1
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
2
|
Tian R, Tang S, Zhao J, Hao Y, Zhao L, Han X, Wang X, Zhang L, Li R, Zhou X. β-Hydroxybutyrate Protects Against Cisplatin-Induced Renal Damage via Regulating Ferroptosis. Ren Fail 2024; 46:2354918. [PMID: 38757723 PMCID: PMC11104694 DOI: 10.1080/0886022x.2024.2354918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that β-hydroxybutyrate (β-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of β-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or β-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of β-HB on cisplatin-induced AKI. Exogenous or endogenous β-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, β-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. β-HB also improved mitochondrial morphology and function. Moreover, β-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that β-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by β-HB. This study provided evidence of the protective effects of β-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.
Collapse
Affiliation(s)
- Ruixue Tian
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shuqin Tang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingyu Zhao
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yajie Hao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiutao Han
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xingru Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
3
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X, Jin HC, Feng LF. The regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy. Acta Pharmacol Sin 2024; 45:2229-2240. [PMID: 39020084 PMCID: PMC11489423 DOI: 10.1038/s41401-024-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, 321000, China
| | - Wei-Kai Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Yuan Zhu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hong-Chuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Li-Feng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
6
|
Song I, Jeong Y, Yun JK, Lee J, Yang H, Park Y, Kim S, Hong S, Lee PC, Lee GD, Jang S. TIPRL Regulates Stemness and Survival in Lung Cancer Stem Cells through CaMKK2-CaMK4-CREB Feedback Loop Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406309. [PMID: 39076120 PMCID: PMC11423089 DOI: 10.1002/advs.202406309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.
Collapse
Affiliation(s)
- In‐Sung Song
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Yu‐Jeong Jeong
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Hae‐Jun Yang
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
| | - Young‐Ho Park
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Seung‐Mo Hong
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Peter C.W. Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Geun Dong Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Sung‐Wuk Jang
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| |
Collapse
|
7
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
8
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
9
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
10
|
Li S, Fan R, Wang Y, He K, Xu J, Li H. Application of calcium overload-based ion interference therapy in tumor treatment: strategies, outcomes, and prospects. Front Pharmacol 2024; 15:1352377. [PMID: 38425645 PMCID: PMC10902152 DOI: 10.3389/fphar.2024.1352377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Low selectivity and tumor drug resistance are the main hinderances to conventional radiotherapy and chemotherapy against tumor. Ion interference therapy is an innovative anti-tumor strategy that has been recently reported to induce metabolic disorders and inhibit proliferation of tumor cells by reordering bioactive ions within the tumor cells. Calcium cation (Ca2+) are indispensable for all physiological activities of cells. In particular, calcium overload, characterized by the abnormal intracellular Ca2+ accumulation, causes irreversible cell death. Consequently, calcium overload-based ion interference therapy has the potential to overcome resistance to traditional tumor treatment strategies and holds promise for clinical application. In this review, we 1) Summed up the current strategies employed in this therapy; 2) Described the outcome of tumor cell death resulting from this therapy; 3) Discussed its potential application in synergistic therapy with immunotherapy.
Collapse
Affiliation(s)
- Shuangjiang Li
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruicheng Fan
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yuekai Wang
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Kunqian He
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Jinhe Xu
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Bao J, Wang Z, Yang Y, Yu X, Yuan W, Sun W, Chen L. Interleukin-17 alleviates erastin-induced alveolar bone loss by suppressing ferroptosis via interaction between NRF2 and p-STAT3. J Clin Periodontol 2024; 51:233-250. [PMID: 37961757 DOI: 10.1111/jcpe.13898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
AIM To investigate the relationship between interleukin-17 (IL-17), ferroptosis and osteogenic differentiation. MATERIALS AND METHODS We first analysed the changes in ferroptosis-related molecules in experimental periodontitis models. The effects of erastin, a small-molecule ferroptosis inducer, and IL-17 on alveolar bone loss and repair in animal models were then investigated. Primary mouse mandibular osteoblasts were exposed to erastin and IL-17 in vitro. Ferroptosis- and osteogenesis-related genes and proteins were detected. Further, siRNA, immunofluorescence co-localization and immunoprecipitation were used to confirm the roles of the nuclear factor erythroid-2-related factor 2 (NRF2) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), as well as their interaction. RESULTS The levels of NRF2, glutathione peroxidase 4 and solute carrier family 7 member 11 were lower in the ligated tissues than in normal periodontal tissues. Alveolar bone loss in an in vivo experimental periodontitis model was aggravated by erastin and alleviated by IL-17. In vitro, IL-17 ameliorated erastin-inhibited osteogenic differentiation by reversing ferroptosis. Altered NRF2 expression correlated with changes in ferroptosis-related molecules and osteogenesis. Furthermore, the physical interaction between NRF2 and p-STAT3 was confirmed in the nucleus. In IL-17 + erastin-stimulated osteoblasts, the p-STAT3-NRF2 complex might actively participate in the downstream transcription of ferroptosis- and osteogenesis-related genes. CONCLUSIONS IL-17 administration conferred resistance to erastin-induced osteoblast ferroptosis and osteogenesis. The possible mechanism may involve p-STAT3 directly interacting with NRF2.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongxiu Wang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xufei Yu
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenlin Yuan
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Tian G, Li J, Wang W, Zhou L. FGF12 restrains mitochondria-dependent ferroptosis in doxorubicin-induced cardiomyocytes through the activation of FGFR1/AMPK/NRF2 signaling. Drug Dev Res 2024; 85:e22149. [PMID: 38349269 DOI: 10.1002/ddr.22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Fibroblast growth factor-12 (FGF12) has been reported to play important role in regulating heart diseases. We aimed to explore the role of FGF12 in doxorubicin (DOX)-induced myocardial injury. DOX-induced mice and DOX-induced HL-1 cells were used as the myocardial injury in vivo and in vitro. Then, FGF12, Anp, Bnp, and Myh7 expression was detected. The pathological injury in myocardium tissue was observed by H&E staining. The levels of markers related to myocardial damage and oxidative stress were assessed. Then, immunohistochemistry and immunofluorescence staining were used to detect FGF12 and 4-HNE expression. Ferroptosis were detected by Prussian blue staining and western blot. The FGFR1/AMPK/NRF2 signaling was measured by western blot. FGF12 expression was downregulated in DOX-induced mice myocardium tissues. FGF12 overexpression alleviated DOX-induced myocardial tissue pathological injury and reduced Anp, Bnp, and Myh7 expression. Additionally, the levels of CK-MB, LDH and cTnT in serum were decreased after FGF12 upregulation in DOX-induced mice. Moreover, FGF12 overexpression reduced the levels of ROS, MDA, and 4-HNE but increased SOD and GSH-Px activities. Meanwhile, FGF12 led to less deposition of iron ion, decreased ACSL4, PTGS2 and increased GPX4, FTH1 expression. Additionally, FGF12 activated the expressions of FGFR1, p-AMPK, and NRF2. Moreover, FGFR1 silencing reversed the protective effects of FGF12 overexpression on cell viability, oxidative stress, ferroptosis, and FGFR1/AMPK/NRF2 pathway. To sum up, FGF12 inhibited mitochondria-dependent ferroptosis in cardiomyocytes induced by DOX through activation of FGFR1/AMPK/NRF2 signaling. These findings clarify a new mechanism of DOX-induced cardiac injury and provide a promising target to limit the disease development.
