1
|
Abraham JR, Allen FM, Barnard J, Schlatzer D, Natowicz MR. Proteomic investigations of adult polyglucosan body disease: insights into the pathobiology of a neurodegenerative disorder. Front Neurol 2023; 14:1261125. [PMID: 38033781 PMCID: PMC10683643 DOI: 10.3389/fneur.2023.1261125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 12/02/2023] Open
Abstract
Inadequate glycogen branching enzyme 1 (GBE1) activity results in different forms of glycogen storage disease type IV, including adult polyglucosan body disorder (APBD). APBD is clinically characterized by adult-onset development of progressive spasticity, neuropathy, and neurogenic bladder and is histologically characterized by the accumulation of structurally abnormal glycogen (polyglucosan bodies) in multiple cell types. How insufficient GBE1 activity causes the disease phenotype of APBD is poorly understood. We hypothesized that proteomic analysis of tissue from GBE1-deficient individuals would provide insights into GBE1-mediated pathobiology. In this discovery study, we utilized label-free LC-MS/MS to quantify the proteomes of lymphoblasts from 3 persons with APBD and 15 age- and gender-matched controls, with validation of the findings by targeted MS. There were 531 differentially expressed proteins out of 3,427 detected between APBD subjects vs. controls, including pronounced deficiency of GBE1. Bioinformatic analyses indicated multiple canonical pathways and protein-protein interaction networks to be statistically markedly enriched in APBD subjects, including: RNA processing/transport/translation, cell cycle control/replication, mTOR signaling, protein ubiquitination, unfolded protein and endoplasmic reticulum stress responses, glycolysis and cell death/apoptosis. Dysregulation of these processes, therefore, are primary or secondary factors in APBD pathobiology in this model system. Our findings further suggest that proteomic analysis of GBE1 mutant lymphoblasts can be leveraged as part of the screening for pharmaceutical agents for the treatment of APBD.
Collapse
Affiliation(s)
- Joseph R. Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Frederick M. Allen
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Marvin R. Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
2
|
Abraham JR, Szoko N, Barnard J, Rubin RA, Schlatzer D, Lundberg K, Li X, Natowicz MR. Proteomic Investigations of Autism Brain Identify Known and Novel Pathogenetic Processes. Sci Rep 2019; 9:13118. [PMID: 31511657 PMCID: PMC6739414 DOI: 10.1038/s41598-019-49533-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of heterogeneous neurodevelopmental conditions defined by impairments in social communication and restricted, repetitive behaviors, interests or activities. Only a minority of ASD cases are determined to have a definitive etiology and the pathogenesis of most ASD is poorly understood. We hypothesized that a global analysis of the proteomes of human ASD vs. control brain, heretofore not done, would provide important data with which to better understand the underlying neurobiology of autism. In this study, we characterized the proteomes of two brain regions, Brodmann area 19 (BA19) and posterior inferior cerebellum (CB), from carefully selected idiopathic ASD cases and matched controls using label-free HPLC-tandem mass spectrometry. The data revealed marked differences between ASD and control brain proteomes for both brain regions. Unlike earlier transcriptomic analyses using frontal and temporal cortex, however, our proteomic analysis did not support ASD attenuating regional gene expression differences. Bioinformatic analyses of the differentially expressed proteins between cases and controls highlighted canonical pathways involving glutamate receptor signaling and glutathione-mediated detoxification in both BA19 and CB; other pathways such as Sertoli cell signaling and fatty acid oxidation were specifically enriched in BA19 or CB, respectively. Network analysis of both regions of ASD brain showed up-regulation of multiple pre- and post-synaptic membrane or scaffolding proteins including glutamatergic ion channels and related proteins, up-regulation of proteins involved in intracellular calcium signaling, and down-regulation of neurofilament proteins, with DLG4 and MAPT as major hub proteins in BA19 and CB protein interaction networks, respectively. Upstream regulator analysis suggests neurodegeneration-associated proteins drive the differential protein expression for ASD in both BA19 and CB. Overall, the proteomic data provide support for shared dysregulated pathways and upstream regulators for two brain regions in human ASD brain, suggesting a common ASD pathophysiology that has distinctive regional expression.
