1
|
Elhage A, Watson D, Sluyter R. The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes. Eur J Immunol 2025; 55:e202451196. [PMID: 39853757 PMCID: PMC11760643 DOI: 10.1002/eji.202451196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2b antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown. In this study the functionality of this mAb was confirmed by inhibition of ATP-induced Ca2+ responses in HEK-293 cells expressing P2X7 (HEK-P2X7). Spectrophotometric measurements of lactate dehydrogenase release demonstrated that the anti-P2X7 mAb mediated CDC in HEK-P2X7 but not HEK-293 cells. Further, flow cytometric measurements of the viability dye, 7-aminoactinomycin D, showed that this mAb mediated CDC in human RPMI 8226 but not mouse J774 cells. Immunolabelling with this mAb and flow cytometry revealed that relative amounts of cell surface P2X7 varied between human peripheral blood leukocytes. As such, the anti-P2X7 mAb preferentially mediated CDC of leukocytes that displayed relatively high cell surface P2X7, namely monocytes, DCs, natural killer T cells, myeloid-derived suppressor cells, and T helper 17 cells. Together, this data highlights a novel approach to target cellular P2X7 and to limit unwanted P2X7 functions.
Collapse
Affiliation(s)
- Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
| |
Collapse
|
2
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2024; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Dagley JL, DiCosty U, Fricks C, Mansour A, McCall S, McCall JW, Taylor MJ, Turner JD. Current status of immunodeficient mouse models as substitutes to reduce cat and dog use in heartworm preclinical research. F1000Res 2024; 13:484. [PMID: 39036651 PMCID: PMC11259772 DOI: 10.12688/f1000research.149854.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 07/23/2024] Open
Abstract
Chemoprophylactic prevention of veterinary heartworm disease in companion animals, caused by the vector-borne nematode parasite Dirofilaria immitis, is a multi-billion-dollar global market. Experimental use of cats and dogs in preclinical heartworm drug testing is increasing due to evolving drug-resistance to frontline macrocyclic lactones and renewed investment in alternative preventative drug research. We and others recently published data demonstrating proof-of-concept of utilising lymphopenic severe-combined immunodeficient (SCID) or Recombination Activating Gene (RAG)2 deficient mice with additional knockout of the IL-2/7 receptor gamma chain (γc) as alternative preventative drug screening research models of dirofilariasis. Here we summarise the current knowledge of candidate immunodeficient mouse models tested, including a comparison of susceptibility using different background strains of mice, different D. immitis isolates, following use of anti-inflammatory treatments to further suppress residual innate immunity, and efficacies achieved against different reference anthelmintics. We supplement this precis with new data on treatment response to the veterinary anthelmintic, oxfendazole, and initial evaluation of D. immitis susceptibility in CB.17 SCID and C57BL/6 RAG2 -/-γc -/- mice. We conclude that in addition to NSG and NXG mice, RAG2 -/-γc -/- mice on either a BALB/c or C57BL/6 background offer an alternative screening model option, widening access to academic and commercial laboratories wishing to pursue initial rapid in vivo drug screening whilst avoiding potentially unnecessary cat or dog testing.