Collapse
Affiliation(s)
- Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjie Wang
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lina Zhou
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
13
|
Li G, Mahajan S, Ma S, Jeffery ED, Zhang X, Bhattacharjee A, Venkatasubramanian M, Weirauch MT, Miraldi ER, Grimes HL, Sheynkman GM, Tilburgs T, Salomonis N. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci Transl Med 2024; 16:eade2886. [PMID: 38232136 PMCID: PMC11517820 DOI: 10.1126/scitranslmed.ade2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
| | - Shweta Mahajan
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Siyuan Ma
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45229
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Emily R. Miraldi
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Gloria M. Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
14
|
Liu D, Ding J, Li Z, Lu Y. Pachymic acid (PA) inhibits ferroptosis of cardiomyocytes via activation of the AMPK in mice with ischemia/reperfusion-induced myocardial injury. Cell Biol Int 2024; 48:46-59. [PMID: 37750505 DOI: 10.1002/cbin.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
Pachymic acid (PA) is a lanostane-type triterpenoid with various pharmacological effects. However, little is known about the effect of PA on myocardial infarction (MI) induced by ischemia/reperfusion (I/R). In this study, we aimed to investigate the protective effect of PA and its underlying mechanism. A cellular MI model was established by oxygen-glucose deprivation and reperfusion (OGD/R) treatment in HL-1 cardiomyocytes, and we found that OGD/R treatment decreased cell viability and glutathione peroxide (GSH-Px) activity, increased Fe2+ concentration and lactate dehydrogenase (LDH) activity, promoted malondialdehyde (MDA) and reactive oxygen species (ROS) production, and inhibited the expression of ferroptosis marker proteins SLC7A11 and GPX4 in a time-dependent manner. OGD/R-induced HL-1 cells were pretreated with different concentrations of PA (0, 20, 40, 60 μg/mL) for 24 h, and toxicological experiments showed that 150 μg/mL PA decreased cell viability, while low concentrations of PA had no toxic effect on cells. 20 μg/mL PA reversed the inhibitory effect of OGD/R on cell viability, reduced MDA and ROS production, and Fe2+ accumulation, increased GSH-Px activity and the expression of SLC7A11 and GPX4, and decreased LDH activity, especially at 60 μg/mL PA. Meanwhile, PA promoted the phosphorylation of IRS-1, AKT, and AMPK proteins in a dose-dependent manner. AICAR, an AMPK activator, inhibited ferroptosis, while STO-609, an AMPK inhibitor, largely abolished the effect of PA on OGD/R-induced ferroptosis of HL-1 cells. In addition, PA inhibited ferroptosis and myocardial I/R injury in wild-type mice and AMPK knockout (AMPK-/- ) mice. Collectively, PA inhibited ferroptosis of cardiomyocytes through activating of the AMPK pathway, thereby alleviating myocardial I/R injury in mice.
Collapse
Affiliation(s)
- Dongmin Liu
- Cardiovascular Department I, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Youquan Lu
- Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
15
|
Kim Y, Lee SB, Cho M, Choe S, Jang M. Indian Almond ( Terminalia catappa Linn.) Leaf Extract Extends Lifespan by Improving Lipid Metabolism and Antioxidant Activity Dependent on AMPK Signaling Pathway in Caenorhabditis elegans under High-Glucose-Diet Conditions. Antioxidants (Basel) 2023; 13:14. [PMID: 38275634 PMCID: PMC10812731 DOI: 10.3390/antiox13010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in vitro. The stress-resistance effect of TCE was confirmed under thermal and oxidative stress conditions at nontoxic tested concentrations (6.25, 12.5, and 25 μg/mL). GLU at 2% caused lipid and reactive oxygen species (ROS) accumulation in C. elegans, and TCE inhibited lipid and ROS accumulation under both normal and 2% GLU conditions in a concentration-dependent manner. In addition, TCE proved to be effective in prolonging the lifespan of C. elegans under normal and 2% GLU conditions. The ROS reduction effect of TCE was abolished in mutants deficient in daf-16/FOXO and skn-1/Nrf-2. In addition, the lifespan-extending effect of TCE in these two mutants disappeared. The lifespan-extending effect was abolished even in atgl-1/ATGL-deficiency mutants. The TCE effect was reduced in aak-1/AMPK-deficient mutants and completely abolished under 2% GLU conditions. Therefore, the effect of prolonging lifespan by inhibiting lipid and ROS accumulation under the high GLU conditions of TCE is considered to be the result of atgl-1, daf-16, and skn-1 being downregulated by aak-1. These results suggest that the physiological potential of TCE contributes to antiaging under metabolic disorders.
