall appearance of the face, our results show that signs of photo-ageing identified by the participant are concordant with signs of photo-ageing identified by our assessors. When we focused our analysis on specific areas of the face, we found that participants were more likely to identify and self-report the same wrinkles that our assessors have also detected. Here, we found that self-reported signs of skin ageing provide a satisfactory approximation to the signs of skin ageing identified by our assessors. The ability to use self-reported signs of skin ageing should also be evaluated on scales beyond the ones discussed in this study. Currently, there are not as many photo-numeric scales for quantifying dyspigmentation patterns as there are for quantifying wrinkle variations. As Chinese skin is known to become dyspigmented more easily with age, more photo-numeric scales need to be developed and properly validated.
Collapse
Affiliation(s)
- Jun Yan Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hongyu Zhou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Tianqi Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Ng JY, Chew FT. Comparisons between eyebags, droopy eyelids, and eyebrow positioning identified by photo-numeric scales or identified by written descriptive scales: Insights from the Singapore/Malaysia cross-sectional genetics epidemiology study (SMCGES) cohort. Skin Res Technol 2024; 30:e13620. [PMID: 38376131 PMCID: PMC10878178 DOI: 10.1111/srt.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/23/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND We evaluate skin sagging phenotypes (eyebags, droopy eyelids, low eyebrow positioning) using written descriptive scales and photo-numeric scales. We also study how anti-ageing interventions and digital screen time influence skin sagging. AIM We compare the two phenotype assessment methods with each other. METHOD Skin sagging and personal lifestyle data obtained from 2885 ethnic Chinese young adults from the Singapore/Malaysia cross-sectional genetics epidemiology study (SMCGES) cohort were collated and compared. RESULTS Significant correlations (p-value < 0.001) between written descriptive scales and photo-numeric scales were observed for eyebags (0.25) and eyebrow positioning (0.08). Significant correlations (p-value < 0.001) were observed after combining both scales for eyebags (0.38), droopy eyelids (0.30), and eyebrow positioning (0.30). Anti-ageing interventions are associated with delayed progression of eyebags from 18-45 years old, droopy eyelids from 31-45 years old, and eyebrow positioning from 35-40 years old. Significantly lower (p-value < 0.02) eyebrow positioning is associated with both <1 and 1-3 h of screen time stratified by age. CONCLUSION Written descriptive scales provide comparable results to photo-numeric scales. However, validating and adapting photo-numeric scales for different populations identifies phenotypes better. Anti-ageing interventions are beneficial at different age ranges. Screen time is associated with skin sagging in young (18-30 years old) participants.
Collapse
Affiliation(s)
- Jun Yan Ng
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Fook Tim Chew
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Kawai Y, Watanabe Y, Omae Y, Miyahara R, Khor SS, Noiri E, Kitajima K, Shimanuki H, Gatanaga H, Hata K, Hattori K, Iida A, Ishibashi-Ueda H, Kaname T, Kanto T, Matsumura R, Miyo K, Noguchi M, Ozaki K, Sugiyama M, Takahashi A, Tokuda H, Tomita T, Umezawa A, Watanabe H, Yoshida S, Goto YI, Maruoka Y, Matsubara Y, Niida S, Mizokami M, Tokunaga K. Exploring the genetic diversity of the Japanese population: Insights from a large-scale whole genome sequencing analysis. PLoS Genet 2023; 19:e1010625. [PMID: 38060463 PMCID: PMC10703243 DOI: 10.1371/journal.pgen.1010625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
The Japanese archipelago is a terminal location for human migration, and the contemporary Japanese people represent a unique population whose genomic diversity has been shaped by multiple migrations from Eurasia. We analyzed the genomic characteristics that define the genetic makeup of the modern Japanese population from a population genetics perspective from the genomic data of 9,287 samples obtained by high-coverage whole-genome sequencing (WGS) by the National Center Biobank Network. The dataset comprised populations from the Ryukyu Islands and other parts of the Japanese archipelago (Hondo). The Hondo population underwent two episodes of population decline during the Jomon period, corresponding to the Late Neolithic, and the Edo period, corresponding to the Early Modern era, while the Ryukyu population experienced a population decline during the shell midden period of the Late Neolithic in this region. Haplotype analysis suggested increased allele frequencies for genes related to alcohol and fatty acid metabolism, which were reported as loci that had experienced positive natural selection. Two genes related to alcohol metabolism were found to be 12,500 years out of phase with the time when they began to increase in the allele frequency; this finding indicates that the genomic diversity of Japanese people has been shaped by events closely related to agriculture and food production.