Collapse
Affiliation(s)
- Joseph R Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Nicholas Szoko
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Robert A Rubin
- Department of Mathematics, Whittier College, Whittier, CA, 90602, USA
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kathleen Lundberg
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaolin Li
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Abraham JR, Barnard J, Wang H, Noritz GH, Yeganeh M, Buhas D, Natowicz MR. Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder. Biochem Biophys Res Commun 2019; 512:421-427. [PMID: 30902390 DOI: 10.1016/j.bbrc.2019.02.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023]
Abstract
HERC2 is a giant protein with E3 ubiquitin ligase activity and other known and suspected functions. Mutations of HERC2 are implicated in the pathogenesis of various cancers and result in severe neurological conditions in Herc2-mutant mice. Recently, a pleotropic autosomal recessive HERC2-associated syndrome of intellectual disability, autism and variable neurological deficits was described; its pathogenetic basis is largely unknown. Using peripheral blood-derived lymphoblasts from 3 persons with homozygous HERC2 variants and 14 age- and gender-matched controls, we performed label-free unbiased HPLC-tandem mass spectrometry-based proteomic analyses to provide insights into HERC2-mediated pathobiology. We found that out of 3427 detected proteins, there were 812 differentially expressed proteins between HERC2-cases vs. controls. 184 canonical pathways were enriched after FDR adjustment, including mitochondrial function, energy metabolism, EIF2 signaling, immune functions, ubiquitination and DNA repair. Ingenuity Pathway Analysis® identified 209 upstream regulators that could drive the differential expression, prominent amongst which were neurodegeneration-associated proteins. Differentially expressed protein interaction networks highlighted themes of immune function/dysfunction, regulation of cell cycle/cell death, and energy metabolism. Overall, the analysis of the HERC2-associated proteome revealed striking differential protein expression between cases and controls. The large number of differentially expressed proteins likely reflects HERC2's multiple domains and numerous interacting proteins. Our canonical pathway and protein interaction network findings suggest derangements of multiple pathways in HERC2-associated disease.
Collapse
Affiliation(s)
- Joseph R Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heng Wang
- DDC Clinic, Center for Special Needs Children, Middlefield, OH, USA
| | - Garey H Noritz
- Complex Health Care Program, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mehdi Yeganeh
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada
| | - Daniela Buhas
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Okur E, Yerlikaya A. A novel and effective inhibitor combination involving bortezomib and OTSSP167 for breast cancer cells in light of label-free proteomic analysis. Cell Biol Toxicol 2018; 35:33-47. [PMID: 29948483 DOI: 10.1007/s10565-018-9435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The 26S proteasome plays important roles in many intracellular processes and is therefore a critical intracellular cellular target for anticancer treatments. The primary aim of the current study was to identify critical proteins that may play roles in opposing the antisurvival effect of the proteasome inhibitor bortezomib together with the calcium-chelator BAPTA-AM in cancer cells using label-free LC-MS/MS. In addition, based on the results of the proteomic technique, a novel and more effective inhibitor combination involving bortezomib as well as OTSSP167 was developed for breast cancer cells. METHODS AND RESULTS Using label-free LC-MS/MS, it was found that expressions of 1266 proteins were significantly changed between the experimental groups. Among these proteins were cell division cycle 5-like (Cdc5L) and drebrin-like (DBNL). We then hypothesized that inhibition of the activities of these two proteins may lead to more effective anticancer inhibitor combinations in the presence of proteasomal inhibition. In fact, as presented in the current study, Cdc5L phosphorylation inhibitor CVT-313 and DBNL phosphorylation inhibitor OTSSP167 were highly cytotoxic in 4T1 breast cancer cells and their IC50 values were 20.1 and 43 nM, respectively. Under the same experimental conditions, the IC50 value of BAPTA-AM was found 19.9 μM. Using WST 1 cytotoxicity assay, it was determined that 10 nM bortezomib + 10 nM CVT-313 was more effective than the control, the single treatments, or than 5 nM bortezomib + 5 nM CVT-313. Similarly, 10 nM bortezomib + 10 nM OTSSP167 was more cytotoxic than the control, the monotherapies, 5 nM bortezomib + 5 nM OTSSP167, or than 5 nM bortezomib + 10 nM OTSSP167, indicating that bortezomib + OTSSP167 was also more effective than bortezomib + CVT-313 in a dose-dependent manner. Furthermore, the 3D spheroid model proved that bortezomib + OTSSP167 was more effective than the monotherapies as well as bortezomib + CVT-313 and bortezomib + BAPTA-AM combinations. Finally, the effect of bortezomib + OTSSP167 combination was tested on MDA-MB-231 breast cancer cells, and it similarly determined that 20 nM bortezomib +40 nM OTSSP167 combination completely blocked the formation of 3D spheroids. CONCLUSIONS Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.