Collapse
Affiliation(s)
- Yebin Kim
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Seul-bi Lee
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Myogyeong Cho
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Soojin Choe
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea;
| | - Miran Jang
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea;
| |
Collapse
|
16
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Ren R, Li Y. STIM1 in tumor cell death: angel or devil? Cell Death Discov 2023; 9:408. [PMID: 37932320 PMCID: PMC10628139 DOI: 10.1038/s41420-023-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is involved in mediating the store-operated Ca2+ entry (SOCE), driving the influx of the intracellular second messenger calcium ion (Ca2+), which is closely associated with tumor cell proliferation, metastasis, apoptosis, autophagy, metabolism and immune processes. STIM1 is not only regulated at the transcriptional level by NF-κB and HIF-1, but also post-transcriptionally modified by miRNAs and degraded by ubiquitination. Recent studies have shown that STIM1 or Ca2+ signaling can regulate apoptosis, autophagy, pyroptosis, and ferroptosis in tumor cells and act discrepantly in different cancers. Furthermore, STIM1 contributes to resistance against antitumor therapy by influencing tumor cell death. Further investigation into the mechanisms through which STIM1 controls other forms of tumor cell death could aid in the discovery of novel therapeutic targets. Moreover, STIM1 has the ability to regulate immune cells within the tumor microenvironment. Here, we review the basic structure, function and regulation of STIM1, summarize the signaling pathways through which STIM1 regulates tumor cell death, and propose the prospects of antitumor therapy by targeting STIM1.
Collapse
Affiliation(s)
- Ran Ren
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| |
Collapse
|
18
|
Tian X, Wang Y, Yuan M, Zheng W, Zuo H, Zhang X, Song H. Heme Oxygenase-1-Modified BMMSCs Activate AMPK-Nrf2-FTH1 to Reduce Severe Steatotic Liver Ischemia-Reperfusion Injury. Dig Dis Sci 2023; 68:4196-4211. [PMID: 37707747 PMCID: PMC10570260 DOI: 10.1007/s10620-023-08102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important cause of graft dysfunction post-liver transplantation, where donor liver with severe steatosis is more sensitive to IRI. Liver IRI involves ferroptosis and can be alleviated by heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs). AIMS To explore the role and mechanism of HO-1/BMMSCs in severe steatotic liver IRI. METHODS A severe steatotic liver IRI rat model and a hypoxia/reoxygenation (H/R) of severe steatosis hepatocyte model were established. Liver and hepatocyte damage was evaluated via liver histopathology and cell activity. Ferroptosis was evaluated through ferroptosis indexes. Nuclear factor erythroid 2-related factor 2 (Nrf2) was knocked down in severe steatotic hepatocytes. The role of Nrf2 and AMPK in HO-1/BMMSC inhibition of ferroptosis was examined using the AMP-activated protein kinase (AMPK) pathway inhibitor Compound C. RESULTS The HO-1/BMMSCs alleviated severe steatotic liver IRI and ferroptosis. HO-1/BMMSCs promoted ferritin heavy chain 1(FTH1), Nrf2, and phosphorylated (p)-AMPK expression in the H/R severe steatotic hepatocytes. Nrf2 knockdown decreased FTH1 expression levels but did not significantly affect p-AMPK expression levels. The protective effect of HO-1/BMMSCs against H/R injury in severe steatotic hepatocytes and the inhibitory effect on ferroptosis were reduced. Compound C decreased p-AMPK, Nrf2, and FTH1 expression levels, weakened the HO-1/BMMSC protective effect against severe steatotic liver IRI and H/R-injured severe steatotic hepatocytes, and reduced the inhibition of ferroptosis. CONCLUSIONS Ferroptosis was involved in HO-1/BMMSC reduction of severe steatotic liver IRI. HO-1/BMMSCs protected against severe steatotic liver IRI by inhibiting ferroptosis through the AMPK-Nrf2-FTH1 pathway. HO-1/BMMSCs activate AMPK, which activates Nrf2, promotes its nuclear transcription, then promotes the expression of its downstream protein FTH1, thereby inhibiting ferroptosis and attenuating severe steatotic liver IRI in rats. Glu: glutamic acid; Cys: cystine; GSH: glutathione; GPX4: glutathione peroxidase 4; HO-1/BMMSCs: HO-1-modified BMMSCs; Fer-1: ferrostatin-1; DFO: deferoxamine; FTH1: ferritin heavy chain1; p-AMPK: phosphorylated AMP-activated protein kinase; Nrf2: nuclear factor erythroid 2-related factor 2; IRI: ischemia-reperfusion injury; MCD: methionine-choline deficiency.
Collapse
Affiliation(s)
- Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China.
- Tianjin Key Laboratory of Organ Transplantation, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
19
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Ma X, Xu M, Zhang X, Wang X, Su K, Xu Z, Wang X, Yang Y. Gambogenic acid inhibits proliferation and ferroptosis by targeting the miR-1291/FOXA2 and AMPKα/SLC7A11/GPX4 axis in colorectal cancer. Cell Biol Int 2023; 47:1813-1824. [PMID: 37471707 DOI: 10.1002/cbin.12072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
The present study aims to investigate the mechanism of the nature compound gambogenic acid (GNA) on the apoptosis and ferroptosis in colorectal cancer (CRC). The effect of GNA on the proliferation of CRC cell lines were detected by MTT and clonogenic assay. The xenograft tumor model was established, and the inhibition effect of GNA were evaluated by observing the tumor growth. The endoplasmic reticulum (ER) of HCT116 was observed by using the ER tracker. The TargrtScan database was used to predict the miRNA binding sites. The level of miRNA with GNA treatment was explored by real-time quantitative PCR. The effect of ferroptosis were evaluated by detect the expression of reactive oxygen species (ROS), intracellular ferrous iron (Fe2+ ), malondialdehyde (MDA), glutathione (GSH), subunit solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase (GPX)4, transferrin, and ferritin by Western blot. GNA isolated from gamboge can inhibit the growth and proliferation of CRC cell lines in a concentration-dependent manner. GNA activated ER stress by upregulating miR-1291, and miR-1291 targeted the forkhead box protein A2 (FOXA2). GNA also induced ROS production and mediated the Fenton reaction by activating transferrin to increase Fe2+ , thus inducing ferroptosis. In addition, GNA could induce ferroptosis through the depletion of GSH and GPX4. Furthermore, GNA treatment regulated iron metabolism by activating AMPKα/SLC7A11/GPX4 signaling. In conclusion, GNA activated ER stress via miR-1291 and induced ferroptosis in CRC cells and might be a new inducer of ferroptosis, which can expand the efficacy of chemotherapy drugs.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Institute of Pathology, Fudan University, Shanghai, P.R. China
| | - Xing Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Kexin Su
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zihang Xu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
21
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Ta N, Jiang X, Zhang Y, Wang H. Ferroptosis as a promising therapeutic strategy for melanoma. Front Pharmacol 2023; 14:1252567. [PMID: 37795022 PMCID: PMC10546212 DOI: 10.3389/fphar.2023.1252567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Malignant melanoma (MM) is the most common and deadliest type of skin cancer and is associated with high mortality rates across all races and ethnicities. Although present treatment options combined with surgery provide short-term clinical benefit in patients and early diagnosis of non-metastatic MM significantly increases the probability of survival, no efficacious treatments are available for MM. The etiology and pathogenesis of MM are complex. Acquired drug resistance is associated with a pool prognosis in patients with advanced-stage MM. Thus, these patients require new therapeutic strategies to improve their treatment response and prognosis. Multiple studies have revealed that ferroptosis, a non-apoptotic form of regulated cell death (RCD) characterized by iron dependant lipid peroxidation, can prevent the development of MM. Recent studies have indicated that targeting ferroptosis is a promising treatment strategy for MM. This review article summarizes the core mechanisms underlying the development of ferroptosis in MM cells and its potential role as a therapeutic target in MM. We emphasize the emerging types of small molecules inducing ferroptosis pathways by boosting the antitumor activity of BRAFi and immunotherapy and uncover their beneficial effects to treat MM. We also summarize the application of nanosensitizer-mediated unique dynamic therapeutic strategies and ferroptosis-based nanodrug targeting strategies as therapeutic options for MM. This review suggests that pharmacological induction of ferroptosis may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Na Ta
- Department of Neurosurgery, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, China
| | - Yongchun Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
23
|
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023; 13:1005. [PMID: 37755285 PMCID: PMC10534741 DOI: 10.3390/metabo13091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.