Collapse
Affiliation(s)
- Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Watanabe
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Reiko Miyahara
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eisei Noiri
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| | - Koji Kitajima
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
- Department of Data Science Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Shimanuki
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
- Department of Data Science Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Ryo Matsumura
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kengo Miyo
- Center for Medical Informatics Intelligence, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Michio Noguchi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ayako Takahashi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Haruhiko Tokuda
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tsutomu Tomita
- NCVC Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, Research Institute, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Watanabe
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Innovation Center for Translational Research, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sumiko Yoshida
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yu-ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Maruoka
- Department of Oral and Maxillofacial Surgery, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Okuno R, Inoue Y, Hasebe Y, Igarashi T, Kawagishi-Hotta M, Yamada T, Hasegawa S. Genome-wide association studies in the Japanese population identified genetic loci and target gene associated with epidermal turnover. Exp Dermatol 2023; 32:1856-1863. [PMID: 37551986 DOI: 10.1111/exd.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The epidermis is an essential organ for life by retaining water and as a protective barrier. The epidermis is maintained through metabolism, in which basal cells produced from epidermal stem cells differentiate into spinous cells, granular cells and corneocytes, and are finally shed from the epidermal surface. This is epidermal turnover, and with aging, there is a decline in epidermis function. Other factors that may affect epidermal turnover include ultraviolet damage and genetic factors. These genetic factors are of particular interest as little is known. Although recent skin-focused genome-wide association studies (GWAS) have been conducted, the genetic regions associated with epidermal turnover are almost uninvestigated. Therefore, we conducted a GWAS on epidermal turnover in the Japanese population, using the corneocyte area, which correlates to the rate of epidermal turnover, as an indicator. As a result, rs2278431 (p = 1.29 × 10-7 ) in 19q13.2 was associated with corneocyte size. Furthermore, eQTL analysis suggested that rs2278431 was related to the SPINT2 gene. In addition, SPINT2 knockdown studies using epidermal keratinocytes revealed that SPINT2 is involved in keratinocyte proliferation and in corneocyte size regulation in reconstructed epidermis. These results suggest that rs2278431 is involved in the expression of SPINT2 and affects epidermal turnover.
Collapse
Affiliation(s)
- Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Amano S, Yoshikawa T, Ito C, Mabuchi I, Kikuchi K, Ooguri M, Yasuda C. Prediction and association analyses of skin phenotypes in Japanese females using genetic, environmental, and physical features. Skin Res Technol 2023; 29:e13231. [PMID: 36437544 PMCID: PMC9838785 DOI: 10.1111/srt.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin characteristics show great variation from person to person and are affected by multiple factors, including genetic, environmental, and physical factors, but details of the involvement and contributions of these factors remain unclear. OBJECTIVES We aimed to characterize genetic, environmental, and physical factors affecting 16 skin features by developing models to predict personal skin characteristics. METHODS We analyzed the associations of skin phenotypes with genetic, environmental, and physical features in 1472 Japanese females aged 20-80 years. We focused on 16 skin characteristics, including melanin, brightness/lightness, yellowness, pigmented spots, wrinkles, resilience, moisture, barrier function, texture, and sebum amount. As genetic factors, we selected 74 single-nucleotide polymorphisms of genes related to skin color, vitamin level, hormones, circulation, extracellular matrix (ECM) components and ECM-degrading enzymes, inflammation, and antioxidants. Histories of ultraviolet (UV) exposure and smoking as environmental factors and age, height, and weight as physical factors were acquired by means of a questionnaire. RESULTS A linear association with age was prominent for increase in the area of crow's feet, increase in number of pigmented spots, decrease in forehead sebum, and increase in VISIA wrinkle parameters. Associations were analyzed by constructing linear regression models for skin feature changes and logistic regression models to predict whether subjects show lower or higher skin measurement values in the same age groups. Multiple genetic factors, history of UV exposure and smoking, and body mass index were statistically selected for each skin characteristic. The most important association found for skin spots, such as lentigines and wrinkles, was adolescent sun exposure. CONCLUSION Genetic, environmental, and physical factors associated with interindividual differences of the selected skin features were identified. The developed models should be useful to predict the skin characteristics of individuals and their age-related changes.