Collapse
Affiliation(s)
- Jessica L Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | | | | | | | | | - John W McCall
- TRS Labs, Inc., Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mark J Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Joseph D Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| |
Collapse
|
4
|
Vecchione A, Khosravi-Maharlooei M, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591692. [PMID: 38746102 PMCID: PMC11092663 DOI: 10.1101/2024.05.02.591692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. T cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and LIP have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
|
5
|
Marriott AE, Dagley JL, Hegde S, Steven A, Fricks C, DiCosty U, Mansour A, Campbell EJ, Wilson CM, Gusovsky F, Ward SA, Hong WD, O'Neill P, Moorhead A, McCall S, McCall JW, Taylor MJ, Turner JD. Dirofilariasis mouse models for heartworm preclinical research. Front Microbiol 2023; 14:1208301. [PMID: 37426014 PMCID: PMC10324412 DOI: 10.3389/fmicb.2023.1208301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Dirofilariasis, including heartworm disease, is a major emergent veterinary parasitic infection and a human zoonosis. Currently, experimental infections of cats and dogs are used in veterinary heartworm preclinical drug research. Methods As a refined alternative in vivo heartworm preventative drug screen, we assessed lymphopenic mouse strains with ablation of the interleukin-2/7 common gamma chain (γc) as susceptible to the larval development phase of Dirofilaria immitis. Results Non-obese diabetic (NOD) severe combined immunodeficiency (SCID)γc-/- (NSG and NXG) and recombination-activating gene (RAG)2-/-γc-/- mouse strains yielded viable D. immitis larvae at 2-4 weeks post-infection, including the use of different batches of D. immitis infectious larvae, different D. immitis isolates, and at different laboratories. Mice did not display any clinical signs associated with infection for up to 4 weeks. Developing larvae were found in subcutaneous and muscle fascia tissues, which is the natural site of this stage of heartworm in dogs. Compared with in vitro-propagated larvae at day 14, in vivo-derived larvae had completed the L4 molt, were significantly larger, and contained expanded Wolbachia endobacteria titres. We established an ex vivo L4 paralytic screening system whereby assays with moxidectin or levamisole highlighted discrepancies in relative drug sensitivities in comparison with in vitro-reared L4 D. immitis. We demonstrated effective depletion of Wolbachia by 70%-90% in D. immitis L4 following 2- to 7-day oral in vivo exposures of NSG- or NXG-infected mice with doxycycline or the rapid-acting investigational drug, AWZ1066S. We validated NSG and NXG D. immitis mouse models as a filaricide screen by in vivo treatments with single injections of moxidectin, which mediated a 60%-88% reduction in L4 larvae at 14-28 days. Discussion Future adoption of these mouse models will benefit end-user laboratories conducting research and development of novel heartworm preventatives via increased access, rapid turnaround, and reduced costs and may simultaneously decrease the need for experimental cat or dog use.
Collapse
Affiliation(s)
- A. E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. L. Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - S. Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - A. Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - C. Fricks
- TRS Laboratories Inc, Athens, GA, United States
| | - U. DiCosty
- TRS Laboratories Inc, Athens, GA, United States
| | - A. Mansour
- TRS Laboratories Inc, Athens, GA, United States
| | - E. J. Campbell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - C. M. Wilson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - F. Gusovsky
- Eisai Global Health, Cambridge, MA, United States
| | - S. A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - W. D. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - P. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - A. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - S. McCall
- TRS Laboratories Inc, Athens, GA, United States
| | - J. W. McCall
- TRS Laboratories Inc, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - M. J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
6
|
Saikumar Lakshmi P, Oduor CI, Forconi CS, M'Bana V, Bly C, Gerstein RM, Otieno JA, Ong'echa JM, Münz C, Luftig MA, Brehm MA, Bailey JA, Moormann AM. Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies. Life Sci Alliance 2023; 6:e202101355. [PMID: 36878637 PMCID: PMC9990458 DOI: 10.26508/lsa.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.
Collapse
Affiliation(s)
- Priya Saikumar Lakshmi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff I Oduor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Viriato M'Bana
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Courtney Bly
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rachel M Gerstein
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services, Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
7
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Harb H, Benamar M, Lai PS, Contini P, Griffith JW, Crestani E, Schmitz-Abe K, Chen Q, Fong J, Marri L, Filaci G, Del Zotto G, Pishesha N, Kolifrath S, Broggi A, Ghosh S, Gelmez MY, Oktelik FB, Cetin EA, Kiykim A, Kose M, Wang Z, Cui Y, Yu XG, Li JZ, Berra L, Stephen-Victor E, Charbonnier LM, Zanoni I, Ploegh H, Deniz G, De Palma R, Chatila TA. Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity 2021; 54:1186-1199.e7. [PMID: 33915108 PMCID: PMC8080416 DOI: 10.1016/j.immuni.2021.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.