Collapse
Affiliation(s)
- Emrah Okur
- Art and Science Faculty, Department of Biology, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Azmi Yerlikaya
- Faculty of Medicine, Department of Medical Biology, Kütahya Health Sciences University, Kütahya, Turkey.
| |
Collapse
|
5
|
Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function. Cell Rep 2017; 16:2953-2966. [PMID: 27626665 PMCID: PMC5039226 DOI: 10.1016/j.celrep.2016.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/25/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) play a key role in orchestrating adaptive immune responses. In human blood, three distinct subsets exist: plasmacytoid DCs (pDCs) and BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-like CD16+ monocyte has been reported. Although RNA-expression profiles have been previously compared, protein expression data may provide a different picture. Here, we exploited label-free quantitative mass spectrometry to compare and identify differences in primary human DC subset proteins. Moreover, we integrated these proteomic data with existing mRNA data to derive robust cell-specific expression signatures with more than 400 differentially expressed proteins between subsets, forming a solid basis for investigation of subset-specific functions. We illustrated this by extracting subset identification markers and by demonstrating that pDCs lack caspase-1 and only express low levels of other inflammasome-related proteins. In accordance, pDCs were incapable of interleukin (IL)-1β secretion in response to ATP. We present a comprehensive quantitative proteome comparison of primary human DC subsets Proteome comparison reveals many expression differences between DC subsets We provide a resource to derive markers and examine subset functional specialization pDCs lack caspase-1 and have a decreased inflammasome response
Collapse
|
6
|
Wiredja DD, Ayati M, Mazhar S, Sangodkar J, Maxwell S, Schlatzer D, Narla G, Koyutürk M, Chance MR. Phosphoproteomics Profiling of Nonsmall Cell Lung Cancer Cells Treated with a Novel Phosphatase Activator. Proteomics 2017; 17. [PMID: 28961369 DOI: 10.1002/pmic.201700214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Indexed: 01/17/2023]
Abstract
Activation of protein phosphatase 2A (PP2A) is a promising anticancer therapeutic strategy, as this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in the regulation of cellular growth and proliferation. In order to understand the systems-level perturbations mediated by PP2A activation, we carried out mass spectrometry-based phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer (NSCLC) cell lines (A549 and H358) treated with a novel small molecule activator of PP2A (SMAP). Overall, this permitted quantification of differential signaling across over 1600 phosphoproteins and 3000 phosphosites. Kinase activity assessment and pathway enrichment implicate collective downregulation of RAS and cell cycle kinases in the case of both cell lines upon PP2A activation. However, the effects on RAS-related signaling are attenuated for A549 compared to H358, while the effects on cell cycle-related kinases are noticeably more prominent in A549. Network-based analyses and validation experiments confirm these detailed differences in signaling. These studies reveal the power of phosphoproteomics studies, coupled to computational systems biology, to elucidate global patterns of phosphatase activation and understand the variations in response to PP2A activation across genetically similar NSCLC cell lines.