Collapse
Affiliation(s)
- Satoshi Amano
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Tatsuya Yoshikawa
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chiaki Ito
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Ikumi Mabuchi
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Kumiko Kikuchi
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Motoki Ooguri
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chie Yasuda
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Wang P, Sun X, Miao Q, Mi H, Cao M, Zhao S, Wang Y, Shu Y, Li W, Xu H, Bai D, Zhang Y. Novel genetic associations with five aesthetic facial traits: A genome-wide association study in the Chinese population. Front Genet 2022; 13:967684. [PMID: 36035146 PMCID: PMC9411802 DOI: 10.3389/fgene.2022.967684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The aesthetic facial traits are closely related to life quality and strongly influenced by genetic factors, but the genetic predispositions in the Chinese population remain poorly understood. Methods: A genome-wide association studies (GWAS) and subsequent validations were performed in 26,806 Chinese on five facial traits: widow’s peak, unibrow, double eyelid, earlobe attachment, and freckles. Functional annotation was performed based on the expression quantitative trait loci (eQTL) variants, genome-wide polygenic scores (GPSs) were developed to represent the combined polygenic effects, and single nucleotide polymorphism (SNP) heritability was presented to evaluate the contributions of the variants. Results: In total, 21 genetic associations were identified, of which ten were novel: GMDS-AS1 (rs4959669, p = 1.29 × 10−49) and SPRED2 (rs13423753, p = 2.99 × 10−14) for widow’s peak, a previously unreported trait; FARSB (rs36015125, p = 1.96 × 10−21) for unibrow; KIF26B (rs7549180, p = 2.41 × 10−15), CASC2 (rs79852633, p = 4.78 × 10−11), RPGRIP1L (rs6499632, p = 9.15 × 10−11), and PAX1 (rs147581439, p = 3.07 × 10−8) for double eyelid; ZFHX3 (rs74030209, p = 9.77 × 10−14) and LINC01107 (rs10211400, p = 6.25 × 10−10) for earlobe attachment; and SPATA33 (rs35415928, p = 1.08 × 10−8) for freckles. Functionally, seven identified SNPs tag the missense variants and six may function as eQTLs. The combined polygenic effect of the associations was represented by GPSs and contributions of the variants were evaluated using SNP heritability. Conclusion: These identifications may facilitate a better understanding of the genetic basis of features in the Chinese population and hopefully inspire further genetic research on facial development.
Collapse
Affiliation(s)
- Peiqi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinghan Sun
- Genomic & Phenomic Data Center, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Mi
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyi Wang
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| |
Collapse
|
9
|
Ng JY, Chew FT. A systematic review of skin ageing genes: gene pleiotropy and genes on the chromosomal band 16q24.3 may drive skin ageing. Sci Rep 2022; 12:13099. [PMID: 35907981 PMCID: PMC9338925 DOI: 10.1038/s41598-022-17443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Skin ageing is the result of intrinsic genetic and extrinsic lifestyle factors. However, there is no consensus on skin ageing phenotypes and ways to quantify them. In this systematic review, we first carefully identified 56 skin ageing phenotypes from multiple literature sources and sought the best photo-numeric grading scales to evaluate them. Next, we conducted a systematic review on all 44 Genome-wide Association Studies (GWAS) on skin ageing published to date and identified genetic risk factors (2349 SNPs and 366 genes) associated with skin ageing. We identified 19 promising SNPs found to be significantly (p-Value < 1E-05) associated with skin ageing phenotypes in two or more independent studies. Here we show, using enrichment analyses strategies and gene expression data, that (1) pleiotropy is a recurring theme among skin ageing genes, (2) SNPs associated with skin ageing phenotypes are mostly located in a small handful of 44 pleiotropic and hub genes (mostly on the chromosome band 16q24.3) and 32 skin colour genes. Since numerous genes on the chromosome band 16q24.3 and skin colour genes show pleiotropy, we propose that (1) genes traditionally identified to contribute to skin colour have more than just skin pigmentation roles, and (2) further progress towards understand the development of skin pigmentation requires understanding the contributions of genes on the chromosomal band 16q24.3. We anticipate our systematic review to serve as a hub to locate primary literature sources pertaining to the genetics of skin ageing and to be a starting point for more sophisticated work examining pleiotropic genes, hub genes, and skin ageing phenotypes.