Collapse
MESH Headings
- Amphiregulin/pharmacology
- Animals
- Biomarkers
- Cytokines/metabolism
- Disease Models, Animal
- Disease Susceptibility
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular
- Immunohistochemistry
- Immunomodulation/drug effects
- Inflammation Mediators/metabolism
- Influenza A virus/physiology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Mice
- Mice, Transgenic
- Pneumonia, Viral/etiology
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/pathology
- Receptor, Notch4/antagonists & inhibitors
- Receptor, Notch4/genetics
- Receptor, Notch4/metabolism
- Severity of Illness Index
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Hani Harb
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Peggy S Lai
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paola Contini
- Deptartment of Internal Medicine, University of Genoa, Genoa, Italy; Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Jason W Griffith
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Luca Marri
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gilberto Filaci
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Novalia Pishesha
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stephen Kolifrath
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Achille Broggi
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sreya Ghosh
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Fatma Betul Oktelik
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Murat Kose
- Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ziwei Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Boston, MA, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hidde Ploegh
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Raffaele De Palma
- Deptartment of Internal Medicine, University of Genoa, Genoa, Italy; Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; CNR-Institute of Biomolecular Chemistry (IBC), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Wen J, Wang L, Ren J, Kranz E, Chen S, Wu D, Kanazawa T, Chen I, Lu Y, Kamata M. Nanoencapsulated rituximab mediates superior cellular immunity against metastatic B-cell lymphoma in a complement competent humanized mouse model. J Immunother Cancer 2021; 9:jitc-2020-001524. [PMID: 33593826 PMCID: PMC7888328 DOI: 10.1136/jitc-2020-001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rg tm1Wjl /SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions-including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)-due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system. METHODS We have developed a humanized mouse model using a novel NSG strain, NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ (NSG-Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44. RESULTS As expected, xenografted humanized NSG-Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG-Hc1 mice and, more importantly, mediated antilymphoma cellular responses. CONCLUSIONS These results indicate that NSG-Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Toshio Kanazawa
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Irvin Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Masakazu Kamata
- Microbiology, University of Alabama at Birmingham School of Arts and Humanities, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
11
|
Vavassori V, Mercuri E, Marcovecchio GE, Castiello MC, Schiroli G, Albano L, Margulies C, Buquicchio F, Fontana E, Beretta S, Merelli I, Cappelleri A, Rancoita PM, Lougaris V, Plebani A, Kanariou M, Lankester A, Ferrua F, Scanziani E, Cotta-Ramusino C, Villa A, Naldini L, Genovese P. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med 2021; 13:e13545. [PMID: 33475257 PMCID: PMC7933961 DOI: 10.15252/emmm.202013545] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X‐linked hyper‐IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one‐size‐fits‐all editing strategy for effective T‐cell correction, selection, and depletion and investigated the therapeutic potential of T‐cell and HSPC therapies in the HIGM1 mouse model. Edited patients’ derived CD4 T cells restored physiologically regulated CD40L expression and contact‐dependent B‐cell helper function. Adoptive transfer of wild‐type T cells into conditioned HIGM1 mice rescued antigen‐specific IgG responses and protected mice from a disease‐relevant pathogen. We then obtained ~ 25% CD40LG editing in long‐term repopulating human HSPC. Transplanting such proportion of wild‐type HSPC in HIGM1 mice rescued immune functions similarly to T‐cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T‐cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mercuri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Monza, Italy
| | - Genni E Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria C Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Elena Fontana
- Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy.,Human Genome Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute for Biomedical Technologies, National Research Council (CNR), Segrate, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Paola Mv Rancoita
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Vassilios Lougaris
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Plebani
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Maria Kanariou
- First Department of Paediatrics, Aghia Sophia Children's Hospital, Athens, Greece
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies (Basel) 2020; 9:antib9040058. [PMID: 33126570 PMCID: PMC7709112 DOI: 10.3390/antib9040058] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Unconjugated anti-cancer IgG1 monoclonal antibodies (mAbs) activate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells and antibody-dependent cellular phagocytosis (ADCP) by macrophages, and these activities are thought to be important mechanisms of action for many of these mAbs in vivo. Several mAbs also activate the classical complement pathway and promote complement-dependent cytotoxicity (CDC), although with very different levels of efficacy, depending on the mAb, the target antigen, and the tumor type. Recent studies have unraveled the various structural factors that define why some IgG1 mAbs are strong mediators of CDC, whereas others are not. The role of complement activation and membrane inhibitors expressed by tumor cells, most notably CD55 and CD59, has also been quite extensively studied, but how much these affect the resistance of tumors in vivo to IgG1 therapeutic mAbs still remains incompletely understood. Recent studies have demonstrated that complement activation has multiple effects beyond target cell lysis, affecting both innate and adaptive immunity mediated by soluble complement fragments, such as C3a and C5a, and by stimulating complement receptors expressed by immune cells, including NK cells, neutrophils, macrophages, T cells, and dendritic cells. Complement activation can enhance ADCC and ADCP and may contribute to the vaccine effect of mAbs. These different aspects of complement are also briefly reviewed in the specific context of FDA-approved therapeutic anti-cancer IgG1 mAbs.
