1
|
Wang J, Shen C, Sun J, Cheng L, Zhao G, Li MM. Metagenomic analysis reveals a dynamic rumen microbiome with diversified adaptive functions in response to dietary protein restriction and re-alimentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174618. [PMID: 38986687 DOI: 10.1016/j.scitotenv.2024.174618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Understanding the dynamics of the rumen microbiome is crucial for optimizing ruminal fermentation to improve feed efficiency and addressing concerns regarding antibiotic resistance in the livestock production industry. This study aimed to investigate the adaptive effects of microbiome and the properties of carbohydrate-active enzymes (CAZy) and antibiotic resistance genes (ARGs) in response to dietary protein shifts. Twelve Charolais bulls were randomly divided into two groups based on initial body weight: 1) Treatment (REC), where the animals received a 7 % CP diet in a 4-week restriction period, followed by a 13 % CP diet in a 2-week re-alimentation period; 2) Control (CON), where the animals were fed the 13 % CP diet both in the restriction period and the re-alimentation period. Protein restriction decreased the concentrations of acetate, propionate, isovalerate, glutamine, glutamate, and isoleucine (P < 0.05), while protein re-alimentation increased the concentrations of arginine, methionine sulfoxide, lysine, and glutamate (P < 0.05). Protein restriction decreased the relative abundances of Bacteroidota but increased Proteobacteria, with no difference observed after re-alimentation. Protein restriction decreased relative abundances of the genera Bacteroides, Prevotella, and Bifidobacterium. Following protein recovery, Escherichia was enriched in CON, while Pusillibacter was enriched in REC, indicating that distinct microbial adaptations to protein shifts. Protein restriction increased GH97 while reducing GH94 and GT35 compared to CON. Protein restriction decreased abundances of KO genes involved in VFA production pathways, while they were recovered in the re-alimentation period. Protein restriction reduced tet(W/32/O) abundances but increased those of tet(X), nimJ, and rpoB2. Following protein re-alimentation, there was a decrease in ErmQ and tet(W/N/W), and an increase in Mef(En2) compared to CON, highlighting the impact of dietary protein on the distribution of antibiotic-resistant bacteria. Overall, comprehensive metagenomic analysis reveals the dynamic adaptability of the microbiome in response to dietary shifts, indicating its capacity to modulate carbohydrate metabolism and ARGs in response to protein availability.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Chun Shen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jian Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Long Cheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Meng M Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Patel MN, Patel AJ, Nandpal MN, Raval MA, Patel RJ, Patel AA, Paudel KR, Hansbro PM, Singh SK, Gupta G, Dua K, Patel SG. Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03466-0. [PMID: 39377922 DOI: 10.1007/s00210-024-03466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) represents a pressing global health issue, leading to heightened morbidity and mortality. Despite extensive research efforts, the escalation of DR-TB cases underscores the urgent need for enhanced prevention, diagnosis, and treatment strategies. This review delves deep into the molecular and genetic origins of different types of DR-TB, highlighting recent breakthroughs in detection and diagnosis, including Rapid Diagnostic Tests like Xpert Ultra, Whole Genome Sequencing, and AI-based tools along with latest viewpoints on diagnosis and treatment of DR-TB utilizing newer and repurposed drug molecules. Special emphasis is given to the pivotal role of novel drugs and discusses updated treatment regimens endorsed by governing bodies, alongside innovative personalized drug-delivery systems such as nano-carriers, along with an analysis of relevant patents in this area. All the compiled information highlights the inherent challenges of current DR-TB treatments, discussing their complexity, potential side effects, and the socioeconomic strain they impose, particularly in under-resourced regions, emphasizing the cost-effective and accessible solutions. By offering insights, this review aims to serve as a compass for researchers, healthcare practitioners, and policymakers, emphasizing the critical need for ongoing R&D to improve treatments and broaden access to crucial TB interventions.