Collapse
Affiliation(s)
- Jun Yan Ng
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, Faculty of Science, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, Faculty of Science, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Okuno R, Inoue Y, Hasebe Y, Igarashi T, Kawagishi-Hotta M, Yamada T, Hasegawa S. Genome-wide association studies in Japanese women identified genetic loci associated with wrinkles and sagging. Exp Dermatol 2022; 31:1411-1420. [PMID: 35587111 DOI: 10.1111/exd.14612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Wrinkles and sagging are caused by various factors, such as ultraviolet rays; however, recent findings demonstrated that some individuals are genetically predisposed to these phenotypes of skin aging. The contribution of single nucleotide polymorphisms (SNPs) to the development of wrinkles and sagging has been demonstrated in genome-wide association studies (GWAS). However, these findings were mainly obtained from European and Chinese populations. Limited information is currently available on the involvement of SNPs in the development of wrinkles and sagging in a Japanese population. Therefore, we herein performed GWAS on wrinkles at the outer corners of the eyes and nasolabial folds in 1041 Japanese women. The results obtained revealed that 5 SNPs (19p13.2: rs2303098 (p = 3.39×10-8 ), rs56391955 (p = 3.39×10-8 ), rs67560822 (p = 3.50×10-8 ), rs889126 (p = 3.78×10-8 ), rs57490083 (p = 3.99×10-8 )) located within the COL5A3 gene associated with wrinkles at the outer corners of the eyes. Regarding nasolabial folds, 8q24.11 (rs4876369; p = 1.05×10-7 , rs6980503; p = 1.25×10-7 , rs61027543; p = 1.25×10-7 , rs16889363; p = 1.38×10-7 ) was suggested to be associated with RAD21 gene expression. These SNPs have not been reported in other populations, and were first found in Japanese women population. These SNPs may be used as markers to examine the genetic predisposition of individuals to wrinkles and sagging.
Collapse
Affiliation(s)
- Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
GWAS Identifies Multiple Genetic Loci for Skin Color in Korean Women. J Invest Dermatol 2021; 142:1077-1084. [PMID: 34648798 DOI: 10.1016/j.jid.2021.08.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
Human skin color is largely determined by genetic factors. Recent GWASs have reported several genetic variants associated with skin color, mostly in European and African populations. In this study, we performed GWAS in 17,019 Korean women to identify genetic variants associated with facial skin color, quantitatively measured as CIELAB color index. We identified variants in three, one, and six genomic loci associated with facial skin color index L∗, a∗, and b∗ values, respectively, and replicated the associations (combined analysis P-value < 5.0 × 10-8). The significant loci included variants in known genes (OCA2 rs74653330, BNC2 rs16935073, rs72620727 near KITLG, and SLC6A17 rs6689641) and to our knowledge previously unreported genes (SCARB1 rs10846744, SYN2 rs12629034, and LINC00486 rs6543678). This is GWAS to elucidate genetic variants of facial skin color in a Korean female population. Further functional characterizations of the investigated genes are warranted to elucidate their contribution to skin pigmentation-related traits.
