1
|
Feola S, Chiaro J, Fusciello M, Russo S, Kleino I, Ylösmäki L, Kekäläinen E, Hästbacka J, Pekkarinen PT, Ylösmäki E, Capone S, Folgori A, Raggioli A, Boni C, Tiezzi C, Vecchi A, Gelzo M, Kared H, Nardin A, Fehlings M, Barban V, Ahokas P, Viitala T, Castaldo G, Pastore L, Porter P, Pesonen S, Cerullo V. PeptiVAX: A new adaptable peptides-delivery platform for development of CTL-based, SARS-CoV-2 vaccines. Int J Biol Macromol 2024; 262:129926. [PMID: 38331062 DOI: 10.1016/j.ijbiomac.2024.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a threat to public health and the global economy, necessitating the development of various vaccination strategies. Mutations in the SPIKE protein gene, a crucial component of mRNA and adenovirus-based vaccines, raised concerns about vaccine efficacy, prompting the need for rapid vaccine updates. To address this, we leveraged PeptiCRAd, an oncolytic vaccine based on tumor antigen decorated oncolytic adenoviruses, creating a vaccine platform called PeptiVAX. First, we identified multiple CD8 T-cell epitopes from highly conserved regions across coronaviruses, expanding the range of T-cell responses to non-SPIKE proteins. We designed short segments containing the predicted epitopes presented by common HLA-Is in the global population. Testing the immunogenicity, we characterized T-cell responses to candidate peptides in peripheral blood mononuclear cells (PBMCs) from pre-pandemic healthy donors and ICU patients. As a proof of concept in mice, we selected a peptide with epitopes predicted to bind to murine MHC-I haplotypes. Our technology successfully elicited peptide-specific T-cell responses, unaffected by the use of unarmed adenoviral vectors or adeno-based vaccines encoding SPIKE. In conclusion, PeptiVAX represents a fast and adaptable SARS-CoV-2 vaccine delivery system that broadens T-cell responses beyond the SPIKE protein, offering potential benefits for vaccine effectiveness.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Iivari Kleino
- Turku Bioscience Centre, University of Turku and Åbo Akademi University Turku, Turku, Finland
| | | | - Eliisa Kekäläinen
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; HUSLAB Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- HUSLAB Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkka T Pekkarinen
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Division of Intensive Care Medicine, Department of Anaesthesiology and Intensive Care, University of Helsinki and Helsinki University Hospital, Finland
| | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Disease and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Disease and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | - Tapani Viitala
- Pharmaceutical Biophysics Research Group, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy
| | - Paul Porter
- Valo Therapeutics Oy, Helsinki, Finland; School of Nursing, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia
| | | | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
2
|
Sun B, Gao F. Investigation of escape mechanisms of SARS-CoV-2 Omicron sub-lineages and exploration of potential antibodies for XBB.1. J Infect 2023; 87:354-357. [PMID: 37507093 DOI: 10.1016/j.jinf.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Bo Sun
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
3
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
4
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
5
|
Kuzmina A, Korovin D, Cohen Lass I, Atari N, Ottolenghi A, Hu P, Mandelboim M, Rosental B, Rosenberg E, Diaz-Griffero F, Taube R. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 2023; 9:e16750. [PMID: 37292300 PMCID: PMC10238279 DOI: 10.1016/j.heliyon.2023.e16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
The rapid spread and dominance of the Omicron SARS-CoV-2 lineages have posed severe health challenges worldwide. While extensive research on the role of the Receptor Binding Domain (RBD) in promoting viral infectivity and vaccine sensitivity has been well documented, the functional significance of the 681PRRAR/SV687 polybasic motif of the viral spike is less clear. In this work, we monitored the infectivity levels and neutralization potential of the wild-type human coronavirus 2019 (hCoV-19), Delta, and Omicron SARS-CoV-2 pseudoviruses against sera samples drawn four months post administration of a third dose of the BNT162b2 mRNA vaccine. Our findings show that in comparison to hCoV-19 and Delta SARS-CoV-2, Omicron lineages BA.1 and BA.2 exhibit enhanced infectivity and a sharp decline in their sensitivity to vaccine-induced neutralizing antibodies. Interestingly, P681 mutations within the viral spike do not play a role in the neutralization potential or infectivity of SARS Cov-2 pseudoviruses carrying mutations in this position. The P681 residue however, dictates the ability of the spike protein to promote fusion and syncytia formation between infected cells. While spike from hCoV-19 (P681) and Omicron (H681) promote only modest cell fusion and formation of syncytia between cells that express the spike-protein, Delta spike (R681) displays enhanced fusogenic activity and promotes syncytia formation. Additional analysis shows that a single P681R mutation within the hCoV-19 spike, or H681R within the Omicron spike, restores fusion potential to similar levels observed for the Delta R681 spike. Conversely, R681P point mutation within the spike of Delta pseudovirus abolishes efficient fusion and syncytia formation. Our investigation also demonstrates that spike proteins from hCoV-19 and Delta SARS-CoV-2 are efficiently incorporated into viral particles relative to the spike of Omicron lineages. We conclude that the third dose of the Pfizer-BNT162b2 provides appreciable protection against the newly emerged Omicron sub-lineages. However, the neutralization sensitivity of these new variants is diminished relative to that of the hCoV-19 or Delta SARS-CoV-2. We further show that the P681 residue within spike dictates cell fusion and syncytia formation with no effects on the infectivity of the specific viral variant and on its sensitivity to vaccine-mediated neutralization.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Dina Korovin
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ido Cohen Lass
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | | | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
6
|
Akaishi T, Fujiwara K. Insertion and deletion mutations preserved in SARS-CoV-2 variants. Arch Microbiol 2023; 205:154. [PMID: 37000302 PMCID: PMC10064622 DOI: 10.1007/s00203-023-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
The insertion/deletion (indel) mutation profiles of SARS-CoV-2 variants, including Omicron, remain unclear. We compared whole-genome sequences from various lineages and used preserved indels to infer the ancestral relationships between different lineages. Thirteen indel patterns from twelve sites were seen in ≥ 2 sequences; six of these sites were located in the N-terminal domain of the viral spike gene. Preserved indels in the coding regions were also identified in the non-structural protein 3 (Nsp3), Nsp6, and nucleocapsid genes. Seven of the thirteen indel patterns were specific to the Omicron variants, four of which were observed in BA.1, making it the most mutated variant. Other preserved indels observed in the Omicron variants were also seen in Alpha and/or Gamma, but not Delta, suggesting that Omicron is phylogenetically more proximal to Alpha. We demonstrated distinct profiles of preserved indels among SARS-CoV-2 variants and sublineages, suggesting the importance of indels in viral evolution.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
- COVID-19 Testing Center, Tohoku University, Sendai, Japan.
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University, Nagoya, Japan
| |
Collapse
|
7
|
Azzaz F, Hilaire D, Fantini J. Structural basis of botulinum neurotoxin serotype A1 binding to human SV2A or SV2C receptors. Chem Biol Interact 2023; 373:110384. [PMID: 36754227 DOI: 10.1016/j.cbi.2023.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Botulinum neurotoxin A1 (BoNT/A1) is the most potent natural poison in human. BoNT/A1 recognize the luminal domain of SV2A (LD-SV2A) and its glycosylation at position N573 (N573g) or the luminal domain of SV2C (LD-SV2C) and its glycosylation at position N559 (N559g) to bind neural membrane. Our computational data suggest that the N-glycan at position 480 (N480g) in the luminal domain of SV2C (LD-SV2C) indirectly enhanced the contacts of the neurotoxin surface with the second N-glycan at position 559 (N559g) by acting as a shield to prevent N559g to interact with residues of LD-SV2C. The absence of an N-glycan homologous to N480g in LD-SV2A leads to a decrease of the binding of N573g to the surface of BoNT/A1. Concerning the intermolecular interactions between BoNT/A and the protein part of LD-SV2A or LD-SV2C, we showed that the high affinity of the neurotoxin for binding LD-SV2C are mediated by a better compaction of its F557-F562 part provided by a π-π network mediated by residues F547, F552, F557 and F562 coupled with the presence of two aromatic residues at position 563 and 564 that optimize the binding of BoNT/A1 via cation-pi and CH-pi interaction. Finally, in addition to the well-known ganglioside binding site which accommodates a ganglioside on the surface of BoNT/A1, we identified a structure we coined the ganglioside binding loop defined by the sequence 1253-HQFNNIAK-1260 that is conserved across all subtypes of BoNT/A and is predicted to has a high affinity to interact with gangliosides. These data solved the puzzle generated by mutational studies that could be only partially understood with crystallographic data that lack both a biologically relevant membrane environment and a full glycosylation of SV2.