Collapse
Affiliation(s)
- Meghana N Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Archita J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manish N Nandpal
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manan A Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Amit A Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Samir G Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.
| |
Collapse
|
3
|
Wang Y, Gao S, Wu F, Gong Y, Mu N, Wei C, Wu C, Wang J, Yan N, Yang H, Zhang Y, Liu J, Wang Z, Yang X, Lam SM, Shui G, Li S, Da L, Guddat LW, Rao Z, Zhang L. Cryo-EM structures of a mycobacterial ABC transporter that mediates rifampicin resistance. Proc Natl Acad Sci U S A 2024; 121:e2403421121. [PMID: 39226350 PMCID: PMC11406275 DOI: 10.1073/pnas.2403421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yicheng Gong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nengjiang Mu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chuancun Wei
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyao Wu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ning Yan
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huifang Yang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiayi Liu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zeyu Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyuan Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 10084, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
4
|
Vijay S, Bao NLH, Vinh DN, Nhat LTH, Thu DDA, Quang NL, Trieu LPT, Nhung HN, Ha VTN, Thai PVK, Ha DTM, Lan NH, Caws M, Thwaites GE, Javid B, Thuong NT. Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates from a longitudinal study. eLife 2024; 13:RP93243. [PMID: 39250422 PMCID: PMC11383526 DOI: 10.7554/elife.93243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15-60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | - Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | - Do Dang Anh Thu
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | - Nguyen Le Quang
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | | | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States
| | - Nguyen Thuy Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Wu Y, Chang Y, Sun Y, Wang Y, Li K, Lu Z, Liu Q, Wang F, Wei L. A multi-AS-PCR-coupled CRISPR/Cas12a assay for the detection of ten single-base mutations. Anal Chim Acta 2024; 1320:343027. [PMID: 39142774 DOI: 10.1016/j.aca.2024.343027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Single-nucleotide polymorphism (SNP) detection is critical for diagnosing diseases, and the development of rapid and accurate diagnostic tools is essential for treatment and prevention. Allele-specific polymerase chain reaction (AS-PCR) is widely used for detecting SNPs with multiplexing capabilities, while CRISPR-based technologies provide high sensitivity and specificity in targeting mutation sites through specific guide RNAs (gRNAs). In this study, we have integrated the high sensitivity and specificity of CRISPR technology with the multiplexing capabilities of AS-PCR, achieving the simultaneous detection of ten single-base mutations. As for Multi-AS-PCR, our research identified that competitive inhibition of primers targeting the same loci, coupled with divergent amplification efficiencies of these primers, could result in diminished amplification efficiency. Consequently, we adjusted and optimized primer combinations and ratios to enhance the amplification efficacy of Multi-AS-PCR. Finally, we successfully developed a novel nested Multi-AS-PCR-Cas12a method for multiplex SNPs detection. To evaluate the clinical utility of this method in a real-world setting, we applied it to diagnose rifampicin-resistant tuberculosis (TB). The limit of detection (LoD) for the nested Multi-AS-PCR-Cas12a was 102 aM, achieving sensitivity, specificity, positive predictive value, and negative predictive value of 100 %, 93.33 %, 90.00 %, and 100 %, respectively, compared to sequencing. In summary, by employing an innovative design that incorporates a universal reverse primer alongside ten distinct forward allele-specific primers, the nested Multi-AS-PCR-Cas12a technique facilitates the parallel detection of ten rpoB gene SNPs. This method also holds broad potential for the detection of drug-resistant gene mutations in infectious diseases and tumors, as well as for the screening of specific genetic disorders.
Collapse
Affiliation(s)
- Yaozhou Wu
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yingying Sun
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Yulin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Zhangping Lu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Qianqian Liu
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| | - Lianhua Wei
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Chand P, Mendum TA, Butler RE, Hingley-Wilson SM, Stewart GR. Identification of gene targets that potentiate the action of rifampicin on Mycobacterium bovis BCG. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001488. [PMID: 39150447 PMCID: PMC11329110 DOI: 10.1099/mic.0.001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Tuberculosis (TB) caused by bacteria of the Mycobacterium tuberculosis complex remains one of the most important infectious diseases of mankind. Rifampicin is a first line drug used in multi-drug treatment of TB, however, the necessary duration of treatment with these drugs is long and development of resistance is an increasing impediment to treatment programmes. As a result, there is a requirement for research and development of new TB drugs, which can form the basis of new drug combinations, either due to their own anti-mycobacterial activity or by augmenting the activity of existing drugs such as rifampicin. This study describes a TnSeq analysis to identify mutants with enhanced sensitivity to sub-minimum inhibitory concentrations (MIC) of rifampicin. The rifampicin-sensitive mutants were disrupted in genes of a variety of functions and the majority fitted into three thematic groups: firstly, genes that were involved in DNA/RNA metabolism, secondly, genes involved in sensing and regulating mycobacterial cellular systems, and thirdly, genes involved in the synthesis and maintenance of the cell wall. Selection at two concentrations of rifampicin (1/250 and 1/62 MIC) demonstrated a dose response for mutants with statistically significant sensitivity to rifampicin. The dataset reveals mechanisms of how mycobacteria are innately tolerant to and initiate an adaptive response to rifampicin; providing putative targets for the development of adjunctive therapies that potentiate the action of rifampicin.
