1
|
He W, Li T, Xiong B, Shen L, Chen P. The role and mechanism of BmsPLA2-1-1 in the IMD pathway in silkworm, Bomybx mori. Int J Biol Macromol 2024; 283:137297. [PMID: 39537049 DOI: 10.1016/j.ijbiomac.2024.137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Lepidoptera are a major source of pests in agriculture and forestry, investigating the immune mechanisms of their model species, Bombyx mori, can provide valuable insights into improving pest management. Although the phospholipase A2 (PLA2) and immune deficiency (IMD) pathway have been extensively investigated, their relationship remains unclear. Here, we found that bacterial infection of silkworm larvae significantly upregulated BmsPLA2-1-1 expression and knockdown of BmRelish in the IMD pathway suppressed this response. Likewise, reducing BmsPLA2-1-1 expression significantly downregulated IMD pathway-related genes, including BmRelish, BmImd, and BmPGRP. In contrast, overexpression of BmsPLA2-1-1 significantly upregulated BmRelish and BmImd expression, suggesting a functional crosstalk between BmsPLA2-1-1 and the IMD pathway in silkworms. Additionally, BmsPLA2-1-1 interacted with BmHsp60, BmCNBP, BmCfp1, and BmPFD3. Reducing BmRelish resulted in decreased expression of BmHsp60, BmCfp1, and BmPFD3, but not BmCNBP, in infected larvae. Overexpression BmHsp60, BmCfp1, or BmPFD3 led to a significant upregulation of BmRelish and BmImd expression. These suggest that BmHsp60, BmCfp1, and BmPFD3 are involved in functional crosstalk between BmsPLA2-1-1 and the IMD pathway in silkworms. These findings demonstrate the functional crosstalk and mechanism between BmsPLA2-1-1 and the IMD pathway, revealing a new mechanism in the insect immune network.
Collapse
Affiliation(s)
- Wei He
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China
| | - Benhua Xiong
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Lunfu Shen
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; State key laboratory of resource insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Çelik C. Immune modulation by dexketoprofen trometamol, a selective eicosanoid biosynthesis inhibitor of cellular immune response and phenoloxidase reaction in response to viral infection in Pimpla turionellae adults. Heliyon 2024; 10:e37695. [PMID: 39347402 PMCID: PMC11437926 DOI: 10.1016/j.heliyon.2024.e37695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Nodulation is the first immune defence mechanism related to melanisation in response to microbial infections in insects. Adult parasitoid insects have been hypothesised to produce nodules with melanisation in response to viral infections and, eicosanoids, to mediate nodulation reactions and phenoloxidase (PO) activation in this type of infections. To test this hypothesis, endoparasitoid Pimpla turionellae adults were first inoculated with a novel generation nonsteroidal anti-inflammatory drug (NSAID) dexketoprofen trometamol (DT) (5 μg/adult), which is a selective cyclooxygenase-1 (COX-1) inhibitor. These adults were then immediately injected with intrahaemocoelic injection of Bovine herpes simplex virus-1 (BHSV-1) as a model insect-virus interaction. Additionally, adults were fed on artificial diet with increasing concentrations of DT (0.001, 0.01, or 0.1 g/100 ml diet) per os prior to intrahaemocoelic injection of BHSV-1 (2 × 103 PFU/adult) and nodulation and PO activity were recorded at 2 h post inoculation (PI). BHSV-1-treated newly emerged adults fed with inhibitors showed low levels of nodulation and increased PO enzyme activity. DT-treated Pimpla adults produced significantly fewer nodules (approximately nine nodules/adult), whereas viral infection provoked nodules (approximately 33 nodules/adult) in comparison with needle (vehicle)-treated controls (approximately five nodules/adult). Increasing dietary dexketoprofen trometamol concentrations decreased nodulation (by 12-fold at the highest concentration) and increased PO reactions (by approximately 3-fold at the highest concentration) to BHSV-1 injection. Compared with control adults, adults orally fed on the lowest DT concentration (0.001 %) significantly increased PO activity (1.22 ± 0.23-2.74 ± 0.31 unit/min/mg protein) while nodules significantly decreased (43.19 ± 4.26-17.84 ± 2.19) in response to virus infections. These findings suggest that eicosanoid biosynthesis, at least in the context of prostaglandins (PGs) formed by COX-1, mediates nodulation reactions and PO activation in response to viral infection in adults of this endoparasitoid. This is the first demonstration that the immune response of P. turionellae adults to viral pathogens is modulated by DT, which initiates haemolymph PO activation.