Collapse
Affiliation(s)
- Fodil Azzaz
- University of Aix-Marseille and INSERM U_1072, Marseille, France.
| | - Didier Hilaire
- DGA (Direction Générale de L'armement), DGA Maîtrise NRBC, Vert le Petit, France
| | - Jacques Fantini
- University of Aix-Marseille and INSERM U_1072, Marseille, France
| |
Collapse
|
8
|
Overduin M, Bhat RK, Kervin TA. SARS-CoV-2 Omicron Subvariants Balance Host Cell Membrane, Receptor, and Antibody Docking via an Overlapping Target Site. Viruses 2023; 15:v15020447. [PMID: 36851661 PMCID: PMC9967007 DOI: 10.3390/v15020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are emerging rapidly and offer surfaces that are optimized for recognition of host cell membranes while also evading antibodies arising from vaccinations and previous infections. Host cell infection is a multi-step process in which spike heads engage lipid bilayers and one or more angiotensin-converting enzyme 2 (ACE-2) receptors. Here, the membrane binding surfaces of Omicron subvariants are compared using cryo-electron microscopy (cEM) structures of spike trimers from BA.2, BA.2.12.1, BA.2.13, BA.2.75, BA.3, BA.4, and BA.5 viruses. Despite significant differences around mutated sites, they all maintain strong membrane binding propensities that first appeared in BA.1. Both their closed and open states retain elevated membrane docking capacities, although the presence of more closed than open states diminishes opportunities to bind receptors while enhancing membrane engagement. The electrostatic dipoles are generally conserved. However, the BA.2.75 spike dipole is compromised, and its ACE-2 affinity is increased, and BA.3 exhibits the opposite pattern. We propose that balancing the functional imperatives of a stable, readily cleavable spike that engages both lipid bilayers and receptors while avoiding host defenses underlies betacoronavirus evolution. This provides predictive criteria for rationalizing future pandemic waves and COVID-19 transmissibility while illuminating critical sites and strategies for simultaneously combating multiple variants.
Collapse
|
9
|
Yan F, Gao F. RBD-ACE2 binding properties in five SARS-CoV-2 variants of concern with new perspectives in the design of pan-coronavirus peptide inhibitors. J Infect 2023; 86:e51-e54. [PMID: 36115608 PMCID: PMC9475024 DOI: 10.1016/j.jinf.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
10
|
Fantini J, Azzaz F, Chahinian H, Yahi N. Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era. Viruses 2023; 15:284. [PMID: 36851498 PMCID: PMC9964723 DOI: 10.3390/v15020284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic.
Collapse
Affiliation(s)
- Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France
| | | | | | | |
Collapse
|
11
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
12
|
Zhou Y, Zhi H, Teng Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. J Med Virol 2023; 95:e28138. [PMID: 36097349 PMCID: PMC9538491 DOI: 10.1002/jmv.28138] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
As of November 2021, several SARS-CoV-2 variants appeared and became dominant epidemic strains in many countries, including five variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron defined by the World Health Organization during the COVID-19 pandemic. As of August 2022, Omicron is classified into five main lineages, BA.1, BA.2, BA.3, BA.4, BA.5 and some sublineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6) (https://www.gisaid.org/). Compared to the previous VOCs (Alpha, Beta, Gamma, and Delta), all the Omicron lineages have the most highly mutations in the spike protein, and with 50 mutations accumulated throughout the genome. Early data indicated that Omicron BA.2 sublineage had higher infectivity and more immune escape than the early wild-type (WT) strain, the previous VOCs, and BA.1. Recently, global surveillance data suggest a higher transmissibility of BA.4/BA.5 than BA.1, BA.1.1 and BA.2, and BA.4/BA.5 is becoming dominant strain in many countries globally.
Collapse
Affiliation(s)
- Yongbing Zhou
- Department of Clinical Laboratory, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huilin Zhi
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Teng
- Department of Clinical Laboratory, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Pascarella S, Ciccozzi M, Benvenuto D, Borsetti A, Cauda R, Cassone A. Peculiar Variations of the Electrostatic Potential of Spike Protein N-terminal Domain Associated with the Emergence of Successive SARS-CoV-2 Omicron Lineages. J Infect 2023; 86:66-117. [PMID: 35908615 PMCID: PMC9334862 DOI: 10.1016/j.jinf.2022.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Stefano Pascarella
- Department of Biochemical Sciences "A Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Domenico Benvenuto
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS); Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Roberto Cauda
- Department of Healthcare Surveillance and Bioethics, Catholic University of Sacred Heart, Rome, Italy
| | | |
Collapse
|
14
|
SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects. Int J Mol Sci 2022; 23:ijms232415480. [PMID: 36555121 PMCID: PMC9779393 DOI: 10.3390/ijms232415480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Experimental findings for SARS-CoV-2 related to the glycan biochemistry of coronaviruses indicate that attachments from spike protein to glycoconjugates on the surfaces of red blood cells (RBCs), other blood cells and endothelial cells are key to the infectivity and morbidity of COVID-19. To provide further insight into these glycan attachments and their potential clinical relevance, the classic hemagglutination (HA) assay was applied using spike protein from the Wuhan, Alpha, Delta and Omicron B.1.1.529 lineages of SARS-CoV-2 mixed with human RBCs. The electrostatic potential of the central region of spike protein from these four lineages was studied through molecular modeling simulations. Inhibition of spike protein-induced HA was tested using the macrocyclic lactone ivermectin (IVM), which is indicated to bind strongly to SARS-CoV-2 spike protein glycan sites. The results of these experiments were, first, that spike protein from these four lineages of SARS-CoV-2 induced HA. Omicron induced HA at a significantly lower threshold concentration of spike protein than the three prior lineages and was much more electropositive on its central spike protein region. IVM blocked HA when added to RBCs prior to spike protein and reversed HA when added afterward. These results validate and extend prior findings on the role of glycan bindings of viral spike protein in COVID-19. They furthermore suggest therapeutic options using competitive glycan-binding agents such as IVM and may help elucidate rare serious adverse effects (AEs) associated with COVID-19 mRNA vaccines, which use spike protein as the generated antigen.
Collapse
|
15
|
Fantini J, Chahinian H, Yahi N. A Vaccine Strategy Based on the Identification of an Annular Ganglioside Binding Motif in Monkeypox Virus Protein E8L. Viruses 2022; 14:v14112531. [PMID: 36423140 PMCID: PMC9693861 DOI: 10.3390/v14112531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The recent outbreak of Monkeypox virus requires the development of a vaccine specifically directed against this virus as quickly as possible. We propose here a new strategy based on a two-step analysis combining (i) the search for binding domains of viral proteins to gangliosides present in lipid rafts of host cells, and (ii) B epitope predictions. Based on previous studies of HIV and SARS-CoV-2 proteins, we show that the Monkeypox virus cell surface-binding protein E8L possesses a ganglioside-binding motif consisting of several subsites forming a ring structure. The binding of the E8L protein to a cluster of gangliosides GM1 mimicking a lipid raft domain is driven by both shape and electrostatic surface potential complementarities. An induced-fit mechanism unmasks selected amino acid side chains of the motif without significantly affecting the secondary structure of the protein. The ganglioside-binding motif overlaps three potential linear B epitopes that are well exposed on the unbound E8L surface that faces the host cell membrane. This situation is ideal for generating neutralizing antibodies. We thus suggest using these three sequences derived from the E8L protein as immunogens in a vaccine formulation (recombinant protein, synthetic peptides or genetically based) specific for Monkeypox virus. This lipid raft/ganglioside-based strategy could be used for developing therapeutic and vaccine responses to future virus outbreaks, in parallel to existing solutions.