Collapse
Affiliation(s)
- Pooja Chand
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| |
Collapse
|
7
|
Mousavi-Sagharchi SMA, Afrazeh E, Seyyedian-Nikjeh SF, Meskini M, Doroud D, Siadat SD. New insight in molecular detection of Mycobacterium tuberculosis. AMB Express 2024; 14:74. [PMID: 38907086 PMCID: PMC11192714 DOI: 10.1186/s13568-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions of lives since the Middle Ages. According to the World Health Organization's report, tuberculosis ranks among the ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, methods have been developed based on gene expansion and detection. These methods typically commence with DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods with these advanced molecular diagnostic techniques.
Collapse
Affiliation(s)
| | - Elina Afrazeh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Delaram Doroud
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Tang C, Wu L, Li M, Dai J, Shi Y, Wang Q, Xu F, Zheng L, Xiao X, Cai J, Zhang Y, Yang Y, Zheng X, Xiang G. High-throughput nanopore targeted sequencing for efficient drug resistance assay of Mycobacterium tuberculosis. Front Microbiol 2024; 15:1331656. [PMID: 38841074 PMCID: PMC11152171 DOI: 10.3389/fmicb.2024.1331656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Drug-resistant tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), is one of the urgent clinical problems and public health challenges. Culture-based phenotypic drug susceptibility testing (pDST) is time-consuming, and PCR-based assays are limited to hotspot mutations. In this study, we developed and validated a convenient and efficient approach based on high-throughput nanopore sequencing technology combined with multiplex PCR, namely nanopore targeted sequencing (NTS), to simultaneously sequence 18 genes associated with antibiotic resistance in Mycobacterium tuberculosis (MTB). The analytical performance of NTS was evaluated, and 99 clinical samples were collected to assess its clinical performance. The NTS results showed that MTB and its drug resistance were successfully identified in approximately 7.5 h. Furthermore, compared to the pDST and Xpert MTB/RIF assays, NTS provided much more drug resistance information, covering 14 anti-TB drugs, and it identified 20 clinical cases of drug-resistant MTB. The mutations underlying these drug-resistant cases were all verified using Sanger sequencing. Our approach for this TB drug resistance assay offers several advantages, including being culture-free, efficient, high-throughput, and highly accurate, which would be very helpful for clinical patient management and TB infection control.
Collapse
Affiliation(s)
- Chen Tang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianpeng Wu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Machao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianyi Dai
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Ye Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiongdan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laibao Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingxing Xiao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwen Cai
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanjun Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangxin Xiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Vijay S, Bao NLH, Vinh DN, Nhat LTH, Thu DDA, Quang NL, Trieu LPT, Nhung HN, Ha VTN, Thai PVK, Ha DTM, Lan NH, Caws M, Thwaites GE, Javid B, Thuong NTT. Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates: an in-vitro longitudinal study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568240. [PMID: 38045287 PMCID: PMC10690245 DOI: 10.1101/2023.11.22.568240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. We determined the in-vitro rifampicin survival fraction by minimum duration of killing assay in isoniazid susceptible (IS, n=119) and resistant (IR, n=84) M. tuberculosis isolates. Then we correlated the rifampicin tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal IR isolates collected from patients were analyzed for changes in rifampicin tolerance and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation. This indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log 10 -fold survival fraction enabled classification of tolerance as low, medium or high and revealed IR association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P -trend=0.0003). The high tolerance in IR isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Furthermore, the high rifampicin tolerant IR isolates have survival potential similar to multi-drug resistant isolates. These findings suggest that IR tuberculosis needs to be evaluated for high rifampicin tolerance to improve treatment regimen and prevent the risk of MDR-TB emergence.