Collapse
Affiliation(s)
- Cihat Çelik
- Department of Chemistry and Chemical Processing Technologies, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, TR-67900, Zonguldak, Turkey
| |
Collapse
|
3
|
Brahma S, Chatterjee S, Dey A. Role of eicosanoids in insect immunity: new insights and recent advances. INSECT SCIENCE 2024. [PMID: 39158024 DOI: 10.1111/1744-7917.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Viruses, bacteria, fungus, protozoans, and different metazoan parasites and parasitoids present a constant threat to insects. Insect immunity has two components: humoral and cell mediated. Humoral immunity can be achieved by various antimicrobial proteins, namely, cecropins, sarcotoxin, defensin, attacin, etc. The cell-mediated immunity comprises various cells having immune functions fostering nodulation, phagocytosis, microaggregation, encapsulation etc. Eicosanoids play a crucial role in insect immunity comparable to other animals. The above-mentioned are signaling molecules derived from polyunsaturated fatty acids and they exert numerous physiological effects, namely, inflammation, immune modulation, and regulation of cellular processes. The review article elucidates various roles of eicosanoids, namely, nodulation reaction, Toll signaling pathway, nitric oxide (NO) generation, Ca2+ mobilization, production of reactive oxygen species (ROS), actin polymerization and aquaporin activation. Eicosanoids can function in immune priming in insects drawing hemocytes. An agent named Duox was also identified serving as ROS generator in insect gut. Moreover, role of Repat gene in insect immunity was also studied. However, recently the role of prostacyclin (PGI2) was found to be negative as it inhibits platelet aggregation. In this brief review, we have tried to shed light on the various functions of eicosanoids in immunity of insect those have been discovered recently. This concise study will allow to decipher eicosanoids' function in insect immunity in a nutshell, and it will pave the way for more researches to understand the key players of insect immunity which may eventually help to develop novel vector and pest control strategies in near future.
Collapse
Affiliation(s)
- Shubhranil Brahma
- Department of Zoology, Iswar Chandra Vidyasagar College, Belonia, South Tripura, Tripura, India
| | - Somnath Chatterjee
- Department of Zoology, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Purba Bardhaman, West Bengal, India
| | - Atrayee Dey
- Post Graduate Department of Zoology, Banwarilal Bhalotia College, Asansol, Paschim Bardhaman, West Bengal, India
| |
Collapse
|
4
|
Li T, Wang G, He W, Li G, Wang C, Zhao J, Chen P, Guo M, Chen P. A secreted phospholipase A 2 (BmsPLA 2 ) regulates melanization of immunity through BmDDC in the silkworm Bombyx mori. INSECT SCIENCE 2023; 30:1579-1594. [PMID: 36924440 DOI: 10.1111/1744-7917.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Insect immune-associated phospholipase A2 (PLA2 ) is an important target of pathogen invasion. Melanization, an effective defense response, has significant correlations with other immune responses to coordinate immune attack against invaders. However, the effect of PLA2 on melanization has not yet been reported in insects or other arthropods. In this work, we cloned a PLA2 gene (BmsPLA2 ), and its protein had characteristic features of secreted PLA2 (sPLA2 ). After injection of bacteria, BmsPLA2 expression and sPLA2 activity in hemolymph significantly increased. BmsPLA2 fluorescence was transferred from the cytoplasm to the cell membranes of circulating hemocytes. These results indicated that BmsPLA2 was related to hemolymph immunity in silkworms. Interestingly, reducing BmsPLA2 by RNA interference decreased melanosis (melanistic hemocytes) levels in vivo and in vitro, while BmsPLA2 overexpression had the opposite effect. The larval survival and melanization rate in the hemocoel both slowed depending on the PLA2 inhibitor dosage. These results demonstrated that BmsPLA2 plays a role in melanization during the immune process of silkworms. Surprisingly, the level of BmDDC matched the degree of melanization in various observations. BmDDC expression showed a significant increase, with the peak occurring later than that of BmsPLA2 after injection of bacteria, implying that BmsPLA2 was activated prior to BmDDC. Moreover, the alteration of BmsPLA2 by RNA interference or overexpression led to altered BmDDC levels. These results suggested that BmsPLA2 regulates the melanization response in silkworms through BmDDC. Our study proposes a new regulatory mechanism of the melanization response and new directions for understanding the complex immune networks of insects.