Collapse
Affiliation(s)
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.); (S.S.)
| |
Collapse
|
24
|
Cui J, Wang Y, Tian X, Miao Y, Ma L, Zhang C, Xu X, Wang J, Fang W, Zhang X. LPCAT3 Is Transcriptionally Regulated by YAP/ZEB/EP300 and Collaborates with ACSL4 and YAP to Determine Ferroptosis Sensitivity. Antioxid Redox Signal 2023; 39:491-511. [PMID: 37166352 DOI: 10.1089/ars.2023.0237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aims: Lipid peroxidation occurring in lung adenocarcinoma (LUAD) cells leads to ferroptosis. Lysophosphatidylcholine acyl-transferase 3 (LPCAT3) plays a key role in providing raw materials for lipid peroxidation by promoting esterification of polyunsaturated fatty acids to phospholipids. Whether LPCAT3 determines ferroptosis sensitivity and the mechanism by which its expression is regulated in LUAD has not been reported. Results: LPCAT3 and acyl-coenzyme A (CoA) synthetase long-chain family member (ACSL)4 levels were positively associated with ferroptosis sensitivity in LUAD cell lines. Overexpression of LPCAT3 and ACSL4 sensitized LUAD cells to ferroptosis, while LPCAT3 and ACSL4 knockout showed the opposite effect. Zinc-finger E-box-binding (ZEB) was shown to directly bind the LPCAT3 promoter to stimulate its transcription in a Yes-associated protein (YAP)-dependent manner. An interaction between YAP and ZEB was also observed. E1A-binding protein p300 (EP300) simultaneously bound with YAP and ZEB, and induced H3K27Ac for LPCAT3 transcription. This mechanism was verified in primary LUAD cell and xenograft models. The ACSL4, LPCAT3, and YAP combination can jointly determine LUAD ferroptosis sensitivity. Innovation: The binding site of ZEB exists in the -1600 to -1401 nt region of LPCAT3 promoter, which promotes LPCAT3 transcription after ZEB binding. ZEB and YAP bind, and the ZEB zinc-finger cluster domain and YAP WW domain are crucial for their binding. EP300 may bind with YAP via its Bromo domain and with ZEB via its CBP/p300-HAT domain. In addition, the combination of ACSL4, LPCAT3, and YAP to determine ferroptosis sensitivity of LUAD cells is better than prostaglandin-endoperoxide synthase 2 (PTGS2), transferrin receptor (TFRC), or NADPH oxidase 1 (NOX1). Conclusion: LPCAT3 transcription is regulated by YAP, ZEB, and EP300. LUAD ferroptosis sensitivity can be determined by the combination of ACSL4, LPCAT3, and YAP. Antioxid. Redox Signal. 39, 491-511.
Collapse
Affiliation(s)
- Jiangtao Cui
- Department of Thoracic Surgery and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Tian
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayou Miao
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Zhang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine; Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Fang
- Department of Thoracic Surgery and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Shanghai Institute of Thoracic Oncology; Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed Pharmacother 2023; 165:115251. [PMID: 37523985 DOI: 10.1016/j.biopha.2023.115251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Ferroptosis, an established form of programmed cell death discovered in 2012, is characterized by an imbalance in iron metabolism, lipid metabolism, and antioxidant metabolism. Activated CD8 + T cells can trigger ferroptosis in tumor cells by releasing interferon-γ, which initiates the ferroptosis program. Despite the remarkable progress made in treating various tumors with immunotherapy, such as anti-PD1/PDL1, there are still significant challenges to overcome, including limited treatment options and drug resistance. In this review, we exam the potential biological significance of the ferroptosis phenotype using bioinformatics and review the latest advancements in understanding the mechanism of ferroptosis-mediated anti-tumor immunotherapy. Furthermore, we revisit the host immune system, immune microenvironment, ferroptotic defense system, metabolic reprogramming, and key genes that regulate the occurrence and resistance of ferroptosis of tumor cell. Additionally, several immune-combined ferroptosis treatment strategies were put forward to improve immunotherapy efficacy and to provide new insights into reversing anti-tumor immune drug resistance.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Chunyu Tao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Jiakai Yuan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Fan Pan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| |
Collapse
|
26
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Inhibiting SCD expression by IGF1R during lorlatinib therapy sensitizes melanoma to ferroptosis. Redox Biol 2023; 61:102653. [PMID: 36889082 PMCID: PMC10009726 DOI: 10.1016/j.redox.2023.102653] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/16/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Induction of ferroptosis is an emerging strategy to suppress melanoma progression. Strategies to enhance the sensitivity to ferroptosis induction would be a major advance in melanoma therapy. Here, we used a drug synergy screen that combined a ferroptosis inducer, RSL3, with 240 anti-tumor drugs from the FDA-approved drug library and identified lorlatinib to synergize with RSL3 in melanoma cells. We further demonstrated that lorlatinib sensitized melanoma to ferroptosis through inhibiting PI3K/AKT/mTOR signaling axis and its downstream SCD expression. Moreover, we found that lorlatinib's target IGF1R, but not ALK or ROS1, was the major mediator of lorlatinib-mediated sensitivity to ferroptosis through targeting PI3K/AKT/mTOR signaling axis. Finally, lorlatinib treatment sensitized melanoma to GPX4 inhibition in preclinical animal models, and melanoma patients with low GPX4 and IGF1R expression in their tumors survived for longer period. Altogether, lorlatinib sensitizes melanoma to ferroptosis by targeting IGF1R-mediated PI3K/AKT/mTOR signaling axis, suggesting that combination with lorlatinib could greatly expand the utility of GPX4 inhibition to melanoma patients with IGF1R-proficient expression.