Collapse
|
16
|
Ovchynnykova O, Kapusta K, Sizochenko N, Sukhyy KM, Kolodziejczyk W, Hill GA, Saloni J. Homology Modeling and Molecular Dynamics-Driven Search for Natural Inhibitors That Universally Target Receptor-Binding Domain of Spike Glycoprotein in SARS-CoV-2 Variants. Molecules 2022; 27:7336. [PMID: 36364158 PMCID: PMC9657887 DOI: 10.3390/molecules27217336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid spread of SARS-CoV-2 required immediate actions to control the transmission of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome contributes to the virus' ability to quickly adapt to environmental changes, impacts transmissibility and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers working in vaccine development and drug design to consider the impact of mutations on virus-drug interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were created and validated using reference crystal structures. We then investigated interactions between host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs. Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2 inhibition. These compounds are flavanone glycosides found in citrus fruits - an active ingredient of Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for which crystal structures are not yet available and (2) scan a more extensive library of compounds against other mutated viral proteins.
Collapse
Affiliation(s)
- Olha Ovchynnykova
- Department of Fuel, Polymer, and Polygraphic Materials Technologies, Ukrainian State University of Chemical Technology, 49005 Dnipro, Ukraine
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Natalia Sizochenko
- The Ronin Institute for Independent Scholarship, Montclair, NJ 07043, USA
| | - Kostyantyn M. Sukhyy
- Department of Fuel, Polymer, and Polygraphic Materials Technologies, Ukrainian State University of Chemical Technology, 49005 Dnipro, Ukraine
| | - Wojciech Kolodziejczyk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Glake A. Hill
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Julia Saloni
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
17
|
Kumar S, Karuppanan K, Subramaniam G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment. J Med Virol 2022; 94:4780-4791. [PMID: 35680610 PMCID: PMC9347785 DOI: 10.1002/jmv.27927] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022]
Abstract
The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread throughout the world. We used computational tools to assess the spike infectivity, transmission, and pathogenicity of Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) in this study. BA.1 has 39 mutations, BA.1.1 has 40 mutations, BA.2 has 31 mutations, and BA.3 has 34 mutations, with 21 shared mutations between all. We observed 11 common mutations in Omicron's receptor-binding domain (RBD) and sub-variants. In pathogenicity analysis, the Y505H, N786K, T95I, N211I, N856K, and V213R mutations in omicron and sub-variants are predicted to be deleterious. Due to the major effect of the mutations characterizing in the RBD, we found that Omicron and sub-variants had a higher positive electrostatic surface potential. This could increase interaction between RBD and negative electrostatic surface potential human angiotensin-converting enzyme 2 (hACE2). Omicron and sub-variants had a higher affinity for hACE2 and the potential for increased transmission when compared to the wild-type (WT). Negative electrostatic potential of N-terminal domain (NTD) of the spike protein value indicates that the Omicron variant binds receptors less efficiently than the WT. Given that at least one receptor is highly expressed in lung and bronchial cells, the electrostatic potential of NTD negative value could be one of the factors contributing to why the Omicron variant is thought to be less harmful to the lower respiratory tract. Among Omicron sub-lineages, BA.2 and BA.3 have a higher transmission potential than BA.1 and BA.1.1. We predicted that mutated residues in BA.1.1 (K478), BA.2 (R400, R490, and R495), and BA.3 (R397 and H499) formation of new salt bridges and hydrogen bonds. Omicron and sub-variant mutations at Receptor-binding Motif (RBM) residues such as Q493R, N501Y, Q498, T478K, and Y505H all contribute significantly to binding affinity with human ACE2. Interactions with Omicron variant mutations at residues 493, 496, 498, and 501 seem to restore ACE2 binding effectiveness lost due to other mutations like K417N.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Diagnostic & Allied Health Science, Faculty of Health and Life SciencesManagement and Science UniversityShah AlamSelangorMalaysia
| | - Kalimuthu Karuppanan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
18
|
Colson P, Lavagna C, Delerce J, Groshenry G, Yahi N, Fantini J, La Scola B, Althaus T. First Detection of the SARS-CoV-2 Omicron BA.5/22B in Monaco. Microorganisms 2022; 10:1952. [PMID: 36296228 PMCID: PMC9607325 DOI: 10.3390/microorganisms10101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
The Omicron BA.5/22B variant has been designated as a "variant of concern" by the World Health Organization. We describe, here, the first evidence in Monaco of infection with an Omicron BA.5/22B variant, probably imported from the Republic of Seychelles, harboring a rare combination of non-BA.5/22B signature amino acid changes. SARS-CoV-2 neutralizing antibodies were measured with a surrogate virus neutralization test. SARS-CoV-2 genotype screening was performed on nasopharyngeal samples with a multiplex qPCR assay. The SARS-CoV-2 genome was obtained by next-generation sequencing with the Illumina COVID-seq protocol, then assembly using bioinformatics pipelines and software was performed. The BA.5/22B spike protein structure was obtained by molecular modeling. Two spouses were SARS-CoV-2-diagnosed the day they returned from a one-week trip in the Republic of Seychelles. SARS-CoV-2 qPCR screening for variant-specific mutations identified an Omicron variant BA.1/21K, BA.4/22A, or BA.5/22B. A SARS-Co-2 BA.5/22B variant genome was recovered from one of the spouses. Aside from BA.5/22B-defining amino acid substitutions, four other amino acid changes were encoded including Q556K in ORF1a, K2557R in ORF1b, and A67V and A829T in spike; only 13 genomes in sequence databases harbored these four mutations concurrently. Structural analysis of this BA.5/22B variant predicted that A829T in spike may result in a compaction that may affect conformational plasticity. Overall, our findings warrant performing genome-based genotypic surveillance to survey accurately the emergence and circulation of SARS-CoV-2 variants worldwide and point out that their first occurrence in a country is often through international travel despite implemented countermeasures.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Christian Lavagna
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | | | - Nouara Yahi
- INSERM UMR S 1072, Aix-Marseille Université, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR S 1072, Aix-Marseille Université, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Thomas Althaus
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco, Monaco
- Direction de l’Action Sanitaire, 48 Boulevard d’Italie, 98000 Monaco, Monaco
| |
Collapse
|
19
|
Colson P, Gautret P, Delerce J, Chaudet H, Pontarotti P, Forterre P, Tola R, Bedotto M, Delorme L, Bader W, Levasseur A, Lagier J, Million M, Yahi N, Fantini J, La Scola B, Fournier P, Raoult D. The emergence, spread and vanishing of a French SARS-CoV-2 variant exemplifies the fate of RNA virus epidemics and obeys the Mistigri rule. J Med Virol 2022; 95:e28102. [PMID: 36031728 PMCID: PMC9539255 DOI: 10.1002/jmv.28102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Philippe Gautret
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance
| | | | - Hervé Chaudet
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance,French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte MartheMarseilleFrance
| | - Pierre Pontarotti
- IHU Méditerranée InfectionMarseilleFrance,Centre national de la recherche scientifique (CNRS)MarseilleFrance
| | - Patrick Forterre
- Département de MicrobiologieInstitut PasteurParisFrance,Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Raphael Tola
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | - Léa Delorme
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance,French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte MartheMarseilleFrance
| | - Wahiba Bader
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Jean‐Christophe Lagier
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Nouara Yahi
- INSERM UMR_S 1072Aix‐Marseille UniversitéMarseilleFrance
| | | | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| |
Collapse
|
20
|
Ramirez-Franco J, Azzaz F, Sangiardi M, Ferracci G, Youssouf F, Popoff MR, Seagar M, Lévêque C, Fantini J, El Far O. Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex. Cell Mol Life Sci 2022; 79:496. [PMID: 36006520 PMCID: PMC11073447 DOI: 10.1007/s00018-022-04527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of BoNT/B bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside allowing a lipid-binding loop of BoNT/B to interact with the glycone part of the synaptotagmin-associated GT1b. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Fodil Azzaz
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Marion Sangiardi
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Géraldine Ferracci
- Aix-Marseille Université (AMU), CNRS, INP, Institute of Neurophysiopathology, UMR7051, PINT, PFNT, Marseille, France
| | - Fahamoe Youssouf
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | | | - Michael Seagar
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Christian Lévêque
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France.