Collapse
Affiliation(s)
- Tian Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Gemin Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei He
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guiqin Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Chunyang Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jiamei Zhao
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Pan Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meiwei Guo
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Resisting an invasion: A review of the triatomine vector (Kissing bug) defense strategies against a Trypanosoma sp infection. Acta Trop 2023; 238:106745. [PMID: 36375520 DOI: 10.1016/j.actatropica.2022.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Triatomines are an important group of insects in the Americas. They serve as transmission vectors for Trypanosoma cruzi, the etiologic agent responsible for the deadly Chagas disease in humans. The digenetic parasite has a complex life cycle, alternating between mammalian and insect hosts, facing different environments. In the insect vector, the metacyclic trypomastigote (non-replicative) and epimastigote (replicative) stages face a set of insect-mediated environmental changes, such as intestinal pH, body temperature, nutrient availability, and vector immune response. These insects have the ability to differentiate between self and non-self-particles using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodules and encapsulation), humoral factors, including effector mechanisms (antimicrobial peptides and prophenoloxidase cascade) and the intestinal microbiota. Here, we consolidate and synthesize the available literature to describe the defense mechanisms deployed by the triatomine vector against the parasite, as documented in recent years, the possible mechanisms developed by the parasite to protect against the insect's specific microenvironment and innate immune responses, and future perspectives on the Triatomine-Trypanosome interaction.
Collapse
|
6
|
Wrońska AK, Kaczmarek A, Kazek M, Boguś MI. Infection of Galleria mellonella (Lepidoptera) Larvae With the Entomopathogenic Fungus Conidiobolus coronatus (Entomophthorales) Induces Apoptosis of Hemocytes and Affects the Concentration of Eicosanoids in the Hemolymph. Front Physiol 2022; 12:774086. [PMID: 35069239 PMCID: PMC8769874 DOI: 10.3389/fphys.2021.774086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Apoptosis and autophagy, the mechanisms of programmed cell death, play critical roles in physiological and pathological processes in both vertebrates and invertebrates. Apoptosis is also known to play an important role in the immune response, particularly in the context of entomopathogenic infection. Of the factors influencing the apoptotic process during infection, two of the lesser known groups are caspases and eicosanoids. The aim of this study was to determine whether infection by the entomopathogenic soil fungus Conidiobolus coronatus is associated with apoptosis and changes in caspase activity in the hemocytes of Galleria mellonella larvae, and to confirm whether fungal infection may affect eicosanoid levels in the host. Larvae were exposed for 24 h to fully grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24 group) or 24 h later (F48 group). Apoptosis/necrosis tests were performed in hemocytes using fluorescence microscopy and flow cytometry, while ELISA tests were used to measure eicosanoid levels. Apoptosis and necrosis occurred to the same degree in F24, but necrosis predominated in F48. Fungal infection resulted in caspase activation, increased PGE1, PGE2, PGA1, PGF2α, and 8-iso-PGF2α levels and decreased TXB2 levels, but had no effect on TXA2 or 11-dehydro-TXB2 concentrations. In addition, infected larvae demonstrated significantly increased PLA2 activity, known to be involved in eicosanoid biosynthesis. Our findings indicate that fungal infection simultaneously induces apoptosis in insects and stimulates general caspase activity, and this may be correlated with changes in the concentrations of eicosanoids.