Collapse
Affiliation(s)
- Danica D Wiredja
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Marzieh Ayati
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Sahar Mazhar
- Department of Pathology, Case Western Reserve University,, Cleveland, OH, USA
| | - Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Sean Maxwell
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Goutham Narla
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mehmet Koyutürk
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Seabra CM, Szoko N, Erdin S, Ragavendran A, Stortchevoi A, Maciel P, Lundberg K, Schlatzer D, Smith J, Talkowski ME, Gusella JF, Natowicz MR. A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings. Am J Med Genet A 2017; 173:2478-2484. [PMID: 28691782 PMCID: PMC5561488 DOI: 10.1002/ajmg.a.38327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/21/2017] [Indexed: 11/10/2022]
Abstract
Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities.
Collapse
Affiliation(s)
- Catarina M. Seabra
- GABBA - Institute of Biomedical Sciences Abel Salazar of the University of Porto, Portugal
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Nicholas Szoko
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Kathleen Lundberg
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Janice Smith
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX, USA
| | - Michael E. Talkowski
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Marvin R. Natowicz
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
- Pathology & Laboratory Medicine, Genomic Medicine, Neurology and Pediatrics Institutes, Cleveland Clinic, OH, USA and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Höper T, Mussotter F, Haase A, Luch A, Tralau T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 2017; 6:595-610. [PMID: 30090528 PMCID: PMC6062186 DOI: 10.1039/c7tx00058h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a widespread hypersensitivity reaction of the skin. The cellular mechanisms underlying its development are complex and involve close interaction of different cell types of the immune system. It is this very complexity which has long prevented straightforward replacement of the corresponding regulatory in vivo tests. Recent efforts have already resulted in the development of several in vitro testing alternatives that address key steps of ACD. Yet identification of suitable biomarkers is still a subject of intense research. Search strategies for the latter encompass transcriptomics, proteomics as well as metabolomics approaches. The scope of this review shall be the application and use of proteomics in the context of ACD. This includes highlighting relevant aspects of the molecular and cellular mechanisms underlying ACD, the exploitation of these mechanisms for testing and biomarkers (e.g., in the context of the OECD's adverse outcome pathway initiative) as well as an outlook on emerging proteome targets, for example during the allergen-induced activation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Tessa Höper
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Franz Mussotter
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andrea Haase
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Tewes Tralau
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| |
Collapse
|
9
|
Azzam S, Schlatzer D, Nethery D, Saleh D, Li X, Akladious A, Chance MR, Strohl KP. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. Proteomics 2017; 17. [PMID: 28544614 DOI: 10.1002/pmic.201600478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models.
Collapse
Affiliation(s)
- Sausan Azzam
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David Nethery
- Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Afaf Akladious
- Medical Service, Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Kingman P Strohl
- Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.,Medical Service, Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA.,Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
10
|
Le DHT, Hu H, Commandeur U, Steinmetz NF. Chemical addressability of potato virus X for its applications in bio/nanotechnology. J Struct Biol 2017. [PMID: 28647539 DOI: 10.1016/j.jsb.2017.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potato virus X (PVX), a type member of the plant virus potexvirus group, offers a unique nanotechnology platform based on its high aspect ratio and flexible filamentous shape. The PVX platform has already been engineered and studied for its uses in imaging, drug delivery, and immunotherapies. While genetic engineering procedures are well established for PVX, there is limited information about chemical conjugation strategies for functionalizing PVX, partly due to the lack of structural information of PVX at high resolution. To overcome these challenges, we built a structural model of the PVX particle based on the available structures from pepino mosaic virus (PepMV), a close cousin of PVX. Using the model and a series of chemical conjugation experiments, we identified and probed the addressability of cysteine side chains. Chemical reactivity of cysteines was confirmed using Michael-addition and thiol-selective probes, including fluorescent dyes and biotin tags. LC/MS/MS was used to map Cys 121 as having the highest selectivity for modification. Finally, building on the availability of two reactive groups, the newly identified Cys and previously established Lys side chains, we prepared multifunctional PVX nanoparticles by conjugating Gd-DOTA for magnetic resonance imaging (MRI) to lysines and fluorescent dyes for optical imaging to cysteines. The resulting functionalized nanofilament could have applications in dual-modal optical-MRI imaging applications. These results further extend the understanding of the chemical properties of PVX and enable development of novel multifunctional platforms in bio/nanotechnology.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Ulrich Commandeur