| | - Jacques Fantini
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Oussama El Far
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France.
| |
Collapse
|
21
|
Manifestation of SARS-CoV-2 Infections in Mink Related to Host-, Virus- and Farm-Associated Factors, The Netherlands 2020. Viruses 2022; 14:v14081754. [PMID: 36016375 PMCID: PMC9414453 DOI: 10.3390/v14081754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.
Collapse
|
22
|
Chaudhari AM, Joshi M, Kumar D, Patel A, Lokhande KB, Krishnan A, Hanack K, Filipek S, Liepmann D, Renugopalakrishnan V, Paulmurugan R, Joshi C. Evaluation of immune evasion in SARS-CoV-2 Delta and Omicron variants. Comput Struct Biotechnol J 2022; 20:4501-4516. [PMID: 35965661 PMCID: PMC9359593 DOI: 10.1016/j.csbj.2022.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022] Open
Abstract
Emerging SARS-CoV-2 variants with higher transmissibility and immune escape remain a persistent threat across the globe. This is evident from the recent outbreaks of the Delta (B.1.617.2) and Omicron variants. These variants have originated from different continents and spread across the globe. In this study, we explored the genomic and structural basis of these variants for their lineage defining mutations of the spike protein through computational analysis, protein modeling, and molecular dynamic (MD) simulations. We further experimentally validated the importance of these deletion mutants for their immune escape using a pseudovirus-based neutralization assay, and an antibody (4A8) that binds directly to the spike protein's NTD. Delta variant with the deletion and mutations in the NTD revealed a better rigidity and reduced flexibility as compared to the wild-type spike protein (Wuhan isolate). Furthermore, computational studies of 4A8 monoclonal antibody (mAb) revealed a reduced binding of Delta variant compared to the wild-type strain. Similarly, the MD simulation data and virus neutralization assays revealed that the Omicron also exhibits immune escape, as antigenic beta-sheets appear to be disrupted. The results of the present study demonstrate the higher possibility of immune escape and thereby achieved better fitness advantages by the Delta and Omicron variants, which warrants further demonstrations through experimental evidences. Our study, based on in-silico computational modelling, simulations, and pseudovirus-based neutralization assay, highlighted and identified the probable mechanism through which the Delta and Omicron variants are more pathogenically evolved with higher transmissibility as compared to the wild-type strain.
Collapse
Affiliation(s)
- Armi M Chaudhari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Kiran Bharat Lokhande
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Anandi Krishnan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Katja Hanack
- Immunotechnology Group, Department of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Slawomir Filipek
- Faculty of Chemistry & Biological and Chemical Research, Centre, University of Warsaw, ul, Pasteura 1, 02-093 Warsaw, Poland
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston Children's Hospital, Harvard Medical School, Boston, MGB Center for COVID Innovation, MA 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| |
Collapse
|
23
|
Colson P, Fournier P, Delerce J, Million M, Bedotto M, Houhamdi L, Yahi N, Bayette J, Levasseur A, Fantini J, Raoult D, La Scola B. Culture and identification of a "Deltamicron" SARS-CoV-2 in a three cases cluster in southern France. J Med Virol 2022; 94:3739-3749. [PMID: 35467028 PMCID: PMC9088576 DOI: 10.1002/jmv.27789] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Multiple SARS-CoV-2 variants have successively, or concomitantly spread worldwide since the summer of 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J_AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1163-1421 reads and a mean nucleotide diversity of 0.1%-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening quantitative polymerase chain reaction (qPCR), we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)MarseilleFrance
| | | | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | | | - Nouara Yahi
- Aix‐Marseille Université, INSERM UMR S 1072MarseilleFrance
| | | | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | | | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
24
|
Pascarella S, Bianchi M, Giovanetti M, Benvenuto D, Borsetti A, Cauda R, Cassone A, Ciccozzi M. The Biological Properties of the SARS-CoV-2 Cameroon Variant Spike: An Intermediate between the Alpha and Delta Variants. Pathogens 2022; 11:pathogens11070814. [PMID: 35890058 PMCID: PMC9315702 DOI: 10.3390/pathogens11070814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
An analysis of the structural effect of the mutations of the B.1.640.2 (IHU) Spike Receptor Binding Domain (RBD) and N-terminal Domain (NTD) is reported along with a comparison with the sister lineage B.1.640.1. and a selection of variants of concern. The effect of the mutations on the RBD–ACE2 interaction was also assessed. The structural analysis applied computational methods that are able to carry out in silico mutagenesis to calculate energy minimization and the folding energy variation consequent to residue mutations. Tools for electrostatic calculation were applied to quantify and display the protein surface electrostatic potential. Interactions at the RBD–ACE2 interface were scrutinized using computational tools that identify the interactions and predict the contribution of each interface residue to the stability of the complex. The comparison among the RBDs shows that the most evident differences between the variants is in the distribution of the surface electrostatic potential: that of B.1.640.1 is as that of the Alpha RBD, while B.1.640.2 appears to have an intermediate surface potential pattern with characteristics between those of the Alpha and Delta variants. Moreover, the B.1.640.2 Spike includes the mutation E484K that in other variants has been suggested to be involved in immune evasion. These properties may hint at the possibility that B.1.640.2 emerged with a potentially increased infectivity with respect to the sister B.1.640.1 variant, but significantly lower than that of the Delta and Omicron variants. However, the analysis of their NTD domains highlights deletions, destabilizing mutations and charge alterations that can limit the ability of the B.1.640.1 and B.1.640.2 variants to interact with cellular components, such as cell surface receptors.
Collapse
Affiliation(s)
- Stefano Pascarella
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università degli Studi di Roma La Sapienza, 00185 Roma, Italy; (S.P.); (M.B.)
| | - Martina Bianchi
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università degli Studi di Roma La Sapienza, 00185 Roma, Italy; (S.P.); (M.B.)
| | - Marta Giovanetti
- Laboratory of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, 00185 Rome, Italy
| | - Domenico Benvenuto
- Faculty of Medicine, University of Campus Bio-Medico di Roma, 00185 Rome, Italy;
| | | | - Roberto Cauda
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy;
| | - Antonio Cassone
- Universita degli Studi di Siena—Sede di Arezzo, 52100 Arezzo, Italy;
| | - Massimo Ciccozzi
- Faculty of Medicine, University of Campus Bio-Medico di Roma, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-06-225411
| |
Collapse
|
25
|
Colson P, Delerce J, Beye M, Levasseur A, Boschi C, Houhamdi L, Tissot‐Dupont H, Yahi N, Million M, La Scola B, Fantini J, Raoult D, Fournier P. First cases of infection with the 21L/BA.2 Omicron variant in Marseille, France. J Med Virol 2022; 94:3421-3430. [PMID: 35243660 PMCID: PMC9088623 DOI: 10.1002/jmv.27695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | | | | | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
| | - Céline Boschi
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Linda Houhamdi
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Hervé Tissot‐Dupont
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Nouara Yahi
- Aix‐Marseille Université, INSERM UMR S 1072MarseilleFrance
| | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | | | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance
- Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and InfectionsAix‐Marseille UniversitéMarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
- Institut de Recherche pour le Développement, Vecteurs–Infections Tropicales et MéditerranéennesAix‐Marseille UniversitéMarseilleFrance
| |
Collapse
|
26
|
Guérin P, Yahi N, Azzaz F, Chahinian H, Sabatier JM, Fantini J. Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123851. [PMID: 35744971 PMCID: PMC9230616 DOI: 10.3390/molecules27123851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.