Collapse
|
12
|
Shido K, Kojima K, Yoshida-Akai S, Kikuchi K, Hatamochi A, Aiba S, Yamasaki K. Ehlers-Danlos syndrome type IV with a novel COL3A1 exon 14 skipping variation confirmed by Tohoku Medical Megabank Organization genomic database. J Dermatol 2021; 48:1918-1922. [PMID: 34453356 DOI: 10.1111/1346-8138.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
A novel COL3A1 variant was identified in a Japanese case of Ehlers-Danlos syndrome type IV (EDS-IV) with a characteristic "Madonna" face, fragile uterus, and easy bruising in addition to a history of cavernous sinus fistula. We confirmed variable diameters of collagen fibrils in the dermis and decrease in type 3 collagen production from cultured fibroblasts. Genomic DNA sequencing of the COL3A1 region and COL3A1 cDNA sequence expressing in cultured fibroblasts identified that a nucleotide variation at c.951+2T>G on intron 14 leads to skipping of exon 14 in COL3A1 cDNA. The novel variation in the splice site of COL3A1 region g.IVS14+2T>G was not listed in the EDS-IV pathogenic genetic databases including Human Gene Mutation Database, ClinVar, and Leiden Open Variation Database. Using the whole genome sequence database of 8380 Japanese individuals reported by the Tohoku Medical Megabank Organization (ToMMo) cohort study, we also confirmed that COL3A1 g.IVS14+2T>G was not a common single nucleotide variation in the Japanese population, although 13 EDS-related COL3A1 variants were identified in the ToMMo database of 8380 Japanese individuals. These results demonstrated that our case of EDS-IV was a result of the novel variation of COL3A1 g.IVS14+2T>G. These statistical genetics approaches with the combination of the ToMMo database of 8380 Japanese individuals and pathogenic genetic databases are a useful method to confirm the uniqueness of novel variation in Japanese.
Collapse
Affiliation(s)
- Kosuke Shido
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | | | - Katsuko Kikuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Hatamochi
- Department of Dermatology, Dokkyo Medical University Graduate School of Medicine, Shimotsuga-gun, Tochigi, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Inoue Y, Hasebe Y, Igarashi T, Kawagishi-Hotta M, Okuno R, Yamada T, Hasegawa S. Search for genetic loci involved in the constitution and skin type of a Japanese women using a genome-wide association study. Exp Dermatol 2021; 30:1787-1793. [PMID: 34265127 DOI: 10.1111/exd.14430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023]
Abstract
The constitution and skin type of individuals are influenced by various factors. Recently, the influence of genetic predispositions on these has been emphasized. To date, genome-wide association studies (GWAS) have shown several single nucleotide polymorphisms (SNPs) that affect individual's constitution and skin type. However, these studies have mainly focused on the Caucasian population, and only a few association analyses with the constitution and skin type of individuals involving a Japanese population have been conducted. In this study, we conducted a GWAS analysis of 9 phenotypes regarding the constitution or skin type of 1108 Japanese women based on a questionnaire. As a result, in addition to SNPs known to be involved in phenotypes in the past, we discovered new SNPs and genetic regions related to darkness of pigmented spots, skin flushing, frequency of rough skin and responsiveness to cosmetics.
Collapse
Affiliation(s)
- Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Kojima K, Shido K, Tamiya G, Yamasaki K, Kinoshita K, Aiba S. Facial UV photo imaging for skin pigmentation assessment using conditional generative adversarial networks. Sci Rep 2021; 11:1213. [PMID: 33441756 PMCID: PMC7806902 DOI: 10.1038/s41598-020-79995-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Skin pigmentation is associated with skin damages and skin cancers, and ultraviolet (UV) photography is used as a minimally invasive mean for the assessment of pigmentation. Since UV photography equipment is not usually available in general practice, technologies emphasizing pigmentation in color photo images are desired for daily care. We propose a new method using conditional generative adversarial networks, named UV-photo Net, to generate synthetic UV images from color photo images. Evaluations using color and UV photo image pairs taken by a UV photography system demonstrated that pigment spots were well reproduced in synthetic UV images by UV-photo Net, and some of the reproduced pigment spots were difficult to be recognized in color photo images. In the pigment spot detection analysis, the rate of pigment spot areas in cheek regions for synthetic UV images was highly correlated with the rate for UV photo images (Pearson's correlation coefficient 0.92). We also demonstrated that UV-photo Net was effective for floating up pigment spots for photo images taken by a smartphone camera. UV-photo Net enables an easy assessment of pigmentation from color photo images and will promote self-care of skin damages and early signs of skin cancers for preventive medicine.
