1
|
Heteroleptic oxidovanadium(IV)-malate complex improves glucose uptake in HepG2 and enhances insulin action in streptozotocin-induced diabetic rats. Biometals 2022; 35:903-919. [PMID: 35778658 DOI: 10.1007/s10534-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 μmol L-1 (IC50 10.53 μmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.
Collapse
|
2
|
Li JB, Xi WS, Tan SY, Liu YY, Wu H, Liu Y, Cao A, Wang H. Effects of VO 2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NANOIMPACT 2021; 24:100351. [PMID: 35559810 DOI: 10.1016/j.impact.2021.100351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 06/15/2023]
Abstract
The rapid development of smart materials stimulates the production of vanadium dioxide (VO2) nanomaterials. This significantly increases the population exposure to VO2 nanomaterials via different pathways, and thus urges us to pay more attentions to their biosafety. Liver is the primary accumulation organ of nanomaterials in vivo, but the knowledge of effects of VO2 nanomaterials on the liver is extremely lacking. In this work, we comprehensively evaluated the effects of a commercial VO2 nanoparticle, S-VO2, in a liver cell line HepG2 to illuminate the potential hepatic toxicity of VO2 nanomaterials. The results indicated that S-VO2 was cytotoxic and genotoxic to HepG2 cells, mainly by inhibiting the cell proliferation. Apoptosis was observed at higher dose of S-VO2, while DNA damage was detected at all tested concentrations. S-VO2 particles were internalized by HepG2 cells and kept almost intact inside cells. Both the particle and dissolved species of S-VO2 contributed to the observed toxicities. They induced the overproduction of ROS, and then caused the mitochondrial dysfunction, ATP synthesis interruption, and DNA damages, consequently arrested the cell cycle in G2/M phase and inhibited the proliferation of HepG2 cells. The S-VO2 exposure also resulted in the upregulations of glucose uptake and lipid content in HepG2 cells, which were attributed to the ROS production and autophagy flux block, respectively. Our findings offer valuable insights into the liver toxicity of VO2 nanomaterials, benefiting their safely practical applications.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
An oxalate-bridged oxidovanadium(IV) binuclear complex that improves the in vitro cell uptake of a fluorescent glucose analog. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Morán C, Brambila E, Treviño S. Sodium metavanadate treatment improves glycogen levels in multiple tissues in a model of metabolic syndrome caused by chronic cadmium exposure in Wistar rats. Biometals 2021; 34:245-258. [PMID: 33389338 DOI: 10.1007/s10534-020-00276-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
Cadmium, one of the more hazardous environmental contaminants, has been proposed as a metabolic disruptor. Vanadium has emerged as a possible treatment for metabolic diseases. Both metals are important in public health. We aimed to investigate whether vanadium treatment is effective against metabolic disturbances caused by chronic exposure to the lowest-observable adverse effect level of cadmium. Male Wistar rats were exposed to cadmium (32.5 ppm) in drinking water for 3 months. Metabolic complications such as overweight, visceral adipose gain, hyperglycemia, impaired glucose tolerance, and dyslipidemia were detected, and low glycogen levels and steatosis were observed in the tissues. Then, the control and treated animals were subdivided and treated with a solution of 5 μM NaVO3/kg/twice a week for 2 months. The control-NaVO3 group did not show zoometric or metabolic changes. A strong interaction of NaVO3 treatment over cadmium metabolic disruption was observed. The vanadium accumulation diminished cadmium concentration in tissues. Also, vanadium interaction improved glucose homeostasis. The major effect was observed on glycogen synthesis, which was fully recovered in all tissues analyzed. Additionally, vanadium treatment prevented overweight and visceral fat accumulation, improving BMI and the percentage of fat. However, NaVO3 treatment did not have an effect on dyslipidemia or steatosis. In conclusion, this work shows that vanadium administration has a strong effect against metabolic disturbances caused by chronic cadmium exposure, observing powerful interaction on glucose homeostasis.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South. FC91, University City, C.P. 72560, Puebla, Mexico
| | - Carolina Morán
- Department of Biology and Reproduction Toxicology, Science Institute, University Autonomous of Puebla, 14 South. University City, C.P. 72560, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico.