Collapse
Affiliation(s)
| | - Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland.,BIOMIBO, Warsaw, Poland
| |
Collapse
|
7
|
Gumiel M, de Mattos DP, Vieira CS, Moraes CS, Moreira CJDC, Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P, Carels N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front Mol Biosci 2020; 7:589435. [PMID: 33363206 PMCID: PMC7755933 DOI: 10.3389/fmolb.2020.589435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that the T. cruzi's cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.
Collapse
Affiliation(s)
- Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia
| | - Debora Passos de Mattos
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Caroline Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Marcelo Salabert Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | | | - Mariana Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Lin TY, Lian ZJ, Yao CX, Sun XY, Liu XY, Yan ZY, Wu SM. CdSe quantum dots labeled Staphylococcus aureus for research studies of THP-1 derived macrophage phagocytic behavior. RSC Adv 2019; 10:260-270. [PMID: 35492559 PMCID: PMC9047554 DOI: 10.1039/c9ra07892d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
A simple biological strategy to couple intracellular irrelated biochemical reactions of staphylococcus aureus CMCC 26003 (S. aureus) with inorganic metal ions to synthesize cadmium selenide quantum dots (CdSe QDs) was demonstrated. Correspondingly, S. aureus as living matrices are internally generated and labeled with fluorescent QDs by the smart strategy. Several key factors in the process of biosynthesis were systematically evaluated. At the same time, ultraviolet-visible (UV-Vis), photo-luminescence (PL), inverted fluorescence microscopy and transmission electron microscopy (TEM) were utilized to study the characters of the as produced CdSe QDs. In addition, cytotoxicity and photostability of the QDs containing bacteria were also tested and evaluated as a whole. The results showed that intracellular CdSe nanocrystals had successfully formed in S. aureus living cells, which were less toxic, highly fluorescent and photostable. These fluorescent S. aureus bacteria were next applied as invading pathogens as well as fluorescent bioprobes for exploring the phagocytic behavior of THP-1-derived macrophage. Results proved that internal CdSe QDs labeling had no significantly adverse effects compared with the kind of infection reference, fluorescein isothiocyanate (FITC) stained S. aureus pathogen. Assuredly, the methods presented here provide researchers with a useful option to analyze the behavior of S. aureus as a type of infectious pathogen, which would also help understand the complex interplay between host cells and the invading bacteria on molecular level.
Collapse
Affiliation(s)
- Tian-Yang Lin
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Zong-Juan Lian
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Cai-Xia Yao
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Xiao-Yan Sun
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Xin-Ying Liu
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Zheng-Yu Yan
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Sheng-Mei Wu
- Department of Analytical Chemistry, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China +86-25-86185179 +86-25-83224365
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education 24 Tongjia Lane, Gulou District Nanjing 210009 China
| |
Collapse
|
9
|
Salcedo-Porras N, Lowenberger C. The innate immune system of kissing bugs, vectors of chagas disease. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:119-128. [PMID: 31014953 DOI: 10.1016/j.dci.2019.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 05/08/2023]
Abstract
Kissing bugs have long served as models to study many aspects of insect physiology. They also serve as vectors for the parasite Trypanosoma cruzi that causes Chagas disease in humans. The overall success of insects is due, in part, to their ability to recognize parasites and pathogens as non-self and to eliminate them using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodulation and encapsulation), and humoral factors (antimicrobial peptides and the prophenoloxidase cascade). Trypanosoma cruzi survives solely in the gastrointestinal (GI) tract of the vector; if it migrates to the hemocoel it is eliminated. Kissing bugs may not mount a vigorous immune response in the GI tract to avoid eliminating obligate symbiotic microbes on which they rely for survival. Here we describe the current knowledge of innate immunity in kissing bugs and new opportunities using genomic and transcriptomic approaches to study the complex triatomine-trypanosome-microbiome interactions.