Collapse
|
28
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Wang H, Jia Y, Gu J, Chen O, Yue S. Ferroptosis-related genes are involved in asthma and regulate the immune microenvironment. Front Pharmacol 2023; 14:1087557. [PMID: 36843917 PMCID: PMC9950254 DOI: 10.3389/fphar.2023.1087557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Asthma was a chronic inflammatory illness driven by complicated genetic regulation and environmental exposure. The complex pathophysiology of asthma has not been fully understood. Ferroptosis was involved in inflammation and infection. However, the effect of ferroptosis on asthma was still unclear. The study was designed to identify ferroptosis-related genes in asthma, providing potential therapeutic targets. Methods: We conducted a comprehensive analysis combined with WGCNA, PPI, GO, KEGG, and CIBERSORT methods to identify ferroptosis-related genes that were associated with asthma and regulated the immune microenvironment in GSE147878 from the GEO. The results of this study were validated in GSE143303 and GSE27066, and the hub genes related to ferroptosis were further verified by immunofluorescence and RT-qPCR in the OVA asthma model. Results: 60 asthmatics and 13 healthy controls were extracted for WGCNA. We found that genes in the black module (r = -0.47, p < 0.05) and magenta module (r = 0.51, p < 0.05) were associated with asthma. CAMKK2 and CISD1 were discovered to be ferroptosis-related hub genes in the black and magenta module, separately. We found that CAMKK2 and CISD1 were mainly involved in the CAMKK-AMPK signaling cascade, the adipocytokine signaling pathway, the metal cluster binding, iron-sulfur cluster binding, and 2 iron, 2 sulfur cluster binding in the enrichment analysis, which was strongly correlated with the development of ferroptosis. We found more infiltration of M2 macrophages and less Tregs infiltration in the asthma group compared to healthy controls. In addition, the expression levels of CISD1 and Tregs were negatively correlated. Through validation, we found that CAMKK2 and CISD1 expression were upregulated in the asthma group compared to the control group and would inhibit the occurrence of ferroptosis. Conclusion: CAMKK2 and CISD1 might inhibit ferroptosis and specifically regulate asthma. Moreover, CISD1 might be tied to the immunological microenvironment. Our results could be useful to provide potential immunotherapy targets and prognostic markers for asthma.
Collapse
Affiliation(s)
- Haixia Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanmin Jia
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Shouwei Yue, ; Ou Chen,
| | - Shouwei Yue
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China,*Correspondence: Shouwei Yue, ; Ou Chen,
| |
Collapse
|
30
|
Malakoutikhah Z, Mohajeri Z, Dana N, Haghjooy Javanmard S. The dual role of Nrf2 in melanoma: a systematic review. BMC Mol Cell Biol 2023; 24:5. [PMID: 36747120 PMCID: PMC9900951 DOI: 10.1186/s12860-023-00466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer that originates from the malignant transformation of melanocytes. Although novel treatments have improved patient survival in melanoma, the overall prognosis remains poor. To improve current therapies and patients outcome, it is necessary to identify the influential elements in the development and progression of melanoma.Due to UV exposure and melanin synthesis, the melanocytic lineage seems to have a higher rate of ROS (reactive oxygen species) formation. Melanoma has been linked to an increased oxidative state, and all facets of melanoma pathophysiology rely on redox biology. Several redox-modulating pathways have arisen to resist oxidative stress. One of which, the Nrf2 (nuclear factor erythroid 2-related factor 2), has been recognized as a master regulator of cellular response to oxidative or electrophilic challenges. The activation of Nrf2 signaling causes a wide range of antioxidant and detoxification enzyme genes to be expressed. As a result, this transcription factor has lately received a lot of interest as a possible cancer treatment target.On the other hand, Nrf2 has been found to have a variety of activities in addition to its antioxidant abilities, constant Nrf2 activation in malignant cells may accelerate metastasis and chemoresistance. Hence, based on the cell type and context, Nrf2 has different roles in either preventing or promoting cancer. In this study, we aimed to systematically review all the studies discussing the function of Nrf2 in melanoma and the factors determining its alteration.