Collapse
|
10
|
Lang M, Ganapathy US, Mann L, Seidel RW, Goddard R, Erdmann F, Dick T, Richter A. Synthesis and in vitro Metabolic Stability of Sterically Shielded Antimycobacterial Phenylalanine Amides. ChemMedChem 2024; 19:e202300593. [PMID: 38329388 DOI: 10.1002/cmdc.202300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nα-aroyl-N-aryl-phenylalanine amides (AAPs) are RNA polymerase inhibitors with activity against Mycobacterium tuberculosis and non-tuberculous mycobacteria. We observed that AAPs rapidly degrade in microsomal suspensions, suggesting that avoiding hepatic metabolism is critical for their effectiveness in vivo. As both amide bonds are potential metabolic weak points of the molecule, we synthesized 16 novel AAP analogs in which the amide bonds are shielded by methyl or fluoro substituents in close proximity. Some derivatives show improved microsomal stability, while being plasma-stable and non-cytotoxic. In parallel with the metabolic stability studies, the antimycobacterial activity of the AAPs against Mycobacterium tuberculosis, Mycobacterium abscessus, Mycobacterium avium and Mycobacterium intracellulare was determined. The stability data are discussed in relation to the antimycobacterial activity of the panel of compounds and reveal that the concept of steric shielding of the anilide groups by a fluoro substituent has the potential to improve the stability and bioavailability of AAPs.
Collapse
Affiliation(s)
- Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Uday S Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, 07110, Nutley, New Jersey, USA
| | - Lea Mann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Frank Erdmann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, 07110, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Blvd, 07110, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road, N.W., 20007, Washington DC, USA
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Liu A, Liu S, Lv K, Zhu Q, Wen J, Li J, Liang C, Huang X, Gong C, Sun Q, Gu H. Rapid detection of multidrug resistance in tuberculosis using nanopore-based targeted next-generation sequencing: a multicenter, double-blind study. Front Microbiol 2024; 15:1349715. [PMID: 38495513 PMCID: PMC10940340 DOI: 10.3389/fmicb.2024.1349715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Background Resistance to anti-tuberculous drugs is a major challenge in the treatment of tuberculosis (TB). We aimed to evaluate the clinical availability of nanopore-based targeted next-generation sequencing (NanoTNGS) for the diagnosis of drug-resistant tuberculosis (DR-TB). Methods This study enrolled 253 patients with suspected DR-TB from six hospitals. The diagnostic efficacy of NanoTNGS for detecting Mycobacterium tuberculosis and its susceptibility or resistance to first- and second-line anti-tuberculosis drugs was assessed by comparing conventional phenotypic drug susceptibility testing (pDST) and Xpert MTB/RIF assays. NanoTNGS can be performed within 12 hours from DNA extraction to the result delivery. Results NanoTNGS showed a remarkable concordance rate of 99.44% (179/180) with the culture assay for identifying the Mycobacterium tuberculosis complex. The sensitivity of NanoTNGS for detecting drug resistance was 93.53% for rifampicin, 89.72% for isoniazid, 85.45% for ethambutol, 74.00% for streptomycin, and 88.89% for fluoroquinolones. Specificities ranged from 83.33% to 100% for all drugs tested. Sensitivity for rifampicin-resistant tuberculosis using NanoTNGS increased by 9.73% compared to Xpert MTB/RIF. The most common mutations were S531L (codon in E. coli) in the rpoB gene, S315T in the katG gene, and M306V in the embB gene, conferring resistance to rifampicin, isoniazid, and ethambutol, respectively. In addition, mutations in the pncA gene, potentially contributing to pyrazinamide resistance, were detected in 32 patients. Other prevalent variants, including D94G in the gyrA gene and K43R in the rpsL gene, conferred resistance to fluoroquinolones and streptomycin, respectively. Furthermore, the rv0678 R94Q mutation was detected in one sample, indicating potential resistance to bedaquiline. Conclusion NanoTNGS rapidly and accurately identifies resistance or susceptibility to anti-TB drugs, outperforming traditional methods. Clinical implementation of the technique can recognize DR-TB in time and provide guidance for choosing appropriate antituberculosis agents.