Collapse
Affiliation(s)
- Nicolás Salcedo-Porras
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| |
Collapse
|
10
|
Hernández-Vargas MJ, Gil J, Lozano L, Pedraza-Escalona M, Ortiz E, Encarnación-Guevara S, Alagón A, Corzo G. Proteomic and transcriptomic analysis of saliva components from the hematophagous reduviid Triatoma pallidipennis. J Proteomics 2017; 162:30-39. [PMID: 28442446 DOI: 10.1016/j.jprot.2017.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
Species belonging to the Triatominae subfamily are commonly associated with Chagas disease, as they are potential vectors of the parasite Trypanosoma cruzi. However, their saliva contains a cocktail of diverse anti-hemostatic proteins that prevent blood coagulation, vasodilation and platelet aggregation of blood; components with indisputable therapeutic potential. We performed a transcriptomic and proteomic analyses of salivary glands and protein spots from 2DE gels of milked saliva, respectively, from the Mexican Triatoma pallidipennis. Massive sequencing techniques were used to reveal this protein diversity. A total of 78 out of 233 transcripts were identified as proteins in the saliva, divided among 43 of 55 spots from 2DE gels of saliva, identified by LC-MS/MS analysis. Some of the annotated transcripts putatively code for anti-hemostatic proteins, which share sequence similarities with proteins previously described for South American triatomines. The most abundant as well as diverse transcripts and proteins in the saliva were the anti-hemostatic triabins. For the first time, a transcriptomic analysis uncovered other unrelated but relevant components in triatomines, including antimicrobial and thrombolytic polypeptides. Likewise, unique proteins such as the angiotensin-converting enzyme were identified not just in the salivary gland transcriptome but also at saliva proteome of this North American bloodsucking insect. BIOLOGICAL SIGNIFICANCE This manuscript is the first report of the correlation between proteome and transcriptome of Triatoma pallidipennis, which shows for the first time the presence of proteins in this insect that have not been characterized in other species of this family. This information contributes to a better understanding of the multiple host defense mechanisms that are being affected at the moment of blood ingestion by the insect. Furthermore, this report gives a repertoire of possible therapeutic proteins.
Collapse
Affiliation(s)
- María J Hernández-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Jeovanis Gil
- Centro de Ciencias Genómicas - UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Luis Lozano
- Centro de Ciencias Genómicas - UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Martha Pedraza-Escalona
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico.
| |
Collapse
|
11
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
12
|
Lipid metabolism in Rhodnius prolixus: Lessons from the genome. Gene 2016; 596:27-44. [PMID: 27697616 DOI: 10.1016/j.gene.2016.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
Abstract
The kissing bug Rhodnius prolixus is both an important vector of Chagas' disease and an interesting model for investigation into the field of physiology, including lipid metabolism. The publication of this insect genome will bring a huge amount of new molecular biology data to be used in future experiments. Although this work represents a promising scenario, a preliminary analysis of the sequence data is necessary to identify and annotate the genes involved in lipid metabolism. Here, we used bioinformatics tools and gene expression analysis to explore genes from different genes families and pathways, including genes for fat breakdown, as lipases and phospholipases, and enzymes from β-oxidation, fatty acid metabolism, and acyl-CoA and glycerolipid synthesis. The R. prolixus genome encodes 31 putative lipase genes, including 21 neutral lipases and 5 acid lipases. The expression profiles of some of these genes were analyzed. We were able to identify nine phospholipase A2 genes. A variety of gene families that participate in fatty acid synthesis and modification were studied, including fatty acid synthase, elongase, desaturase and reductase. Concerning the synthesis of glycerolipids, we found a second isoform of glycerol-3-phosphate acyltransferase that was ubiquitously expressed throughout the organs. Finally, all genes involved in fatty acid β-oxidation were identified, but not a long-chain acyl-CoA dehydrogenase. These results provide fundamental data to be used in future research on insect lipid metabolism and its possible relevance to Chagas' disease transmission.