Collapse
Affiliation(s)
- Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Mohajeri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
31
|
Jia YJ, Li QS. Ferroptosis: a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regen Res 2023; 18:506-512. [DOI: 10.4103/1673-5374.350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
33
|
Wang H, Zhang H, Chen Y, Wang H, Tian Y, Yi X, Shi Q, Zhao T, Zhang B, Gao T, Guo S, Li C, Guo W. Targeting Wnt/β-Catenin Signaling Exacerbates Ferroptosis and Increases the Efficacy of Melanoma Immunotherapy via the Regulation of MITF. Cells 2022; 11:cells11223580. [PMID: 36429010 PMCID: PMC9688625 DOI: 10.3390/cells11223580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer, resulting from the malignant transformation of epidermal melanocytes. Recent revolutionary progress in targeted therapy and immunotherapy has prominently improved the treatment outcome, but the survival of melanoma patients remains suboptimal. Ferroptosis is greatly involved in cancer pathogenesis and can execute the outcome of immunotherapy. However, the detailed regulatory mechanisms of melanoma cell ferroptosis remain elusive. Herein, we report that Wnt/β-catenin signaling regulates ferroptosis and melanoma immunotherapy efficacy via the regulation of MITF. First of all, we found that Wnt/β-catenin signaling was prominently suppressed in melanoma cell ferroptosis. Then, we proved that targeting β-catenin exacerbated melanoma cell ferroptosis by promoting the generation of lipid peroxidation both in vitro and in vivo. Subsequent mechanistic studies revealed that MITF mediated the effect of Wnt/β-catenin signaling on melanoma cell ferroptosis, and PGC1α and SCD1 were documented as two main effectors downstream of Wnt/β-catenin-MITF pathway. Ultimately, pharmacological inhibition of β-catenin or MITF increased the efficacy of anti-PD-1 immunotherapy in preclinical xenograft tumor model by promoting ferroptosis. Taken together, Wnt/β-catenin signaling deficiency exacerbates ferroptosis in melanoma via the regulation of MITF. Targeting Wnt/β-catenin-MITF pathway could be a promising strategy to potentiate ferroptosis and increase the efficacy of anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
34
|
Wu J, Cai H, Lei Z, Li C, Hu Y, Zhang T, Zhu H, Lu Y, Cao J, Hu X. Expression pattern and diagnostic value of ferroptosis-related genes in acute myocardial infarction. Front Cardiovasc Med 2022; 9:993592. [PMID: 36407421 PMCID: PMC9669064 DOI: 10.3389/fcvm.2022.993592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Ferroptosis is a form of regulatory cell death (RCD) caused by iron-dependent lipid peroxidation. The role of ferroptosis in the process of acute myocardial infarction (AMI) is still unclear and requires further study. Therefore, it is helpful to identify ferroptosis related genes (FRGs) involved in AMI and explore their expression patterns and molecular mechanisms. METHODS The AMI-related microarray datasets GSE66360 and GSE61144 were obtained using the Gene Expression Omnibus (GEO) online database. GO annotation, KEGG pathway enrichment analysis and Protein-protein interaction (PPI) analysis were performed for the common significant differential expression genes (CoDEGs) in these two datasets. The FRGs were obtained from the FerrDb V2 and the differentially expressed FRGs were used to identify potential biomarkers by receiver operating characteristic (ROC) analysis. The expression of these FRGs was verified using external dataset GSE60993 and GSE775. Finally, the expression of these FRGs was further verified in myocardial hypoxia model. RESULTS A total of 131 CoDEGs were identified and these genes were mainly enriched in the pathways of "inflammatory response," "immune response," "plasma membrane," "receptor activity," "protein homodimerization activity," "calcium ion binding," "Phagosome," "Cytokine-cytokine receptor interaction," and "Toll-like receptor signaling pathway." The top 7 hub genes ITGAM, S100A12, S100A9, TLR2, TLR4, TLR8, and TREM1 were identified from the PPI network. 45 and 14 FRGs were identified in GSE66360 and GSE61144, respectively. FRGs ACSL1, ATG7, CAMKK2, GABARAPL1, KDM6B, LAMP2, PANX2, PGD, PTEN, SAT1, STAT3, TLR4, and ZFP36 were significantly differentially expressed in external dataset GSE60993 with AUC ≥ 0.7. Finally, ALOX5, CAMKK2, KDM6B, LAMP2, PTEN, PTGS2, and ULK1 were identified as biomarkers of AMI based on the time-gradient transcriptome dataset of AMI mice and the cellular hypoxia model. CONCLUSION In this study, based on the existing datasets, we identified differentially expressed FRGs in blood samples from patients with AMI and further validated these FRGs in the mouse time-gradient transcriptome dataset of AMI and the cellular hypoxia model. This study explored the expression pattern and molecular mechanism of FRGs in AMI, providing a basis for the accurate diagnosis of AMI and the selection of new therapeutic targets.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Tong Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
36
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. The three-dimension preclinical models for ferroptosis monitoring. Front Bioeng Biotechnol 2022; 10:1020971. [PMID: 36213078 PMCID: PMC9539028 DOI: 10.3389/fbioe.2022.1020971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
As a new programmed cell death process, ferroptosis has shown great potential and uniqueness in experimental and treatment-resistant cancer models. Currently, the main tools for drug research targeting ferroptosis are tumor cells cultured in vitro and tumor models established in rodents. In contrast, increasing evidence indicates that reactivity may differ from modifications in mice or humans in the process of drug screening. With the blossoming of 3D culture technology, tumor organoid culture technology has gradually been utilized. Compared with traditional 2D culture and tumor tissue xenotransplantation, tumor organoids have a significantly higher success rate. They can be cultured quickly and at a lower cost, which is convenient for gene modification and large-scale drug screening. Thus, combining 3D cell culture technology, drug monitoring, and ferroptosis analysis is necessary to develop the impact of ferroptosis-related agents in tumor treatment.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| |
Collapse
|
37
|
Wang D, Ye Q, Gu H, Chen Z. The role of lipid metabolism in tumor immune microenvironment and potential therapeutic strategies. Front Oncol 2022; 12:984560. [PMID: 36172157 PMCID: PMC9510836 DOI: 10.3389/fonc.2022.984560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Aberrant lipid metabolism is nonnegligible for tumor cells to adapt to the tumor microenvironment (TME). It plays a significant role in the amount and function of immune cells, including tumor-associated macrophages, T cells, dendritic cells and marrow-derived suppressor cells. It is well-known that the immune response in TME is suppressed and lipid metabolism is closely involved in this process. Immunotherapy, containing anti-PD1/PDL1 therapy and adoptive T cell therapy, is a crucial clinical cancer therapeutic strategy nowadays, but they display a low-sensibility in certain cancers. In this review, we mainly discussed the importance of lipid metabolism in the formation of immunosuppressive TME, and explored the effectiveness and sensitivity of immunotherapy treatment by regulating the lipid metabolism.