Collapse
Affiliation(s)
- Aimei Liu
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Sang Liu
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Kangyan Lv
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Qingdong Zhu
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Jun Wen
- Department of Pulmonary Medicine, The Third People's Hospital of Guilin, Guilin, Guangxi, China
| | - Jianpeng Li
- Department of Pulmonary Medicine, The Third People's Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Chengyuan Liang
- Department of Infectious Diseases, The People's Hospital of Baise, Baise, Guangxi, China
| | - Xuegang Huang
- Department of Infectious Diseases, The First People's Hospital of Fangchenggang, Fangchenggang, Guangxi, China
| | - Chunming Gong
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Qingfeng Sun
- Department of Tuberculosis, Guangxi Zhuang Autonomous Region Chest Hospital, Liuzhou, Guangxi, China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
12
|
Aitken JM, Aitken JE, Agrawal G. Mycobacterium avium ssp. paratuberculosis and Crohn's Disease-Diagnostic Microbiological Investigations Can Inform New Therapeutic Approaches. Antibiotics (Basel) 2024; 13:158. [PMID: 38391544 PMCID: PMC10886072 DOI: 10.3390/antibiotics13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the cause of Johne's disease (JD), which is a chronic infectious gastrointestinal disease of ruminants and is often fatal. In humans, MAP has been associated with Crohn's disease (CD) for over a century, without conclusive evidence of pathogenicity. Numerous researchers have contributed to the subject, but there is still a need for evidence of the causation of CD by MAP. An infectious aetiology in CD that is attributable to MAP can only be proven by bacteriological investigations. There is an urgency in resolving this question due to the rising global incidence rates of CD. Recent papers have indicated the "therapeutic ceiling" may be close in the development of new biologics. Clinical trial outcomes have demonstrated mild or inconsistent improvements in therapeutic interventions over the last decades when compared with placebo. The necessity to revisit therapeutic options for CD is becoming more urgent and a renewed focus on causation is essential for progress in identifying new treatment options. This manuscript discusses newer interventions, such as vaccination, FMT, dietary remediation and gut microbiome regulation, that will become more relevant as existing therapeutic options expire. Revisiting the MAP theory as a potential infectious cause of CD, rather than the prevailing concept of an "aberrant immune response" will require expanding the current therapeutic programme to include potential new alternatives, and combinations of existing treatments. To advance research on MAP in humans, it is essential for microbiologists and medical scientists to microscopically detect CWDM and to biologically amplify the growth by directed culture.