Collapse
|
13
|
Huang Q, Zhang L, Yang C, Yun X, He Y. The competence of hemocyte immunity in the armyworm Mythimna separata larvae to sublethal hexaflumuron exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:31-38. [PMID: 27155481 DOI: 10.1016/j.pestbp.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Hemocytes circulating in the hemolymph are essential for the insect immunity to protect insects against infections. The effects of sublethal hexaflumuron exposure on the competence of hemocyte immunity of fifth-instar larvae of Mythimna separata were investigated. In this insect, the sublethal exposure could cause plasmatocyte filopodia to contract and shorten, and granulocytes to compact with a loss of cytoplasmic projections in vitro, and induce granulocytes to swell and expand in vivo. The mean number of total hemocytes was significantly declined in feed-thru larvae by 5.0μgmL(-1) hexaflumuron. Changes in proportional counts of hemocytes showed that sublethal hexaflumuron exposure caused a decrease of granulocytes and an increase of plasmatocytes in a concentration-dependant manner, but these changes were time-dependently reduced. Few effects of the sublethal exposure were revealed on the proportional counts of spherulocytes, oenocytoids, and prohemocytes. The exposure at 24h showed strong inhibition on phenoloxidase activity in plasma and hemocytes, but this inhibition was time-dependently weakened. The NADPH-diaphorase staining assays showed that a positive immune response of nitric oxide synthase (NOS) in hemocytes was incited by the sublethal exposure, and the longer-time exposure to the higher concentrations of hexaflumuron caused a heavier loss of NOS activity. Phagocytosis rates revealed the inhibitory effect of sublethal hexaflumuron exposure on the phagocytic ability of granulocytes and plasmatocytes that was significantly greater than the effect of chlorpyrifos at the same concentrations. These results show that sublethal hexaflumuron exposure reduces M. separata larval survival by depressing the competence of hemocyte-mediated immune responses.
Collapse
Affiliation(s)
- Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Lei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinmin Yun
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan He
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Defferrari MS, da Silva R, Orchard I, Carlini CR. Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus. Toxicon 2014; 82:18-25. [PMID: 24561121 DOI: 10.1016/j.toxicon.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein.
Collapse
Affiliation(s)
- M S Defferrari
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - R da Silva
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - C R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto do Cérebro - InsCer, Pontificia Universidade Católica do Rio Grande do Sul, and Department of Biophysics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
A phospholipase A2 gene is linked to Jack bean urease toxicity in the Chagas' disease vector Rhodnius prolixus. Biochim Biophys Acta Gen Subj 2014; 1840:396-405. [DOI: 10.1016/j.bbagen.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/26/2013] [Accepted: 09/11/2013] [Indexed: 01/10/2023]
|
16
|
Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs. INSECTS 2012; 3:492-510. [PMID: 26466540 PMCID: PMC4553607 DOI: 10.3390/insects3020492] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 01/30/2023]
Abstract
Insects, like all invertebrates, express robust innate, but not adaptive, immune reactions to infection and invasion. Insect immunity is usually resolved into three major components. The integument serves as a physical barrier to infections. Within the hemocoel, the circulating hemocytes are the temporal first line of defense, responsible for clearing the majority of infecting bacterial cells from circulation. Specific cellular defenses include phagocytosis, microaggregation of hemocytes with adhering bacteria, nodulation and encapsulation. Infections also stimulate the humoral component of immunity, which involves the induced expression of genes encoding antimicrobial peptides and activation of prophenoloxidase. These peptides appear in the hemolymph of challenged insects 6-12 hours after the challenge. Prostaglandins and other eicosanoids are crucial mediators of innate immune responses. Eicosanoid biosynthesis is stimulated by infection in insects. Inhibition of eicosanoid biosynthesis lethally renders experimental insects unable to clear bacterial infection from hemolymph. Eicosanoids mediate specific cell actions, including phagocytosis, microaggregation, nodulation, hemocyte migration, hemocyte spreading and the release of prophenoloxidase from oenocytoids. Some invaders have evolved mechanisms to suppress insect immunity; a few of them suppress immunity by targeting the first step in the eicosanoid biosynthesis pathways, the enzyme phospholipase A₂. We proposed research designed to cripple insect immunity as a technology to improve biological control of insects. We used dsRNA to silence insect genes encoding phospholipase A₂, and thereby inhibited the nodulation reaction to infection. The purpose of this article is to place our view of applying dsRNA technologies into the context of eicosanoid actions in insect immunity. The long-term significance of research in this area lies in developing new pest management technologies to contribute to food security in a world with a rapidly growing human population.