Collapse
Affiliation(s)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Fodil Azzaz
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol, Aix-Marseille University, CNRS, INP, CEDEX, 13005 Marseille, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
- Correspondence:
| |
Collapse
|
27
|
Ghimire D, Han Y, Lu M. Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Viruses 2022; 14:1255. [PMID: 35746726 PMCID: PMC9229035 DOI: 10.3390/v14061255] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly affected every human life and overloaded the health care system worldwide. Limited therapeutic options combined with the consecutive waves of the infection and emergence of novel SARS-CoV-2 variants, especially variants of concern (VOCs), have prolonged the COVID-19 pandemic and challenged its control. The Spike (S) protein on the surface of SARS-CoV-2 is the primary target exposed to the host and essential for virus entry into cells. The parental (Wuhan-Hu-1 or USA/WA1 strain) S protein is the virus-specific component of currently implemented vaccines. However, S is most prone to mutations, potentially shifting the dynamics of virus-host interactions by affecting S conformational/structural profiles. Scientists have rapidly resolved atomic structures of S VOCs and elucidated molecular details of these mutations, which can inform the design of S-directed novel therapeutics and broadly protective vaccines. Here, we discuss recent findings on S-associated virus transmissibility and immune evasion of SARS-CoV-2 VOCs and experimental approaches used to profile these properties. We summarize the structural studies that document the structural flexibility/plasticity of S VOCs and the potential roles of accumulated mutations on S structures and functions. We focus on the molecular interpretation of structures of the S variants and its insights into the molecular mechanism underlying antibody evasion and host cell-receptor binding.
Collapse
Affiliation(s)
- Dibya Ghimire
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA;
| | | | - Maolin Lu
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA;
| |
Collapse
|
28
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Fantini J, Yahi N, Colson P, Chahinian H, La Scola B, Raoult D. The puzzling mutational landscape of the SARS-2-variant Omicron. J Med Virol 2022; 94:2019-2025. [PMID: 34997962 PMCID: PMC9015223 DOI: 10.1002/jmv.27577] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
The recently emerging SARS-CoV-2 variant omicron displays an unusual association of 30 mutations, 3 deletions, and 1 insertion. To analyze the impact of this atypic mutational landscape, we constructed a complete structure of the omicron spike protein. Compared with the delta variant, the receptor-binding domain (RBD) of omicron has an increased electrostatic surface potential, but a decreased affinity for the ACE-2 receptor. The N-terminal domain (NTD) has both a decreased surface potential and a lower affinity for lipid rafts. The omicron variant is predicted to be less fusogenic and thus less pathogenic than delta, due to a geometric reorganization of the S1-S2 cleavage site. Overall, these virological parameters suggest that omicron does not have a significant infectivity advantage over the delta variant. However, in omicron, neutralizing epitopes are greatly affected, suggesting that current vaccines will probably confer little protection against this variant. In conclusion, the puzzling mutational pattern of the omicron variant combines contradictory properties which may either decrease (virological properties) or increase (immunological escape/facilitation) the transmission of this variant in the human population. This Janus-like phenotype may explain some conflicting reports on the initial assessment of omicron and provide new insights about the molecular mechanisms controlling its dissemination and pathogenesis worldwide.
Collapse
Affiliation(s)
- Jacques Fantini
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- INSERM UMR_S 1072MarseilleFrance
| | - Nouara Yahi
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- INSERM UMR_S 1072MarseilleFrance
| | - Philippe Colson
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- 3IHU Méditerranée InfectionMarseilleFrance
- MEPHI, Institut de Recherche pour le Développement (IRD)MarseilleFrance
- Assistance Publique—Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Henri Chahinian
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- INSERM UMR_S 1072MarseilleFrance
| | - Bernard La Scola
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- 3IHU Méditerranée InfectionMarseilleFrance
- MEPHI, Institut de Recherche pour le Développement (IRD)MarseilleFrance
- Assistance Publique—Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Didier Raoult
- Department of BiologyAix‐Marseille UniversitéMarseilleFrance
- 3IHU Méditerranée InfectionMarseilleFrance
- MEPHI, Institut de Recherche pour le Développement (IRD)MarseilleFrance
- Assistance Publique—Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
30
|
Duarte CM, Ketcheson DI, Eguíluz VM, Agustí S, Fernández-Gracia J, Jamil T, Laiolo E, Gojobori T, Alam I. Rapid evolution of SARS-CoV-2 challenges human defenses. Sci Rep 2022; 12:6457. [PMID: 35440671 PMCID: PMC9017738 DOI: 10.1038/s41598-022-10097-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The race between pathogens and their hosts is a major evolutionary driver, where both reshuffle their genomes to overcome and reorganize the defenses for infection, respectively. Evolutionary theory helps formulate predictions on the future evolutionary dynamics of SARS-CoV-2, which can be monitored through unprecedented real-time tracking of SARS-CoV-2 population genomics at the global scale. Here we quantify the accelerating evolution of SARS-CoV-2 by tracking the SARS-CoV-2 mutation globally, with a focus on the Receptor Binding Domain (RBD) of the spike protein determining infection success. We estimate that the > 820 million people that had been infected by October 5, 2021, produced up to 1021 copies of the virus, with 12 new effective RBD variants appearing, on average, daily. Doubling of the number of RBD variants every 89 days, followed by selection of the most infective variants challenges our defenses and calls for a shift to anticipatory, rather than reactive tactics involving collaborative global sequencing and vaccination.
Collapse
Affiliation(s)
- Carlos M Duarte
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia. .,Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - David I Ketcheson
- Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Víctor M Eguíluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Palma de Mallorca, Spain
| | - Susana Agustí
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Juan Fernández-Gracia
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Palma de Mallorca, Spain
| | - Tahira Jamil
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Elisa Laiolo
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
31
|
Mackin RT, Edwards JV, Atuk EB, Beltrami N, Condon BD, Jayawickramarajah J, French AD. Structure/Function Analysis of Truncated Amino-Terminal ACE2 Peptide Analogs That Bind to SARS-CoV-2 Spike Glycoprotein. Molecules 2022; 27:2070. [PMID: 35408469 PMCID: PMC9000588 DOI: 10.3390/molecules27072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
The global burden of the SARS-CoV-2 pandemic is thought to result from a high viral transmission rate. Here, we consider mechanisms that influence host cell-virus binding between the SARS-CoV-2 spike glycoprotein (SPG) and the human angiotensin-converting enzyme 2 (ACE2) with a series of peptides designed to mimic key ACE2 hot spots through adopting a helical conformation analogous to the N-terminal α1 helix of ACE2, the region experimentally shown to bind to the SARS-CoV-2 receptor-binding domain (RBD). The approach examines putative structure/function relations by assessing SPG binding affinity with surface plasmon resonance (SPR). A cyclic peptide (c[KFNHEAEDLFEKLM]) was characterized in an α-helical conformation with micromolar affinity (KD = 500 µM) to the SPG. Thus, stabilizing the helical structure of the 14-mer through cyclization improves binding to SPG by an order of magnitude. In addition, end-group peptide analog modifications and residue substitutions mediate SPG binding, with net charge playing an apparent role. Therefore, we surveyed reported viral variants, and a correlation of increased positive charge with increased virulence lends support to the hypothesis that charge is relevant to enhanced viral fusion. Overall, the structure/function relationship informs the importance of conformation and charge for virus-binding analog design.