Collapse
|
13
|
Abstract
Supplemental Digital Content is available in the text. Background. Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. Methods. We generated immunodeficient Rat Rag−/− Gamma chain−/− human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. Results. RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. Conclusions. hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.
Collapse
|
14
|
Morillon YM, Sabzevari A, Schlom J, Greiner JW. The Development of Next-generation PBMC Humanized Mice for Preclinical Investigation of Cancer Immunotherapeutic Agents. Anticancer Res 2020; 40:5329-5341. [PMID: 32988851 DOI: 10.21873/anticanres.14540] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Investigation of the efficacy and mechanisms of human immuno-oncology agents has been hampered due to species-specific differences when utilizing preclinical mouse models. Peripheral blood mononuclear cell (PBMC) humanized mice provide a platform for investigating the modulation of the human immune-mediated antitumor response while circumventing the limitations of syngeneic model systems. Use of humanized mice has been stymied by model-specific limitations, some of which include the development of graft versus host disease, technical difficulty and cost associated with each humanized animal, and insufficient engraftment of some human immune subsets. Recent advances have addressed many of these limitations from which have emerged humanized models that are more clinically relevant. This review characterizes the expanded usage, advantages and limitations of humanized mice and provides insights into the development of the next generation of murine humanized models to further inform clinical applications of cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Ariana Sabzevari
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A.
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
15
|
Sluyter R, Watson D. Use of Humanized Mouse Models to Investigate the Roles of Purinergic Signaling in Inflammation and Immunity. Front Pharmacol 2020; 11:596357. [PMID: 33123018 PMCID: PMC7566314 DOI: 10.3389/fphar.2020.596357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Hosur V, Skelly DA, Francis C, Low BE, Kohar V, Burzenski LM, Amiji MM, Shultz LD, Wiles MV. Improved mouse models and advanced genetic and genomic technologies for the study of neutrophils. Drug Discov Today 2020; 25:1013-1025. [PMID: 32387410 DOI: 10.1016/j.drudis.2020.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Mice have been excellent surrogates for studying neutrophil biology and, furthermore, murine models of human disease have provided fundamental insights into the roles of human neutrophils in innate immunity. The emergence of novel humanized mice and high-diversity mouse populations offers the research community innovative and powerful platforms for better understanding, respectively, the mechanisms by which human neutrophils drive pathogenicity, and how genetic differences underpin the variation in neutrophil biology observed among humans. Here, we review key examples of these new resources. Additionally, we provide an overview of advanced genetic engineering tools available to further improve such murine model systems, of sophisticated neutrophil-profiling technologies, and of multifunctional nanoparticle (NP)-based neutrophil-targeting strategies.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA.