| |
Collapse
|
5
|
Fontaine J, Tavernier G, Morin N, Carpéné C. Vanadium-dependent activation of glucose transport in adipocytes by catecholamines is not mediated via adrenoceptor stimulation or monoamine oxidase activity. World J Diabetes 2020; 11:622-643. [PMID: 33384769 PMCID: PMC7754167 DOI: 10.4239/wjd.v11.i12.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Benzylamine and methylamine activate glucose uptake in adipocytes. For tyramine, this effect has even been extended to cardiomyocytes. AIM To investigate the effects of catecholamines and other amines on glucose uptake. METHODS A screening compared 25 biogenic amines on 2-deoxyglucose (2-DG) uptake activation in rat adipocytes. Pharmacological approaches and transgenic mouse models were then used to decipher the mode of action of several hits. RESULTS In rat adipocytes, insulin stimulation of 2-DG uptake was reproduced with catecholamines. 100 µmol/L or 1 mmol/L adrenaline, noradrenaline, dopamine and deoxyepinephrine, maximally activated hexose transport only when sodium orthovanadate was added at 100 µmol/L. Such activation was similar to that already reported for benzylamine, methylamine and tyramine, well-recognized substrates of semicarbazide-sensitive amine oxidase (SSAO) and monoamine oxidase (MAO). Several, but not all, tested agonists of β-adrenoreceptors (β-ARs) also activated glucose transport while α-AR agonists were inactive. Lack of blockade by α- and β-AR antagonists indicated that catecholamine-induced 2-DG uptake was not mediated by AR stimulation. Adipocytes from mice lacking β1-, β2- and β3-ARs (triple KO) also responded to millimolar doses of adrenaline or noradrenaline by activating hexose transport in the presence of 100 µmol/L vanadate. The MAO blocker pargyline, and SSAO inhibitors did not block the effects of adrenaline or noradrenaline plus vanadate, which were blunted by antioxidants. CONCLUSION Catecholamines exert unexpected insulin-like actions in adipocytes when combined with vanadium. For limiting insulin resistance by activating glucose consumption at least in fat stores, we propose that catecholamine derivatives combined with vanadium can generate novel complexes that may have low toxicity and promising anti-diabetic properties.
Collapse
Affiliation(s)
- Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Geneviève Tavernier
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
- INSERM UMR 1139 Faculté de Pharmacie, Université de Paris, Paris 75006, France
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| |
Collapse
|
6
|
Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity. INORGANICS 2020. [DOI: 10.3390/inorganics8120067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 °C. The results showed that decomposition products are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7]2− (V2), [V4O12]4− (V4) and [V5O15]5− (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds. Cytotoxic activity studies using non-tumorigenic HEK293 cell line and human liver cancer HEPG2 cells showed that decavanadates compounds exhibit selectivity action toward HEPG2 cells after 24 h. The effect of vanadium compounds (8–30 μM concentration) on the protein expression of AKT and AMPK were investigated in HEPG2 cell lines, showing that NaDeca and MetfDeca compounds exhibit a dose-dependence increase in phosphorylated AKT. Additionally, NaDeca at 30 µM concentration stimulated the glucose cell uptake moderately (62%) in 3T3-L1 adipocytes. Finally, an insulin release assay in βTC-6 cells (30 µM concentration) showed that sodium orthovanadate (MetV) and MetfDeca enhanced insulin release by 0.7 and 1-fold, respectively.
Collapse
|
7
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
8
|
Korbecki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, Barczak K, Chlubek D, Baranowska-Bosiacka I. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Biol Trace Elem Res 2020; 193:152-161. [PMID: 30927246 PMCID: PMC6914714 DOI: 10.1007/s12011-019-01699-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucose metabolism, they also alter lipid metabolism. Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD or Δ9-desaturase), Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA) were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2 (FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA) such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)-oleic acid and palmitoleic acid. Sodium orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1 macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated with a lack of influence on the expression of FADS1 and FADS2.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Marta Wiercioch
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland.
| |
Collapse
|
9
|
Tsave O, Yavropoulou MP, Kafantari M, Gabriel C, Yovos JG, Salifoglou A. Comparative assessment of metal-specific adipogenic activity in zinc and vanadium-citrates through associated gene expression. J Inorg Biochem 2018; 186:217-227. [PMID: 29966853 DOI: 10.1016/j.jinorgbio.2018.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/21/2018] [Accepted: 04/29/2018] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus comprises a group of metabolic abnormalities due to insulin deficiency and/or resistance. Obesity contributes to diabetes, with a strong causal relationship existing between diabetes and insulin resistance, especially in patients with Diabetes mellitus II. Adipocytes emerge as key constituents of adipose tissue physiology. In their pre-mature form to mature state transformation, adipocytes fully exemplify one of the key adipogenic actions of insulin. Poised to a) gain insight into adipogenesis leading to antidiabetic factors, and b) investigate adipogenesis through careful examination of insulin contributions to interwoven mechanistic pathways, a systematic comparative study was launched involving well-defined metal-citrates (zinc and vanadium), the chemical reactivity of which was in line with their chemistry under physiological conditions. Selection of the specific compounds was based on their common aqueous coordination chemistry involving the physiological chelator citric acid. Cellular maturation of pre-adipocytes to their mature form was pursued in the presence-absence of insulin and employment of closely linked genetic targets, key to adipocyte maturation (Peroxisome proliferator-activated receptor gamma (PPAR-γ), Glucose transporter 1,3,4 (GLUT 1,3,4), Adiponectin (ADIPOQ), Glucokinase (GCK), and Insulin receptor (INS-R)). The results show a) distinct adipogenic biological profiles for the metalloforms involved in a dose-, time- and nature-dependent manner, and b) metal ion-specific adipogenic response-signals at the same or higher level than insulin toward all selected targets. Collectively, the foundations have been established for future exploitation of the distinct metal-specific adipogenic factors contributing to the functional maturation of adipose tissue and their use toward hyperglycemic control in Diabetes mellitus.