Collapse
Affiliation(s)
- John M Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Jack E Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, Franklin-Wilkins Building, King's College London, London SE1 9NH, UK
| |
Collapse
|
13
|
Maurin M, Pondérand L, Hennebique A, Pelloux I, Boisset S, Caspar Y. Tularemia treatment: experimental and clinical data. Front Microbiol 2024; 14:1348323. [PMID: 38298538 PMCID: PMC10827922 DOI: 10.3389/fmicb.2023.1348323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Tularemia is a zoonosis caused by the Gram negative, facultative intracellular bacterium Francisella tularensis. This disease has multiple clinical presentations according to the route of infection, the virulence of the infecting bacterial strain, and the underlying medical condition of infected persons. Systemic infections (e.g., pneumonic and typhoidal form) and complications are rare but may be life threatening. Most people suffer from local infection (e.g., skin ulcer, conjunctivitis, or pharyngitis) with regional lymphadenopathy, which evolve to suppuration in about 30% of patients and a chronic course of infection. Current treatment recommendations have been established to manage acute infections in the context of a biological threat and do not consider the great variability of clinical situations. This review summarizes literature data on antibiotic efficacy against F. tularensis in vitro, in animal models, and in humans. Empirical treatment with beta-lactams, most macrolides, or anti-tuberculosis agents is usually ineffective. The aminoglycosides gentamicin and streptomycin remain the gold standard for severe infections, and the fluoroquinolones and doxycycline for infections of mild severity, although current data indicate the former are usually more effective. However, the antibiotic treatments reported in the literature are highly variable in their composition and duration depending on the clinical manifestations, the age and health status of the patient, the presence of complications, and the evolution of the disease. Many patients received several antibiotics in combination or successively. Whatever the antibiotic treatment administered, variable but high rates of treatment failures and relapses are still observed, especially in patients treated more then 2-3 weeks after disease onset. In these patients, surgical treatment is often necessary for cure, including drainage or removal of suppurative lymph nodes or other infectious foci. It is currently difficult to establish therapeutic recommendations, particularly due to lack of comparative randomized studies. However, we have attempted to summarize current knowledge through proposals for improving tularemia treatment which will have to be discussed by a group of experts. A major factor in improving the prognosis of patients with tularemia is the early administration of appropriate treatment, which requires better medical knowledge and diagnostic strategy of this disease.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Léa Pondérand
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Isabelle Pelloux
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
14
|
Komakech K, Nakiyingi L, Fred A, Achan B, Joloba M, Kirenga BJ, Ssengooba W. Effect of mixed Mycobacterium tuberculosis infection on rapid molecular diagnostics among patients starting MDR-TB treatment in Uganda. BMC Infect Dis 2024; 24:70. [PMID: 38200467 PMCID: PMC10782568 DOI: 10.1186/s12879-023-08968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Mixed M. tuberculosis (MTB) infection occurs when one is infected with more than one clonally distinct MTB strain. This form of infection can assist MTB strains to acquire additional mutations, facilitate the spread of drug-resistant strains, and boost the rate of treatment failure. Hence, the presence of mixed MTB infection could affect the performance of some rapid molecular diagnostic tests such as Line Probe Assay (LPA) and GeneXpert MTB/RIF (Xpert) assays. METHODS This was a cross-sectional study that used sputum specimens collected from participants screened for STREAM 2 clinical trial between October 2017 and October 2019. Samples from 62 MTB smear-positive patients and rifampicin-resistant patients from peripheral health facilities were processed for Xpert and LPA as screening tests for eligibility in the trial. From November 2020, processed stored sputum samples were retrieved and genotyped to determine the presence of mixed-MTB strain infection using a standard 24-locus Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem-Repeat (MIRU-VNTR). Samples with at least 20/24 MIRU-VNTR loci amplified were considered for analysis. Agar proportional Drug Susceptibility Test (DST) was performed on culture isolates of samples that had discordant results between LPA and Xpert. The impact of the presence of mixed-MTB strain on Xpert and LPA test interpretation was analyzed. RESULTS A total of 53/62 (85%) samples had analyzable results from MIRU-VNTR. The overall prevalence of mixed-MTB infection was 5/53 (9.4%). The prevalence was highest among male's 3/31 (9.7%) and among middle-aged adults, 4/30 (33.3%). Lineage 4 of MTB contributed 3/5 (60.0%) of the mixed-MTB infection prevalence. Having mixed MTB strain infection increased the odds of false susceptible Xpert test results (OR 7.556, 95% CI 0.88-64.44) but not for LPA. Being HIV-positive (P = 0.04) independently predicted the presence of mixed MTB infection. CONCLUSIONS The presence of mixed-MTB strain infection may affect the performance of the GeneXpert test but not for LPA. For patients with high pre-test probability of rifampicin resistance, an alternative rapid method such as LPA should be considered.
Collapse
Affiliation(s)
- Kevin Komakech
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda
| | - Lydia Nakiyingi
- Department of Medicine, School of Medicine, Makerere University, Kampala, Uganda
| | - Ashab Fred
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Beatrice Achan
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Bruce J Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda.