Collapse
Affiliation(s)
- Robert T. Mackin
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | - J. Vincent Edwards
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | - E. Berk Atuk
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA; (E.B.A.); (N.B.); (J.J.)
| | - Noah Beltrami
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA; (E.B.A.); (N.B.); (J.J.)
| | - Brian D. Condon
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | | | - Alfred D. French
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| |
Collapse
|
32
|
Kanakan A, Mehta P, Devi P, Saifi S, Swaminathan A, Maurya R, Chattopadhyay P, Tarai B, Das P, Jha V, Budhiraja S, Pandey R. Clinico-Genomic Analysis Reiterates Mild Symptoms Post-vaccination Breakthrough: Should We Focus on Low-Frequency Mutations? Front Microbiol 2022; 13:763169. [PMID: 35308382 PMCID: PMC8927057 DOI: 10.3389/fmicb.2022.763169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
Vaccine development against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been of primary importance to contain the ongoing global pandemic. However, studies have demonstrated that vaccine effectiveness is reduced and the immune response is evaded by variants of concern (VOCs), which include Alpha, Beta, Delta, and, the most recent, Omicron. Subsequently, several vaccine breakthrough (VBT) infections have been reported among healthcare workers (HCWs) due to their prolonged exposure to viruses at healthcare facilities. We conducted a clinico-genomic study of ChAdOx1 (Covishield) VBT cases in HCWs after complete vaccination. Based on the clinical data analysis, most of the cases were categorized as mild, with minimal healthcare support requirements. These patients were divided into two sub-phenotypes based on symptoms: mild and mild plus. Statistical analysis showed a significant correlation of specific clinical parameters with VBT sub-phenotypes. Viral genomic sequence analysis of VBT cases revealed a spectrum of high- and low-frequency mutations. More in-depth analysis revealed the presence of low-frequency mutations within the functionally important regions of SARS-CoV-2 genomes. Emphasizing the potential benefits of surveillance, low-frequency mutations, D144H in the N gene and D138Y in the S gene, were observed to potentially alter the protein secondary structure with possible influence on viral characteristics. Substantiated by the literature, our study highlights the importance of integrative analysis of pathogen genomic and clinical data to offer insights into low-frequency mutations that could be a modulator of VBT infections.
Collapse
Affiliation(s)
- Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sheeba Saifi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Poonam Das
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinita Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
- *Correspondence: Sandeep Budhiraja,
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Rajesh Pandey,
| |
Collapse
|
33
|
The novel hamster-adapted SARS-CoV-2 Delta variant may be selectively advantaged in humans. J Infect 2022; 84:e53-e54. [DOI: 10.1016/j.jinf.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
|
34
|
Pascarella S, Ciccozzi M, Bianchi M, Benvenuto D, Cauda R, Cassone A. The value of electrostatic potentials of the Spike Receptor binding and N-terminal domains in addressing transmissibility and infectivity of SARS-CoV-2 Variants. of Concern. J Infect 2022; 84:e62-e63. [PMID: 35218789 PMCID: PMC8864947 DOI: 10.1016/j.jinf.2022.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Stefano Pascarella
- Department of Biochemical Sciences "A Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Martina Bianchi
- Department of Biochemical Sciences "A Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Domenico Benvenuto
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Roberto Cauda
- Department of Healthcare Surveillance and Bioethics, Catholic University of Sacred Heart, Rome, Italy
| | | |
Collapse
|
35
|
Azzaz F, Fantini J. The epigenetic dimension of protein structure. Biomol Concepts 2022; 13:55-60. [PMID: 35189052 DOI: 10.1515/bmc-2022-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Accurate prediction of protein structure is one of the most challenging goals of biology. The most recent achievement is AlphaFold, a machine learning method that has claimed to have solved the structure of almost all human proteins. This technological breakthrough has been compared to the sequencing of the human genome. However, this triumphal statement should be treated with caution, as we identified serious flaws in some AlphaFold models. Disordered regions are often represented by large loops that clash with the overall protein geometry, leading to unrealistic structures, especially for membrane proteins. In fact, AlphaFold comes up against the notion that protein folding is not solely determined by genomic information. We suggest that all parameters controlling the structure of a protein without being strictly encoded in its amino acid sequence should be coined "epigenetic dimension of protein structure." Such parameters include for instance protein solvation by membrane lipids, or the structuration of disordered proteins upon ligand binding, but exclude sequence-encoded sites of post-translational modifications such as glycosylation. In our view, this paradigm is necessary to reconcile two opposite properties of living systems: beyond rigorous biological coding, evolution has given way to a certain level of uncertainty and anarchy.
Collapse
Affiliation(s)
- Fodil Azzaz
- Department of Biology, Aix-Marseille Université and INSERM UMR_S 1072, Marseille, France
| | - Jacques Fantini
- Department of Biology, Aix-Marseille Université and INSERM UMR_S 1072, Marseille, France
| |
Collapse
|
36
|
Colson P, Delerce J, Burel E, Dahan J, Jouffret A, Fenollar F, Yahi N, Fantini J, La Scola B, Raoult D. Emergence in southern France of a new SARS-CoV-2 variant harbouring both N501Y and E484K substitutions in the spike protein. Arch Virol 2022; 167:1185-1190. [PMID: 35178586 PMCID: PMC8853869 DOI: 10.1007/s00705-022-05385-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
SARS-CoV-2 variants have become a major virological, epidemiological, and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here, we describe the emergence of a new variant, with the index case returning from travel in Cameroon. For 13 SARS-CoV-2-positive patients living in the same geographical area of southeastern France, a qPCR test for screening variant-associated mutations showed an atypical combination. The genome sequences were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within about 8 h. Analysis revealed 46 nucleotide substitutions and 37 deletions, resulting in 30 amino acid substitutions and 12 deletions. Fourteen of the amino acid substitutions, including N501Y and E484K, and nine deletions are located in the spike protein. This genotype pattern led to the establishment of a new Pangolin lineage, named B.1.640.2, that is a phylogenetic sister group to the old B.1.640 lineage, which has now been renamed B.1.640.1. The lineages differ by 25 nucleotide substitutions and 33 deletions. The combination of mutations in these isolates and their phylogenetic position indicate, based on our previous definition, that they represent a new variant, which we have named "IHU". These data are a further example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their possible introduction into a given geographical area from abroad.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 boulevard Jean Moulin, 13005, Marseille, France.,Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005, Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Emilie Burel
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Jordan Dahan
- Laboratoire de Biologie Médicale, Synlab Provence Marseille, 25 rue Rabattu, 13015, Marseille, France
| | - Agnès Jouffret
- Laboratoire de Biologie Médicale Synlab Provence Forcalquier, rue du Souvenir Français, 04300, Forcalquier, France
| | - Florence Fenollar
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 boulevard Jean Moulin, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix-Marseille Université, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Nouara Yahi
- Aix-Marseille Université, INSERM UMR S 1072, 51 boulevard Pierre Dramard, 13015, Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR S 1072, 51 boulevard Pierre Dramard, 13015, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 boulevard Jean Moulin, 13005, Marseille, France.,Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France. .,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
37
|
Pascarella S, Bianchi M, Giovanetti M, Narzi D, Cauda R, Cassone A, Ciccozzi M. The SARS-CoV-2 mu variant shouldn't be left aside: it warrants attention for its immuo-escaping ability. J Med Virol 2022; 94:2479-2486. [PMID: 35174519 PMCID: PMC9088528 DOI: 10.1002/jmv.27663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
The COVID‐19 pandemic continues to have a threatening impact on a global scale, largely due to the emergence of newly SARS‐CoV‐2 variants. The Mu (PANGO lineage B.1.621), was first identified in Colombia in January 2021 and was classified as a variant of interest (VOI) in August 2021, due to a constellation of mutations that likely‐mediate an unexpectedly enhanced immune resistance to inactivated vaccine‐elicited antibodies. Despite recent studies suggesting that the Mu variant appears to have less infectivity than the Delta variant, here we examined the structural effect of the Mu spike protein mutations and predicted the potential impact on infectivity of the Mu variant compared with the Delta and Delta plus spike protein. The Mu variant showed enhanced immune resistance to inactivated vaccine‐elicited antibodies. The molecular dynamics experiment suggests Delta relies mainly on electrostatic interaction while Mu prefers Van der Waals stabilization with ACE2. Mu and Delta Spike are predicted to have a similar affinity for ACE2 although Delta privileges electrostatic binding.