Collapse
Affiliation(s)
- O Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M P Yavropoulou
- Division of Clinical and Molecular Endocrinology, 1(st) Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M Kafantari
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - J G Yovos
- Division of Clinical and Molecular Endocrinology, 1(st) Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
10
|
Ortega-Pacheco D, Jiménez-Pérez MM, Serafín-López J, Juárez-Rojas JG, Ruiz-García A, Pacheco-García U. Vanadyl Sulfate Effects on Systemic Profiles of Metabolic Syndrome in Old Rats with Fructose-Induced Obesity. Int J Endocrinol 2018; 2018:5257216. [PMID: 30675160 PMCID: PMC6323508 DOI: 10.1155/2018/5257216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/23/2018] [Accepted: 10/15/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Currently, energy obtained from hypercaloric diets has been part of the obesity and type 2 diabetes mellitus (T2DM) epidemics from childhood to old age. Treatment alternatives have been sought from plants, minerals, and trace elements with metabolic effects. Vanadyl sulfate (VS) has been investigated as a hypoglycemic compound in animal and human studies showing effective insulin-mimetic properties. This characteristic encompasses several molecules that have beneficial pleiotropic effects. The aim was to determine the antiobesity, hypoglycemic, and hypolipidemic effects of VS on fructose-induced metabolic syndrome in aged rats. MATERIAL AND METHODS Five groups of male Wistar rats were made, each with six rats: two groups with normal diet (ND) and three with high-fructose diet (HFD). The first ND group was treated with saline solution (SS), the second with VS; treatment for HFD groups was in the first group with SS, second with VS, and third with metformin. Weight, body mass index (BMI), blood glucose, and lipidic profile were measured; water, food, fructose and energy consumption were also determined. All parameters were compared among groups. RESULTS AND DISCUSSION Although obese rats treated with VS presented anorexia, oligodipsia, and a marked weight loss in the first two weeks. They recovered food and water intake in the third week with a slow recovery of some weight weeks later. VS normalized blood glucose level and decreased triglyceride and insulin levels in obese rats. These results suggest that vanadyl sulfate shows antiobesity, hypoglycemic, and hypolipidemic properties in old obese rats and could be useful as an alternative, additional, and potent preventive treatment for obesity and T2DM control in elderly obese and poorly controlled diabetic patients. CONCLUSION VS could play an important role in the treatment of metabolic syndrome, contributing to a decrease in obesity and T2DM, through different ways, such as euglycemia, satiety, weight loss, and lipid profile optimization, among others. However, more research is needed to confirm this suggestion.
Collapse
Affiliation(s)
| | - María Marcela Jiménez-Pérez
- Renal PathophysiologyLaboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Jeanet Serafín-López
- Departament of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan Gabriel Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Arturo Ruiz-García
- Renal PathophysiologyLaboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Ursino Pacheco-García
- Renal PathophysiologyLaboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
11
|
Lipko M, Debski B. Mechanism of insulin-like effect of chromium(III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. J Trace Elem Med Biol 2018; 45:171-175. [PMID: 29173475 DOI: 10.1016/j.jtemb.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
Abstract
Chromium is considered a trace element which improves glucose tolerance, but mechanism accounting for this insulin-like action is not recognized. The main purpose of this study was to examine the role of reactive oxygen species (ROS) in chromium and insulin stimulated glucose transport using antioxidants. Effect of chromium ions on phosphatases, enzymes involved in inhibition of insulin signaling was also investigated. Experiments were performed in vitro on C2C12 mouse myotubes. ROS level was measured with the use of confocal microscope and 2',7' dichlorodihydrofluorescein diacetate (DCFH-DA). Glucose metabolism was assayed by the measurement of 2-[3H]-deoxyglucose uptake. Cr3+ ions and insulin treatment caused significant increase of ROS formation and also stimulated glucose uptake in C2C12 cells in concentration dependent manner. Antioxidants (L-ascorbic acid and N-acetyl cysteine 100μM) and DPI (diphenyleneiodonium-NADPH oxidase inhibitor, 10μM) abolished insulin- and Cr-inducted glucose transport. Our results confirm the hypothesis that the ROS are integral part of insulin signaling pathway and that the insulin mimetic effect of Cr3+ ions depends on the antioxidant status of the cells. Surprisingly, chromium treatment resulted in increased activity of membrane phosphatases.
Collapse
Affiliation(s)
- Maciej Lipko
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland.
| | - Bogdan Debski
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland
| |
Collapse
|
12
|
Sheikhshoaie I, Ebrahimipour SY, Lotfi N, Mague JT, Khaleghi M. Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium(V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|