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| |
Collapse
|
15
|
Seid A, Girma Y, Dereb E, Kassa M, Nureddin S, Abebe A, Berhane N. Insights into the in-vitro Susceptibility and Drug-Drug Interaction Profiles Against Drug-Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates in Amhara, Ethiopia. Infect Drug Resist 2024; 17:89-107. [PMID: 38223563 PMCID: PMC10788062 DOI: 10.2147/idr.s440947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Background In Ethiopia, tuberculosis (TB) is a major public health problem. The aim of the study was to determine the in vitro susceptibility level of drugs and drug interaction profiles against drug-resistant and susceptible M. tuberculosis clinical isolates. A laboratory-based cross-sectional study was conducted between January 2023 and August 2023. GenoType MTBDRplus v.2.0 was facilitated in genetic mutation detection. Minimum inhibitory concentration (MIC) was determined using resazurin microtitre assay (REMA), while fractional inhibitory concentration index (FICI) using resazurin drug combination microtitre assay (REDCA) for in vitro quantitative susceptibility and drug interaction prediction. Results Among 32 clinical isolates, a total of 14 (43.8%) RIF, 20 (62.5%) INH, 2 (6.3%) EMB-related resistant and 14 (43.8%) MDR isolates were identified. Five of RIF-resistant isolates (55.6%) carrying rpoB common mutations at codon S450L were associated with high levels of RIF-resistance with MICs of ≥ 2μg/mL, whereas 100% of isolates harboring rpoB substitutions at codons D435V and H445Y were linked with moderate or low-level RIF-resistance in the MIC ranges from 0.5 to 1μg/mL. A proportion of 81.8% of isolates harboring katG S315T mutations were associated with high-level INH resistance (MIC ≥ 1μg/mL), while the 18.2% of isolates with S315T katG mutations and 100% of isolates with inhA C-15T mutations were linked to the low-level of INH resistance with MIC variability from 0.25 to 0.5μg/mL. Our results indicated that most FICIs of the dual drugs INH+RIF and INH+LEV combination for 9 (28.1%) and 4 (12.5%) INH-resistant isolates, respectively, were ≤0.5, whereas triple drugs INH+RIF+EMB, INH+RIF+LEV and INH+EMB+LEV combination for 6 (18.8%), 11 (34.4%) and 8 (25%) INH-resistant isolates were from 0.62 to 0.75, all showed synergistic effect. Conclusion The study highlights that isolates with rpoB S450L and katG S315T substitutions were associated with high level of RIF and INH resistance. It is concluded that REDCA can quantitatively determine anti-mycobacterial synergy and that LEV being of potential use against INH-resistant isolates including MDR-TB when combined with RIF+INH and INH+EMB.
Collapse
Affiliation(s)
- Aynias Seid
- Department of Biology, College of Natural and Computational Science, Debre-Tabor University, Debre-Tabor, Ethiopia
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Eseye Dereb
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Semira Nureddin
- Department of Biology, College of Natural and Computational Science, Woldia University, Woldia, Ethiopia
| | - Ayenesh Abebe
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Nega Berhane
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Akhmetova A, Bismilda V, Chingissova L, Filipenko M, Akilzhanova A, Kozhamkulov U. Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan. Antibiotics (Basel) 2023; 13:9. [PMID: 38275319 PMCID: PMC10812519 DOI: 10.3390/antibiotics13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The Beijing genotype is the most distributed M. tuberculosis family in Kazakhstan. In this study, we identified dominant Beijing clusters in Kazakhstan and assessed their drug susceptibility profiles and association with the most widely spread mutation Ser531Leu of the rpoB gene and the mutation Ser315Thr of the katG gene associated with resistance to rifampicin and isoniazid, respectively. M. tuberculosis isolates (n = 540) from new TB cases were included in the study. MIRU-VNTR genotyping was performed for 540 clinical isolates to determine M. tuberculosis families using 24 loci. RD analysis was additionally performed for the Beijing isolates. The identification of mutations in the drug-resistance genes of M. tuberculosis was performed with allele-specific real-time PCR and Sanger sequencing. The Beijing genotype was identified in 60% (324/540) of the clinical isolates. Central Asian/Russian cluster 94-32 was the most distributed cluster among the Beijing isolates (50.3%; 163/324). Three other dominant Beijing clusters were identified as 94-33 (3.4%; 11/324), 100-32 (3.1%; 10/324) and 99-32 (3.1%; 10/324). The Beijing genotype was associated with drug-resistant TB (p < 0.0001), including multidrug-resistant TB (p < 0.0001), in our study. An association of the mutation Ser531Leu of the rpoB gene with the Beijing genotype was found (p < 0.0001; OR = 16.0000; 95%CI: 4.9161-52.0740). Among the Beijing isolates, cluster 94-32 showed an association with MDR-TB (p = 0.021). This is why the evaluation of the Beijing genotype and its clusters is needed to control MDR-TB in Kazakhstan.