Collapse
|
17
|
Côrte-Real R, Gomes RN, Castro-Faria-Neto HC, Azambuja P, Garcia ES. The activity of platelet activating factor-acetyl hydrolase (PAF-AH) in the salivary glands of Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:825-829. [PMID: 21439293 DOI: 10.1016/j.jinsphys.2011.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
In this work, we investigated the activity of the platelet activating factor acetyl hydrolase (PAF-AH) in the salivary gland homogenates and saliva of Rhodnius prolixus. PAF-AH activity in the salivary gland homogenates was lower than in the saliva. Preliminary characterization of the enzyme demonstrated that it hydrolyzed the substrate 2-thio-PAF, was detectable just in 1 pair of salivary gland homogenates in 0.5 ml buffer, and was stable under different conditions. PMSF, TPCK, TLCK, pepstatin A and p-BPB all inhibited the PAF-AH activity. Enzyme specific activity in salivary gland homogenates diminished immediately after feeding of 5th-instar larvae, and increased before feeding by adult insects. 2-Thio-PAF induced platelet-aggregation that was inhibited by previous incubation of the substrate with salivary gland homogenates or saliva. The relevance of PAF-AH for providing Rhodnius with a feeding mechanism for facilitating the sucking of a high volume of blood meal in a short period is discussed.
Collapse
Affiliation(s)
- Rozana Côrte-Real
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
18
|
Effects of platelet-activating factor on the interaction of Trypanosoma cruzi with Rhodnius prolixus. Parasitol Res 2010; 108:1473-8. [DOI: 10.1007/s00436-010-2194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
19
|
Büyükgüzel E, Hyršl P, Büyükgüzel K. Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:176-83. [DOI: 10.1016/j.cbpa.2010.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 01/24/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
|
20
|
Garcia ES, Castro DP, Figueiredo MB, Genta FA, Azambuja P. Trypanosoma rangeli: a new perspective for studying the modulation of immune reactions of Rhodnius prolixus. Parasit Vectors 2009; 2:33. [PMID: 19615044 PMCID: PMC2719633 DOI: 10.1186/1756-3305-2-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/17/2009] [Indexed: 11/11/2022] Open
Abstract
Insects are exposed to a wide range of microorganisms (bacteria, fungi, parasites and viruses) and have interconnected powerful immune reactions. Although insects lack an acquired immune system they have well-developed innate immune defences that allow a general and rapid response to infectious agents. Over the last few decades we have observed a dramatic increase in the knowledge of insect innate immunity, which relies on both humoral and cellular responses. However, innate reactions to natural insect pathogens and insect-transmitted pathogens, such as parasites, still remain poorly understood. In this review, we briefly introduce the general immune system of insects and highlight our current knowledge of these reactions focusing on the interactions of Trypanosoma rangeli with Rhodnius prolixus, an important model for innate immunity investigation.