- Department of Molecular Biotechnology, RWTH-Aachen University, Aachen 52064, Germany
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Materials Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA; Division of General Medical Sciences-Oncology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Duguet F, Locard-Paulet M, Marcellin M, Chaoui K, Bernard I, Andreoletti O, Lesourne R, Burlet-Schiltz O, Gonzalez de Peredo A, Saoudi A. Proteomic Analysis of Regulatory T Cells Reveals the Importance of Themis1 in the Control of Their Suppressive Function. Mol Cell Proteomics 2017; 16:1416-1432. [PMID: 28373295 DOI: 10.1074/mcp.m116.062745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Regulatory T cells (Treg) represent a minor subpopulation of T lymphocytes that is crucial for the maintenance of immune homeostasis. Here, we present a large-scale quantitative mass spectrometry study that defines a specific proteomic "signature" of Treg. Treg and conventional T lymphocyte (Tconv) subpopulations were sorted by flow cytometry and subjected to global proteomic analysis by single-run nanoLC-MS/MS on a fast-sequencing Q-Exactive mass spectrometer. Besides "historical" proteins that characterize Treg, our study identified numerous new proteins that are up- or downregulated in Treg versus Tconv. We focused on Themis1, a protein particularly under-represented in Treg, and recently described as being involved in the pathogenesis of immune diseases. Using a transgenic mouse model overexpressing Themis1, we provided in vivo and in vitro evidence of its importance for Treg suppressive functions, in an animal model of inflammatory bowel disease and in coculture assays. We showed that this enhanced suppressive activity in vitro is associated with an accumulation of Tregs. Thus, our study highlights the usefulness of label free quantitative methods to better characterize the Treg cell lineage and demonstrates the potential role of Themis1 in the suppressive functions of these cells.
Collapse
Affiliation(s)
- Fanny Duguet
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France.,§Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Marie Locard-Paulet
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Marlène Marcellin
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Karima Chaoui
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Isabelle Bernard
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Olivier Andreoletti
- ¶UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 31000 Toulouse, France
| | - Renaud Lesourne
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Anne Gonzalez de Peredo
- From the ‡Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France;
| | - Abdelhadi Saoudi
- §Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024, Toulouse, France
| |
Collapse
|
12
|
Azzam S, Schlatzer D, Maxwell S, Li X, Bazdar D, Chen Y, Asaad R, Barnholtz-Sloan J, Chance MR, Sieg SF. Proteome and Protein Network Analyses of Memory T Cells Find Altered Translation and Cell Stress Signaling in Treated Human Immunodeficiency Virus Patients Exhibiting Poor CD4 Recovery. Open Forum Infect Dis 2016; 3:ofw037. [PMID: 28293663 PMCID: PMC4866573 DOI: 10.1093/ofid/ofw037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background. Human immunodeficiency virus (HIV) patients who experience poor CD4 T-cell recovery despite viral suppression during antiretroviral therapy (ART) are known as immunological nonresponders. The molecular mechanism(s) underlying incomplete immune restoration during ART is not fully understood. Methods. Label-free quantitative proteomics on single-cell type central memory T cells were used to reveal relative protein abundance changes between nonresponder, responder (good CD4 recovery during ART), and healthy individuals. Proteome changes were analyzed by protein pathway and network analyses and verified by selected reaction monitoring mass spectrometry. Results. Proteomic analysis across groups detected 155 significant proteins from 1500 nonredundant proteins. Pathway and network analyses revealed dysregulation in mammalian target of rapamycin and protein translation-related proteins and decreases in stress response-related proteins for nonresponder subjects compared with responders and controls. Actin cytoskeleton signaling was increased for HIV responders and nonresponders alike. Conclusions. Memory T cells from immunologic nonresponders have increases in proteins related to motility and protein translation and decreases in proteins capable of responding to cellular stresses compared with responders and controls. The potential for T cells to manage stress and modulate metabolism may contribute to their capacity to reconstitute a lymphopenic host.