Collapse
Affiliation(s)
- Stefano Pascarella
- Dipartimento di Scienze biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Roma
| | - Martina Bianchi
- Dipartimento di Scienze biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Roma
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy.,Federal University of Minas Gerais, Brazil
| | - Daniele Narzi
- Dept. of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | | | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| |
Collapse
|
38
|
Colson P, Fournier PE, Chaudet H, Delerce J, Giraud-Gatineau A, Houhamdi L, Andrieu C, Brechard L, Bedotto M, Prudent E, Gazin C, Beye M, Burel E, Dudouet P, Tissot-Dupont H, Gautret P, Lagier JC, Million M, Brouqui P, Parola P, Fenollar F, Drancourt M, La Scola B, Levasseur A, Raoult D. Analysis of SARS-CoV-2 Variants From 24,181 Patients Exemplifies the Role of Globalization and Zoonosis in Pandemics. Front Microbiol 2022; 12:786233. [PMID: 35197938 PMCID: PMC8859183 DOI: 10.3389/fmicb.2021.786233] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
After the end of the first epidemic episode of SARS-CoV-2 infections, as cases began to rise again during the summer of 2020, we at IHU Méditerranée Infection in Marseille, France, intensified the genomic surveillance of SARS-CoV-2, and described the first viral variants. In this study, we compared the incidence curves of SARS-CoV-2-associated deaths in different countries and reported the classification of SARS-CoV-2 variants detected in our institute, as well as the kinetics and sources of the infections. We used mortality collected from a COVID-19 data repository for 221 countries. Viral variants were defined based on ≥5 hallmark mutations along the whole genome shared by ≥30 genomes. SARS-CoV-2 genotype was determined for 24,181 patients using next-generation genome and gene sequencing (in 47 and 11% of cases, respectively) or variant-specific qPCR (in 42% of cases). Sixteen variants were identified by analyzing viral genomes from 9,788 SARS-CoV-2-diagnosed patients. Our data show that since the first SARS-CoV-2 epidemic episode in Marseille, importation through travel from abroad was documented for seven of the new variants. In addition, for the B.1.160 variant of Pangolin classification (a.k.a. Marseille-4), we suspect transmission from farm minks. In conclusion, we observed that the successive epidemic peaks of SARS-CoV-2 infections are not linked to rebounds of viral genotypes that are already present but to newly introduced variants. We thus suggest that border control is the best mean of combating this type of introduction, and that intensive control of mink farms is also necessary to prevent the emergence of new variants generated in this animal reservoir.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- French Armed Forces Center for Epidemiology and Public Health, Marseille, France
| | | | - Audrey Giraud-Gatineau
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- French Armed Forces Center for Epidemiology and Public Health, Marseille, France
| | | | | | | | | | | | | | | | | | - Pierre Dudouet
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Gautret
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Brouqui
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Florence Fenollar
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Marseille, France
- *Correspondence: Didier Raoult,
| |
Collapse
|
39
|
Colson P, Fantini J, Yahi N, Delerce J, Levasseur A, Fournier PE, Lagier JC, Raoult D, La Scola B. Limited spread of a rare spike E484K-harboring SARS-CoV-2 in Marseille, France. Arch Virol 2022; 167:583-589. [PMID: 35083577 PMCID: PMC8791675 DOI: 10.1007/s00705-021-05331-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023]
Abstract
We detected SARS-CoV-2 of PANGO lineage R.1 with the spike substitution E484K in three patients. Eleven other sequences in France and 8,831 worldwide were available from GISAID, 92% originating from Japan. The three genome sequences from our institute were phylogenetically closest to another from Guinea-Conakry, where one of the patients had travelled. These viruses did not exhibit any unusual features in cell culture. Spike structural predictions indicated a 1.3-time higher transmissibility index than for the globally spread B.1.1.7 variant but also an affinity loss for gangliosides that might have slowed dissemination. The spread of new SARS-CoV-2 mutants/variants is still not well understood and therefore difficult to predict, and this hinders implementation of effective preventive measures, including adapted vaccines.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France.
| | - Jacques Fantini
- Aix-Marseille Univ., INSERM U_1072, 13015, Marseille, France
| | - Nouara Yahi
- Aix-Marseille Univ., INSERM U_1072, 13015, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
40
|
Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J. Ganglioside binding domains in proteins: Physiological and pathological mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:289-324. [PMID: 35034721 DOI: 10.1016/bs.apcsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's β-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fodil Azzaz
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
41
|
Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Zhou S, Tuttle KS, Kim A, Li W, Dimitrov DS, Subramaniam S. Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding. Cell Rep 2021; 37:110156. [PMID: 34914928 PMCID: PMC8642162 DOI: 10.1016/j.celrep.2021.110156] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Beta (B.1.351) and Gamma (P.1) variants of concern (VoCs) include a key mutation (N501Y) found in the Alpha (B.1.1.7) variant that enhances affinity of the spike protein for its receptor, angiotensin-converting enzyme 2 (ACE2). Additional mutations are found in these variants at residues 417 and 484 that appear to promote antibody evasion. In contrast, the Epsilon variants (B.1.427/429) lack the N501Y mutation yet exhibit antibody evasion. We have engineered spike proteins to express these receptor binding domain (RBD) VoC mutations either in isolation or in different combinations and analyze the effects using biochemical assays and cryoelectron microscopy (cryo-EM) structural analyses. Overall, our findings suggest that the emergence of new SARS-CoV-2 variant spikes can be rationalized as the result of mutations that confer increased ACE2 affinity, increased antibody evasion, or both, providing a framework to dissect the molecular factors that drive VoC evolution.
Collapse
Affiliation(s)
- Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven Zhou
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, UPMC, 3550 Terrace Str, Pittsburgh, PA 15261, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, UPMC, 3550 Terrace Str, Pittsburgh, PA 15261, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, UPMC, 3550 Terrace Str, Pittsburgh, PA 15261, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
42
|
Pawłowski PH. Additional Positive Electric Residues in the Crucial Spike Glycoprotein S Regions of the New SARS-CoV-2 Variants. Infect Drug Resist 2021; 14:5099-5105. [PMID: 34880635 PMCID: PMC8647725 DOI: 10.2147/idr.s342068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
The change in the formal charge of 34 SARS-CoV-2 lineages from September 2020 to June 2021 was analyzed according to the monthly evidence of the European agency. The reported point mutations and small insertions are electrically neutral (17), positive (12), or negative (3). They had been found in the spike glycoprotein S, in the RBD and S1/S2 regions, crucial for initiation of viral infection. The most often observed were positive mutations, especially D614G and E484K, located in the region of S1/S2 junction, and in the receptor-binding domain (RBD), respectively. They are related to G and A switching. Positive mutations are stretching equally in both areas, but in the RBD region, they are more dispersed. In the set of analyzed virus variants, the increasing tendency in the number of positively charged residues in spike protein was observed. Furthermore, the well-documented WHO classes show an increase in the COVID-19 percentage case fatality with the positive increase in the spike crucial region’s total charge. The data mining, applying classifier algorithm based on the artificial neuronal network, confirms that the value and the distribution of additional positive charge in S may be important factors enabling virus impact to immunity. This may be promoted by the stronger long-range electrostatic attraction of the virus particle to the host cell, preceding the infection. The estimation of the potential energy for the RBD approaching the angiotensin-converting enzyme (ACE2) was presented.