Collapse
Affiliation(s)
- Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Kosuke Shido
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Tohoku University Graduate School of Information Sciences, Sendai, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Nakamura R, Misawa K, Tohnai G, Nakatochi M, Furuhashi S, Atsuta N, Hayashi N, Yokoi D, Watanabe H, Watanabe H, Katsuno M, Izumi Y, Kanai K, Hattori N, Morita M, Taniguchi A, Kano O, Oda M, Shibuya K, Kuwabara S, Suzuki N, Aoki M, Ohta Y, Yamashita T, Abe K, Hashimoto R, Aiba I, Okamoto K, Mizoguchi K, Hasegawa K, Okada Y, Ishihara T, Onodera O, Nakashima K, Kaji R, Kamatani Y, Ikegawa S, Momozawa Y, Kubo M, Ishida N, Minegishi N, Nagasaki M, Sobue G. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun Biol 2020; 3:526. [PMID: 32968195 PMCID: PMC7511394 DOI: 10.1038/s42003-020-01251-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS. Gen Sobue, Masao Nagasaki and colleagues report a genome-wide association study for amyotrophic lateral sclerosis (ALS) in a large, multi-ethnic cohort comprising Japanese, Chinese, and European ancestry populations. They find a significant association to variants within the ACSL5 gene and identify novel associations with 4 additional genes using a gene-based approach.
Collapse
Affiliation(s)
- Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuharu Misawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Department of Molecular Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahiro Nakatochi
- Division of Data Science, Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sho Furuhashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Hayashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Neurology, Kakeyu-Misayama Rehabilitation Center Kakeyu Hospital, Ueda, Nagano, Japan
| | - Hazuki Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuaki Kanai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Osamu Kano
- Division of Neurology, Department of Internal Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Rina Hashimoto
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Kouichi Mizoguchi
- Department of Neurology, National Hospital Organization Shizuoka Medical Center, Shizuoka, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Nakashima
- Department of Neurology, National Hospital Organization, Matsue Medical Center, Matsue, Shimane, Japan
| | - Ryuji Kaji
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan. .,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Sakyo-ku, Kyoto, Japan. .,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan. .,Aichi Medical University, Nagakute, Aichi, Japan.
| |
Collapse
|
16
|
GWAS Analysis of 17,019 Korean Women Identifies the Variants Associated with Facial Pigmented Spots. J Invest Dermatol 2020; 141:555-562. [PMID: 32835660 DOI: 10.1016/j.jid.2020.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
Variation in skin pigmentation can be affected by both environmental factors and intrinsic factors such as age, gender, and genetic variation. Recent GWASs revealed that genetic variants of genes functionally related to a pigmentation pathway were associated with skin pigmentary traits. However, these GWASs focused on populations with European ancestry, and only a few studies have been performed on Asian populations, limiting our understanding of the genetic basis of skin pigmentary traits in Asians. To evaluate the genetic variants associated with facial pigmented spots, we conducted a GWAS analysis of objectively measured facial pigmented spots in 17,019 Korean women. This large-scale GWAS identified several genomic loci that were significantly associated with facial pigmented spots (five previously reported loci and two previously unreported loci, to our knowledge), which were detected by UV light: BNC2 at 9p22 (rs16935073; P-value = 2.11 × 10-46), PPARGC1B at 5q32 (rs32579; P-value = 9.04 × 10-42), 10q26 (rs11198112; P-value = 9.66 × 10-38), MC1R at 16q24 (rs2228479; P-value = 6.62 × 10-21), lnc01877 at 2q33 (rs12693889; P-value = 1.59 × 10-11), CDKN2B-AS1 at 9p21 (rs643319; P-value = 7.76 × 10-9), and MFSD12 at 19p13 (rs2240751; P-value = 9.70 × 10-9). Further functional characterization of the candidate genes needs to be done to fully evaluate their contribution to facial pigmented spots.
Collapse
|