Collapse
Affiliation(s)
- Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qizhen Ye
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haochen Gu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Cancer Centre, Zhejiang University, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhigang Chen,
| |
Collapse
|
38
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Ling R, Chen G, Tang X, Liu N, Zhou Y, Chen D. Acetyl-CoA synthetase 2(ACSS2): a review with a focus on metabolism and tumor development. Discov Oncol 2022; 13:58. [PMID: 35798917 PMCID: PMC9263018 DOI: 10.1007/s12672-022-00521-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Acetyl-CoA synthetase 2 (ACSS2), an important member of the acetyl-CoA synthetase (ACSS) family, can catalyze the conversion of acetate to acetyl coenzyme A (acetyl-CoA). Currently, acetyl-CoA is considered an important intermediate metabolite in the metabolism of energy substrates. In addition, nutrients converge through acetyl-CoA into a common metabolic pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Not only does ACSS2 play a crucial role in material energy metabolism, it is also involved in the regulation of various acetylation processes, such as regulation of histone and transcription factor acetylation. ACSS2-mediated regulation of acetylation is related to substance metabolism and tumorigenesis. In mammalian cells, ACSS2 utilizes intracellular acetate to synthesize acetyl-CoA, a step in the process of DNA and histone acetylation. In addition, studies in tumors have shown that cancer cells adapt to the growth conditions in the tumor microenvironment (TME) by activating or increasing the expression level of ACSS2 under metabolic stress. Therefore, this review mainly outlines the role of ACSS2 in substance metabolism and tumors and provides insights useful for investigating ACSS2 as a therapeutic target.
Collapse
Affiliation(s)
- Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Gong Chen
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
40
|
He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 2022; 60:101470. [PMID: 35304332 PMCID: PMC8980341 DOI: 10.1016/j.molmet.2022.101470] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND With long-term metabolic malfunction, diabetes can cause serious damage to whole-body tissue and organs, resulting in a variety of complications. Therefore, it is particularly important to further explore the pathogenesis of diabetes complications and develop drugs for prevention and treatment. In recent years, different from apoptosis and necrosis, ferroptosis has been recognized as a new regulatory mode of cell death and involves the regulation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Evidence shows that ferroptosis and ferritinophagy play a significant role in the occurrence and development of diabetes complications. SCOPE OF REVIEW we systematically review the current understanding of ferroptosis and ferritinophagy, focusing on their potential mechanisms, connection, and regulation, discuss their involvement in diabetes complications, and consider emerging therapeutic opportunities and the associated challenges with future prospects. MAJOR CONCLUSIONS In summary, ferroptosis and ferritinophagy are worthy targets for the treatment of diabetes complications, but their complete molecular mechanism and pathophysiological process still require further study.
Collapse
Affiliation(s)
- Jiahui He
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK; School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Xinxi FuChen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 30006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
41
|
Currais A, Kepchia D, Liang Z, Maher P. The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator? Antioxid Redox Signal 2022. [PMID: 35243895 DOI: 10.1089/ars.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
42
|
Liu Y, Shou Y, Zhu R, Qiu Z, Zhang Q, Xu J. Construction and Validation of a Ferroptosis-Related Prognostic Signature for Melanoma Based on Single-Cell RNA Sequencing. Front Cell Dev Biol 2022; 10:818457. [PMID: 35309911 PMCID: PMC8927698 DOI: 10.3389/fcell.2022.818457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Melanoma, the deadliest type of skin cancer, is on the rise globally. The generally poor prognosis makes melanoma still an enormous public health problem. Ferroptosis is a newly emerging form of iron-dependent regulated cell death, which has been implicated in the development and treatment of several tumors. However, whether there is a connection between ferroptosis-related genes and the prognosis of melanoma patients remains an enigma. In the present study, we identified a ferroptosis-related genes signature to predict the prognosis of melanoma patients by analyzing single-cell RNA-sequencing data from the Gene Expression Omnibus (GEO). Single-cell trajectory analysis was performed to explore malignant differentiation. CellChat was used to investigate intercellular communications in melanoma. Collectively, a novel four-gene signature (CP, MAP1LC3A, transferrin, and TP53) was constructed for prognosis prediction. COX proportional hazards regression analysis showed that the established ferroptosis-associated risk model was an independent prognostic predictor for melanoma patients (HR = 2.3293; 95%CI 1.1528–4.706) (p < 0.018). Patients with low-risk scores had significantly better overall survival (OS) than those with high-risk scores in The Cancer Genome Atlas, GSE59455, and GSE22153 dataset (p = 0.0015, p = 0.031, p = 0.077). Furthermore, the gene expression level of the four genes were verified in multistrain melanoma cell lines and normal human epidermal melanocytes (NHEM). The protein expression level of the four genes in clinical samples were further verified in the Human Protein Atlas (HPA) databases. Taken together, our study identified the prognostic significance of the ferroptosis-related genes in melanoma and developed a novel four-gene prognostic signature, which may shed light on the prognostic assessment and clinical decision making for melanoma patients.
Collapse
Affiliation(s)
- Yating Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Qi Zhang, ; Jinhua Xu,
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Dermatology, Shanghai, China
- *Correspondence: Qi Zhang, ; Jinhua Xu,
| |
Collapse
|
43
|
Wang Y, Liu T, Li X, Sheng H, Ma X, Hao L. Ferroptosis-Inducing Nanomedicine for Cancer Therapy. Front Pharmacol 2021; 12:735965. [PMID: 34987385 PMCID: PMC8722674 DOI: 10.3389/fphar.2021.735965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Ferroptosis, a new iron- and reactive oxygen species-dependent form of regulated cell death, has attracted much attention in the therapy of various types of tumors. With the development of nanomaterials, more and more evidence shows the potential of ferroptosis combined with nanomaterials for cancer therapy. Recently, there has been much effort to develop ferroptosis-inducing nanomedicine, specially combined with the conventional or emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-inducing nanomedicine and clarify directions for improvement and application to cancer therapy in the future. In this review, we will comprehensively focus on the strategies of cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the design ideas of synthesis, analyze the advantages and limitations, and finally look forward to the future perspective on the emerging field.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Tianfu Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- China Medical University-The Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Hui Sheng
- Physical College, Liaoning University, Shenyang, China
| | - Xiaowen Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Targeting CAMKK2 and SOC Channels as a Novel Therapeutic Approach for Sensitizing Acute Promyelocytic Leukemia Cells to All-Trans Retinoic Acid. Cells 2021; 10:cells10123364. [PMID: 34943872 PMCID: PMC8699360 DOI: 10.3390/cells10123364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.