| | - Daniel A Skelly
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Christopher Francis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Benjamin E Low
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Vivek Kohar
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Lisa M Burzenski
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Leonard D Shultz
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Michael V Wiles
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME 04609 USA
| |
Collapse
|
17
|
Lang J, Capasso A, Jordan KR, French JD, Kar A, Bagby SM, Barbee J, Yacob BW, Head LS, Tompkins KD, Freed BM, Somerset H, Clark TJ, Pitts TM, Messersmith WA, Eckhardt SG, Wierman ME, Leong S, Kiseljak-Vassiliades K. Development of an Adrenocortical Cancer Humanized Mouse Model to Characterize Anti-PD1 Effects on Tumor Microenvironment. J Clin Endocrinol Metab 2020; 105:5568436. [PMID: 31513709 PMCID: PMC7947837 DOI: 10.1210/clinem/dgz014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/28/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023]
Abstract
CONTEXT Although the development of immune checkpoint inhibitors has transformed treatment strategies of several human malignancies, research models to study immunotherapy in adrenocortical carcinoma (ACC) are lacking. OBJECTIVE To explore the effect of anti-PD1 immunotherapy on the alteration of the immune milieu in ACC in a newly generated preclinical model and correlate with the response of the matched patient. DESIGN, SETTING, AND INTERVENTION To characterize the CU-ACC2-M2B patient-derived xenograft in a humanized mouse model, evaluate the effect of a PD-1 inhibitor therapy, and compare it with the CU-ACC2 patient with metastatic disease. RESULTS Characterization of the CU-ACC2-humanized cord blood-BALB/c-Rag2nullIl2rγnullSirpaNOD model confirmed ACC origin and match with the original human tumor. Treatment of the mice with pembrolizumab demonstrated significant tumor growth inhibition (60%) compared with controls, which correlated with increased tumor infiltrating lymphocyte activity, with an increase of human CD8+ T cells (P < 0.05), HLA-DR+ T cells (P < 0.05) as well as Granzyme B+ CD8+ T cells (<0.001). In parallel, treatment of the CU-ACC2 patient, who had progressive disease, demonstrated a partial response with 79% to 100% reduction in the size of target lesions, and no new sites of metastasis. Pretreatment analysis of the patient's metastatic liver lesion demonstrated abundant intratumoral CD8+ T cells by immunohistochemistry. CONCLUSIONS Our study reports the first humanized ACC patient-derived xenograft mouse model, which may be useful to define mechanisms and biomarkers of response and resistance to immune-based therapies, to ultimately provide more personalized care for patients with ACC.
Collapse
Affiliation(s)
- Julie Lang
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Capasso
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jena D French
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Barbee
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Betelehem W Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lia S Head
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth D Tompkins
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian M Freed
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toshimasa J Clark
- Department of Radiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Gail Eckhardt
- Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
- Correspondence and Reprint Requests: Katja Kiseljak-Vassiliades, DO, Endocrinology MS8106, University of Colorado School of Medicine, 12801 East 17th Ave, RC1 South, Aurora, CO 80045. E-mail:
| |
Collapse
|
18
|
Kokolus KM, Haley JS, Koubek EJ, Gowda R, Dinavahi SS, Sharma A, Claxton DF, Helm KF, Drabick JJ, Robertson GP, Neighbors JD, Hohl RJ, Schell TD. Schweinfurthin natural products induce regression of murine melanoma and pair with anti-PD-1 therapy to facilitate durable tumor immunity. Oncoimmunology 2018; 8:e1539614. [PMID: 30713799 DOI: 10.1080/2162402x.2018.1539614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Metastatic melanoma is a significant clinical problem with a 5-year survival rate of only 15-20%. Recent approval of new immunotherapies and targeted inhibitors have provided much needed options for these patients, in some cases promoting dramatic disease regressions. In particular, antibody-based therapies that block the PD-1/PD-L1 checkpoint inhibitory pathway have achieved an increased overall response rate in metastatic melanoma, yet durable response rates are reported only around 15%. To improve the overall and durable response rates for advanced-stage melanoma, combined targeted and immune-based therapies are under investigation. Here, we investigated how the natural products called schweinfurthins, which have selective anti-proliferative activity against many cancer types, impact anti-(α)PD-1-mediated immunotherapy of murine melanomas. Two different compounds efficiently reduced the growth of human and murine melanoma cells in vitro and induced plasma membrane surface localization of the ER-resident protein calreticulin in B16.F10 melanoma cells, an indicator of immunogenic cell death. In addition, both compounds improved αPD-1-mediated immunotherapy of established tumors in immunocompetent C57BL/6 mice either by delaying tumor progression or resulting in complete tumor regression. Improved immunotherapy was accomplished following only a 5-day course of schweinfurthin, which was associated with initial tumor regression even in the absence of αPD-1. Schweinfurthin-induced tumor regression required an intact immune system as tumors were unaffected in NOD scid gamma (NSG) mice. These results indicate that schweinfurthins improve αPD-1 therapy, leading to enhanced and durable anti-tumor immunity and support the translation of this novel approach to further improve response rates for metastatic melanoma.