Collapse
Affiliation(s)
- Sausan Azzam
- Center for Proteomics and Bioinformatics; Pulmonary Critical Care and Sleep Medicine
| | | | | | - Xiaolin Li
- Center for Proteomics and Bioinformatics
| | | | - Yanwen Chen
- Department of Epidemiology and Biostatistics , Case Western Reserve University School of Medicine , Cleveland, Ohio
| | - Robert Asaad
- Division of Infectious Diseases and HIV Medicine
| | - Jill Barnholtz-Sloan
- Department of Epidemiology and Biostatistics , Case Western Reserve University School of Medicine , Cleveland, Ohio
| | | | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine
| |
Collapse
|
13
|
Zhang Y, Bottinelli D, Lisacek F, Luban J, Strambio-De-Castillia C, Varesio E, Hopfgartner G. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies. Anal Biochem 2015; 484:40-50. [PMID: 25983236 PMCID: PMC4732721 DOI: 10.1016/j.ab.2015.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins.
Collapse
Affiliation(s)
- Ying Zhang
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Dario Bottinelli
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva 4, Switzerland; Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Emmanuel Varesio
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
14
|
Lundberg KC, Fritz Y, Johnston A, Foster AM, Baliwag J, Gudjonsson JE, Schlatzer D, Gokulrangan G, McCormick TS, Chance MR, Ward NL. Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Mol Cell Proteomics 2014; 14:109-19. [PMID: 25351201 DOI: 10.1074/mcp.m114.042242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.
Collapse
Affiliation(s)
| | - Yi Fritz
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Andrew Johnston
- ¶Dermatology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Jaymie Baliwag
- ¶Dermatology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | - Thomas S McCormick
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Nicole L Ward
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
15
|
Maurer M, Müller AC, Parapatics K, Pickl WF, Wagner C, Rudashevskaya EL, Breitwieser FP, Colinge J, Garg K, Griss J, Bennett KL, Wagner SN. Comprehensive comparative and semiquantitative proteome of a very low number of native and matched epstein-barr-virus-transformed B lymphocytes infiltrating human melanoma. J Proteome Res 2014; 13:2830-45. [PMID: 24803318 DOI: 10.1021/pr401270y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma, the deadliest form of skin cancer, is highly immunogenic and frequently infiltrated with immune cells including B cells. The role of tumor-infiltrating B cells (TIBCs) in melanoma is as yet unresolved, possibly due to technical challenges in obtaining TIBCs in sufficient quantity for extensive studies and due to the limited life span of B cells in vitro. A comprehensive workflow has thus been developed for successful isolation and proteomic analysis of a low number of TIBCs from fresh, human melanoma tissue. In addition, we generated in vitro-proliferating TIBC cultures using simultaneous stimulation with Epstein-Barr virus (EBV) and the TLR9 ligand CpG-oligodesoxynucleotide (CpG ODN). The FASP method and iTRAQ labeling were utilized to obtain a comparative, semiquantitative proteome to assess EBV-induced changes in TIBCs. By using as few as 100 000 B cells (∼5 μg protein)/sample for our proteomic study, a total number of 6507 proteins were identified. EBV-induced changes in TIBCs are similar to those already reported for peripheral B cells and largely involve changes in cell cycle proliferation, apoptosis, and interferon response, while most of the proteins were not significantly altered. This study provides an essential, further step toward detailed characterization of TIBCs including functional in vitro analysis.
Collapse
Affiliation(s)
- Margarita Maurer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna , Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression. Drug Discov Today 2013; 18:35-42. [DOI: 10.1016/j.drudis.2012.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/30/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023]
|