Collapse
|
45
|
Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci 2021; 22:ijms222312731. [PMID: 34884535 PMCID: PMC8657914 DOI: 10.3390/ijms222312731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Claudina Perez Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Amber Driesen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | | | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
- Correspondence: ; Tel.: +32-32-65-26-57
| |
Collapse
|
46
|
Wang Y, Qiu S, Wang H, Cui J, Tian X, Miao Y, Zhang C, Cao L, Ma L, Xu X, Qiao Y, Zhang X. Transcriptional Repression of Ferritin Light Chain Increases Ferroptosis Sensitivity in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:719187. [PMID: 34765600 PMCID: PMC8576304 DOI: 10.3389/fcell.2021.719187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is an iron- and lipid peroxidation-dependent form of regulated cell death. The release of labile iron is one of the important factors affecting sensitivity to ferroptosis. Yes-associated protein (YAP) controls intracellular iron levels by affecting the transcription of ferritin heavy chain (FTH) and transferrin receptor (TFRC). However, whether YAP regulates iron metabolism through other target genes remains unknown. Here, we observed that the system Xc– inhibitor erastin inhibited the binding of the WW domain and PSY motif between YAP and transcription factor CP2 (TFCP2), and then suppressed the transcription of ferritin light chain (FTL) simultaneously mediated by YAP, TFCP2 and forkhead box A1 (FOXA1). Furthermore, inhibition of FTL expression abrogated ferroptosis-resistance in cells with sustained YAP expression. Unlike FTH, which exhibited first an increase and then a decrease in transcription, FTL transcription continued to decline after the addition of erastin, and a decrease in lysine acetyltransferase 5 (KAT5)-dependent acetylation of FTL was also observed. In lung adenocarcinoma (LUAD) tissues, lipid peroxidation and labile iron decreased, while YAP, TFCP2 and FTL increased compared to their adjacent normal tissues, and the lipid peroxidation marker 4-hydroxynonenal (4-HNE) was negatively correlated with the level of FTL or the degree of LUAD malignancy, but LUAD tissues with lower levels of 4-HNE showed a higher sensitivity to ferroptosis. In conclusion, the findings from this study indicated that the suppression of FTL transcription through the inhibition of the YAP-TFCP2-KAT5 complex could be another mechanism for elevating ferroptosis sensitivity and inducing cell death, and ferroptotic therapy is more likely to achieve better results in LUAD patients with a lower degree of lipid peroxidation.
Collapse
Affiliation(s)
- Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congcong Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Leiqun Cao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Lifang Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Khalifa S, Enomoto M, Kato S, Nakagawa K. Novel Photoinduced Squalene Cyclic Peroxide Identified, Detected, and Quantified in Human Skin Surface Lipids. Antioxidants (Basel) 2021; 10:1760. [PMID: 34829631 PMCID: PMC8614752 DOI: 10.3390/antiox10111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Skin surface lipids (SSLs) form the first barrier that protects the human organism from external stressors, disruption of the homeostasis of SSLs can result in severe skin abnormalities. One of the main causes of this disruption is oxidative stress that is primarily due to SSLs oxidation. Squalene (SQ), the most abundant lipid among SSLs, was shown to first undergo singlet molecular oxygen (1O2) oxidation to yield 6 SQ-monohydroperoxide (SQ-OOH) isomers as the primary oxidation products. However, due to the instability and lability of hydroperoxides, we found that when total SQ-OOH isomers are further photooxidized, they form a unique higher molecular weight secondary oxidation product. To generate the compound, we photooxidized total SQ-OOH isomers in the presence of ground state molecular oxygen (3O2), after its isolation and purification, we studied its structure using MS/MS, NMR, derivatization reactions, and chemical calculations. The compound was identified as 2-OOH-3-(1,2-dioxane)-SQ. Photooxidation of individual SQ-OOH isomers revealed that 6-OOH-SQ is the precursor of 2-OOH-3-(1,2-dioxane)-SQ and indicated the possibility of the formation of similar cyclic peroxides from each isomer following the same photoinduced chain reaction mechanism. An HPLC-MS/MS method was developed for the analysis of 2-OOH-3-(1,2-dioxane)-SQ and its presence on the skin was confirmed in SSLs of six healthy individuals. Its quantity on the skin correlated directly to that of SQ and was not inversely proportional to its precursor, indicating the possibility of its accumulation on the skin surface and the constant regeneration of 6-OOH-SQ from SQ's oxidation. In general, research on lipid cyclic peroxides in the human organism is very limited, and especially on the skin. This study shows for the first time the identification and presence of a novel SQ cyclic peroxide "2-OOH-3-(1,2-dioxane)-SQ" in SSLs, shedding light on the importance of further studying its effect and role on the skin.
Collapse
Affiliation(s)
- Saoussane Khalifa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| | - Masaru Enomoto
- Applied Bioorganic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| |
Collapse
|
48
|
Huang W, Liu Y, Luz A, Berrong M, Meyer JN, Zou Y, Swann E, Sundaramoorthy P, Kang Y, Jauhari S, Lento W, Chao N, Racioppi L. Calcium/Calmodulin Dependent Protein Kinase Kinase 2 Regulates the Expansion of Tumor-Induced Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:754083. [PMID: 34712241 PMCID: PMC8546266 DOI: 10.3389/fimmu.2021.754083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei Huang
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yaping Liu
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Anthony Luz
- Duke University Nicholas School of the Environment, Durham, NC, United States
| | - Mark Berrong
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC, United States
| | - Yujing Zou
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Excel Swann
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Shekeab Jauhari
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Lento
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Nelson Chao
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Luigi Racioppi
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
Emmons MF, Smalley KSM. Ironing-Out the Details: New Strategies for Combining Ferroptosis Inhibitors with Immunotherapy in Melanoma. J Invest Dermatol 2021; 142:18-20. [PMID: 34565560 DOI: 10.1016/j.jid.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Escape from ferroptosis is an important determinant of metastasis and immune evasion in melanoma. In a new article of the Journal of Investigative Dermatology, Wang et al. (2021) identify the CAMKK2‒adenosine monophosphate-activated protein kinase‒NRF2 signaling axis as a negative regulator of ferroptosis and showed that inhibiting CAMKK2 increases the efficacy of anti-PD-1 therapy. These findings offer new opportunities for the development of ferroptosis-inducing therapies to use in combination with immune checkpoint agents.
Collapse
Affiliation(s)
- Michael F Emmons
- The Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA; Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA.
| |
Collapse
|