Collapse
Affiliation(s)
- Piotr H Pawłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
43
|
Jaafar R, Boschi C, Aherfi S, Bancod A, Le Bideau M, Edouard S, Colson P, Chahinian H, Raoult D, Yahi N, Fantini J, La Scola B. High Individual Heterogeneity of Neutralizing Activities against the Original Strain and Nine Different Variants of SARS-CoV-2. Viruses 2021; 13:2177. [PMID: 34834983 PMCID: PMC8623169 DOI: 10.3390/v13112177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, several SARS-CoV-2 variants have sequentially emerged. In France, most cases were due to spike D641G-harbouring viruses that descended initially from the Wuhan strain, then by the variant of B.1.160 lineage we called Marseille-4 since the summer of 2020, which was followed by the Alpha and Beta variants in early 2021, then the Delta variant currently. METHODS We determined the neutralising antibody (nAb) titres in sera from convalescent individuals previously infected by these four major local variants and from vaccine recipients to the original Wuhan strain and nine variants, including two recent circulating Delta isolates. RESULTS The results show high inter-individual heterogeneity in nAbs, especially according to the variant tested. The major variations among nAbs are based on the genotype responsible for the infection. Patients previously infected with the beta and B.1.160 variants had the lowest nAb titres. We show that this heterogeneity is well explained by spike protein mutants modelling using in silico approaches. The highest titres were observed in individuals vaccinated with the Pfizer/BioNTech COVID-19 vaccine, even against the delta variant. CONCLUSIONS Immunity acquired naturally after infection is highly dependent on the infecting variant, and, unexpectedly, mRNA-based vaccine efficacy was shown to be often better than natural immunity in eliciting neutralising antibodies.
Collapse
Affiliation(s)
- Rita Jaafar
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
| | - Celine Boschi
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Sarah Aherfi
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Audrey Bancod
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Marion Le Bideau
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Sophie Edouard
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Philippe Colson
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Henri Chahinian
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM UMR_S 1072), 13015 Marseille, France
| | - Didier Raoult
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Nouara Yahi
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM UMR_S 1072), 13015 Marseille, France
| | - Jacques Fantini
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM UMR_S 1072), 13015 Marseille, France
| | - Bernard La Scola
- Méditerranée Infection, Institut Hospitalier Universitaire, 13005 Marseille, France; (R.J.); (C.B.); (S.A.); (A.B.); (M.L.B.); (S.E.); (P.C.); (D.R.)
- Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France
- Unite UNIS, Aix-Marseille Université, 13010 Marseille, France; (H.C.); (N.Y.); (J.F.)
- Federation de Microbiologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| |
Collapse
|
44
|
Sivasubramanian S, Gopalan V, Ramesh K, Padmanabhan P, Mone K, Govindan K, Velladurai S, Dhandapani P, Krishnasamy K, Kitambi SS. Phylodynamic Pattern of Genetic Clusters, Paradigm Shift on Spatio-Temporal Distribution of Clades, and Impact of Spike Glycoprotein Mutations of SARS-CoV-2 Isolates from India. J Glob Infect Dis 2021; 13:164-171. [PMID: 35017872 PMCID: PMC8697821 DOI: 10.4103/jgid.jgid_97_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: The COVID-19 pandemic is associated with high morbidity and mortality, with the emergence of numerous variants. The dynamics of SARS-CoV-2 with respect to clade distribution is uneven, unpredictable and fast changing. Methods: Retrieving the complete genomes of SARS-CoV-2 from India and subjecting them to analysis on phylogenetic clade diversity, Spike (S) protein mutations and their functional consequences such as immune escape features and impact on infectivity. Whole genome of SARS-CoV-2 isolates (n = 4,326) deposited from India during the period from January 2020 to December 2020 is retrieved from Global Initiative on Sharing All Influenza Data (GISAID) and various analyses performed using in silico tools. Results: Notable clade dynamicity is observed indicating the emergence of diverse SARS-CoV-2 variants across the country. GR clade is predominant over the other clades and the distribution pattern of clades is uneven. D614G is the commonest and predominant mutation found among the S-protein followed by L54F. Mutation score prediction analyses reveal that there are several mutations in S-protein including the RBD and NTD regions that can influence the virulence of virus. Besides, mutations having immune escape features as well as impacting the immunogenicity and virulence through changes in the glycosylation patterns are identified. Conclusions: The study has revealed emergence of variants with shifting of clade dynamics within a year in India. It is shown uneven distribution of clades across the nation requiring timely deposition of SARS-CoV-2 sequences. Functional evaluation of mutations in S-protein reveals their significance in virulence, immune escape features and disease severity besides impacting therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Srinivasan Sivasubramanian
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Vidya Gopalan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Kiruba Ramesh
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Padmapriya Padmanabhan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Kiruthiga Mone
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Karthikeyan Govindan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Selvakumar Velladurai
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Prabu Dhandapani
- Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - Kaveri Krishnasamy
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Satish Srinivas Kitambi
- Department of Translational Sciences, Institute for Healthcare Education and Translational Sciences, Hyderabad, Telengana, India
| |
Collapse
|
45
|
Yahi N, Chahinian H, Fantini J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect 2021; 83:607-635. [PMID: 34384810 PMCID: PMC8351274 DOI: 10.1016/j.jinf.2021.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
Antibody dependent enhancement (ADE) of infection is a safety concern for vaccine strategies. In a recent publication, Li et al. (Cell 184 :4203–4219, 2021) have reported that infection-enhancing antibodies directed against the N-terminal domain (NTD) of the SARS-CoV-2 spike protein facilitate virus infection in vitro, but not in vivo. However, this study was performed with the original Wuhan/D614G strain. Since the Covid-19 pandemic is now dominated with Delta variants, we analyzed the interaction of facilitating antibodies with the NTD of these variants. Using molecular modeling approaches, we show that enhancing antibodies have a higher affinity for Delta variants than for Wuhan/D614G NTDs. We show that enhancing antibodies reinforce the binding of the spike trimer to the host cell membrane by clamping the NTD to lipid raft microdomains. This stabilizing mechanism may facilitate the conformational change that induces the demasking of the receptor binding domain. As the NTD is also targeted by neutralizing antibodies, our data suggest that the balance between neutralizing and facilitating antibodies in vaccinated individuals is in favor of neutralization for the original Wuhan/D614G strain. However, in the case of the Delta variant, neutralizing antibodies have a decreased affinity for the spike protein, whereas facilitating antibodies display a strikingly increased affinity. Thus, ADE may be a concern for people receiving vaccines based on the original Wuhan strain spike sequence (either mRNA or viral vectors). Under these circumstances, second generation vaccines with spike protein formulations lacking structurally-conserved ADE-related epitopes should be considered.
Collapse
Affiliation(s)
- Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France
| |
Collapse
|
46
|
Mattiuzzi C, Henry BM, Lippi G. Is diffusion of SARS-CoV-2 variants of concern associated with different symptoms? J Infect 2021; 84:94-118. [PMID: 34274361 PMCID: PMC8280603 DOI: 10.1016/j.jinf.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Camilla Mattiuzzi
- Service of Clinical Governance, Provincial Agency for Social and Sanitary Services, Trento, Italy
| | - Brandon M Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University Hospita of Verona, Piazzale LA Scuro, Verona 37134, Italy.
| |
Collapse
|
47
|
Xie D, Chu H, Yang D, Ding Q, Huang G, Chen L, Cai Z, Huang J, Zhao Z. A stark difference in the profiles of defective viral transcripts between SARS-CoV-2 and SARS-CoV. J Infect 2021; 83:381-412. [PMID: 34216637 PMCID: PMC8245308 DOI: 10.1016/j.jinf.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Luo Chen
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Jiandong Huang
- School of Biomedical Sciences, the University of Hong Kong, China; Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|