Collapse
Affiliation(s)
- Eloi S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Castro DP, Figueiredo MB, Genta FA, Ribeiro IM, Tomassini TCB, Azambuja P, Garcia ES. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:532-537. [PMID: 19232405 DOI: 10.1016/j.jinsphys.2009.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/12/2009] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.
Collapse
Affiliation(s)
- D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
23
|
Medeiros MND, Belmonte R, Soares BCC, Medeiros LND, Canetti C, Freire-de-Lima CG, Maya-Monteiro CM, Bozza PT, Almeida IC, Masuda H, Kurtenbach E, Machado EA. Arrest of oogenesis in the bug Rhodnius prolixus challenged with the fungus Aspergillus niger is mediated by immune response-derived PGE2. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:150-157. [PMID: 19059412 DOI: 10.1016/j.jinsphys.2008.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/15/2008] [Accepted: 10/30/2008] [Indexed: 05/27/2023]
Abstract
In this work we characterized the immune response of the insect Rhodnius prolixus to a direct injection into the hemocoel of the non-entomopathogenic fungus Aspergillus niger, and evaluated its consequences on host oogenesis. These animals were able to respond by mounting effective cellular and humoral responses to this fungus; these responses were shown, however, to have reproductive fitness costs, as the number of eggs laid per female was significantly reduced. The disturbance of egg formation during infectious process correlated with an elevation in the titer of hemolymph prostaglandin E2 48 h post-challenge. Administration of Zymosan A as an immunogenic non-infectious challenge produced similar effects on phenoloxidase and prophenoloxidase activities, oocyte development and prostaglandin E2 titer, precluding the hypothesis of an effect mediated by fungal metabolites in animals challenged with fungus. Ovaries at 48 h post-challenge showed absence of vitellogenic ovarian follicles, and the in vivo administration of prostaglandin E2 or its receptor agonist misoprostol, partially reproduced this phenotype. Together these data led us to hypothesize that immune-derived prostaglandin E2 raised from the insect response to the fungal challenge is involved in disturbing follicle development, contributing to a reduction in host reproductive output and acting as a host-derived adaptive effector to infection.
Collapse
Affiliation(s)
- Marcelo Neves de Medeiros
- Programa de Biologia Celular e Parasitologia, IBCCF, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Figueiredo MB, Genta FA, Garcia ES, Azambuja P. Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1528-1537. [PMID: 18835273 DOI: 10.1016/j.jinsphys.2008.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/11/2008] [Accepted: 08/21/2008] [Indexed: 05/26/2023]
Abstract
In this work we investigated the effects of Trypanosoma rangeli infection through a blood meal on the hemocyte phagocytosis in experiments using the 5th instar larvae of Rhodnius prolixus. Hemocyte phagocytic activity was strongly blocked by oral infection with the parasites. In contrast, hemocyte phagocytosis inhibition caused by T. rangeli infection was rescued by exogenous arachidonic acid (20 microg/insect) or platelet activating factor (PAF; 1 microg/insect) applied by hemocelic injection. Following the oral infection with the protozoan we observed significant attenuation of phospholipase A2 (PLA2) activities in R. prolixus hemocytes (cytosolic PLA2: cPLA2, secreted PLA2: sPLA2 and Ca+2-independent PLA2: iPLA2) and enhancement of sPLA2 activities in cell-free hemolymph. At the same time, the PAF-acetyl hydrolase (PAF-AH) activity in the cell-free hemolymph increased considerably. Our results suggest that T. rangeli infection depresses eicosanoid and insect PAF analogous (iPAF) pathways giving support to the role of PLA2 in the regulation of arachidonic acid and iPAF biosynthesis and of PAF-AH by reducing the concentration of iPAF in R. prolixus. This illustrates the ability of T. rangeli to modulate the immune responses of R. prolixus to favor its own multiplication in the hemolymph.
Collapse
Affiliation(s)
- Marcela B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro 21045-900, RJ, Brazil
| | | | | | | |
Collapse
|