Collapse
Affiliation(s)
- Kathleen M Kokolus
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Jeremy S Haley
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Emily J Koubek
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.,Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Raghavendra Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Saketh S Dinavahi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| | - David F Claxton
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| | - Klaus F Helm
- Department of Pathology, Penn State College of Medicine, Hershey, PA, USA.,Department of Dermatology, Penn State College of Medicine, Hershey, PA, USA
| | - Joseph J Drabick
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.,Department of Pathology, Penn State College of Medicine, Hershey, PA, USA.,Penn State Melanoma and Skin Cancer Center, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA.,Penn State Melanoma and Skin Cancer Center, Hershey, PA, USA
| | - Jeffrey D Neighbors
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.,Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| | - Raymond J Hohl
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.,Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA.,Penn State Melanoma and Skin Cancer Center, Hershey, PA, USA
| |
Collapse
|
19
|
Macor P, Capolla S, Tedesco F. Complement as a Biological Tool to Control Tumor Growth. Front Immunol 2018; 9:2203. [PMID: 30319647 PMCID: PMC6167450 DOI: 10.3389/fimmu.2018.02203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
Deposits of complement components have been documented in several human tumors suggesting a potential involvement of the complement system in tumor immune surveillance. In vitro and in vivo studies have revealed a double role played by this system in tumor progression. Complement activation in the cancer microenvironment has been shown to promote cancer growth through the release of the chemotactic peptide C5a recruiting myeloid suppressor cells. There is also evidence that tumor progression can be controlled by complement activated on the surface of cancer cells through one of the three pathways of complement activation. The aim of this review is to discuss the protective role of complement in cancer with special focus on the beneficial effect of complement-fixing antibodies that are efficient activators of the classical pathway and contribute to inhibit tumor expansion as a result of MAC-mediated cancer cell killing and complement-mediated inflammatory process. Cancer cells are heterogeneous in their susceptibility to complement-induced killing that generally depends on stable and relatively high expression of the antigen and the ability of therapeutic antibodies to activate complement. A new generation of monoclonal antibodies are being developed with structural modification leading to hexamer formation and enhanced complement activation. An important progress in cancer immunotherapy has been made with the generation of bispecific antibodies targeting tumor antigens and able to neutralize complement regulators overexpressed on cancer cells. A great effort is being devoted to implementing combined therapy of traditional approaches based on surgery, chemotherapy and radiotherapy and complement-fixing therapeutic antibodies. An effective control of tumor growth by complement is likely to be obtained on residual cancer cells following conventional therapy to reduce the tumor mass, prevent recurrences and avoid disabilities.
Collapse
Affiliation(s)
- Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
20
|
García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodríguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, Scadden DT, Cuesta-Mateos C, Muñoz-Calleja C, Sánchez-Madrid F, Toribio ML. The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest 2018; 128:2802-2818. [PMID: 29781813 DOI: 10.1172/jci92981] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.
Collapse
Affiliation(s)
- Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Patricia Fuentes
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Marta Mosquera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Antonio Rodríguez
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), Barcelona, ISCIII, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kees Weijer
- Department of Cell Biology and Histology, Academic Medical Center, and
| | - Hergen Spits
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute and Harvard University Department of Stem Cell and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Cuesta-Mateos
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain.,Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| |
Collapse
|
21
|
Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 2018; 18:5-18. [PMID: 28920587 PMCID: PMC5816344 DOI: 10.1038/nri.2017.97] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In tumour immunology, complement has traditionally been considered as an adjunctive component that enhances the cytolytic effects of antibody-based immunotherapies, such as rituximab. Remarkably, research in the past decade has uncovered novel molecular mechanisms linking imbalanced complement activation in the tumour microenvironment with inflammation and suppression of antitumour immune responses. These findings have prompted new interest in manipulating the complement system for cancer therapy. This Review summarizes our current understanding of complement-mediated effector functions in the tumour microenvironment, focusing on how complement activation can act as a negative or positive regulator of tumorigenesis. It also offers insight into clinical aspects, including the feasibility of using complement biomarkers for cancer diagnosis and the use of complement inhibitors during cancer treatment.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| | | | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Alberto Mantovani
- Humanitas Clinical and Research Center and Humanitas University, Rozzano-Milan 20089, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| |
Collapse
|