Collapse
Affiliation(s)
- Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Venera Bismilda
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Lyailya Chingissova
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630000, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
17
|
Igo M, Xu L, Krishna A, Stewart S, Xu L, Li Z, Weaver JL, Stone H, Sacks L, Bensman T, Florian J, Rouse R, Han X. A metagenomic analysis for combination therapy of multiple classes of antibiotics on the prevention of the spread of antibiotic-resistant genes. Gut Microbes 2023; 15:2271150. [PMID: 37908118 PMCID: PMC10621307 DOI: 10.1080/19490976.2023.2271150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Antibiotics used systemically to treat infections may have off-target effects on the gut microbiome, potentially resulting in the emergence of drug-resistant bacteria or selection of pathogenic species. These organisms may present a risk to the host and spread to the environment with a risk of transmission in the community. To investigate the risk of emergent antibiotic resistance in the gut microbiome following systemic treatment with antibiotics, this metagenomic analysis project used next-generation sequencing, a custom-built metagenomics pipeline, and differential abundance analysis to study the effect of antibiotics (ampicillin, ciprofloxacin, and fosfomycin) in monotherapy and different combinations at high and low doses, to determine the effect on resistome and taxonomic composition in the gut of Balb/c mice. The results showed that low-dose monotherapy treatments showed little change in microbiome composition but did show an increase in expression of many antibiotic-resistant genes (ARGs) posttreatment. Dual combination treatments allowed the emergence of some conditionally pathogenic bacteria and some increase in the abundance of ARGs despite a general decrease in microbiota diversity. Triple combination treatment was the most successful in inhibiting emergence of relevant opportunistic pathogens and completely suppressed all ARGs after 72 h of treatment. The relative abundances of mobile genetic elements that can enhance transmission of antibiotic resistance either decreased or remained the same for combination therapy while increasing for low-dose monotherapy. Combination therapy prevented the emergence of ARGs and decreased bacterial diversity, while low-dose monotherapy treatment increased ARGs and did not greatly change bacterial diversity.
Collapse
Affiliation(s)
- Matthew Igo
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashok Krishna
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lin Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - James L. Weaver
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Stone
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Leonard Sacks
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Timothy Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
18
|
Hemeg HA, Albulushi HO, Ozbak HA, Ali HM, Alahmadi EK, Almutawif YA, Alhuofie ST, Alaeq RA, Alhazmi AA, Najim MA, Hanafy AM. Evaluating the Sensitivity of Different Molecular Techniques for Detecting Mycobacterium tuberculosis Complex in Patients with Pulmonary Infection. Pol J Microbiol 2023; 72:421-431. [PMID: 37934050 PMCID: PMC10725165 DOI: 10.33073/pjm-2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
Collapse
Affiliation(s)
- Hassan A. Hemeg
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamzah O. Albulushi
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hani A. Ozbak
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamza M. Ali
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Emad K. Alahmadi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Yahya A. Almutawif
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Sari T. Alhuofie
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Rana A. Alaeq
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Areej A. Alhazmi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mustafa A. Najim
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Ahmed M. Hanafy
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Mehnath S, Sathish Kumar M, Chitra K, Jeyaraj M. Bone-Adhesive Hydrogel for Effective Inhibition of M. tuberculosis and Osteoblast Regeneration. ACS Infect Dis 2023; 9:2269-2281. [PMID: 37904258 DOI: 10.1021/acsinfecdis.3c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Currently, bone tuberculosis (TB) treatment largely involves lifelong drug prescriptions and surgical intervention, resulting in poor quality of life for patients. Therefore, the fabrication of injectable scaffolds to form a solid framework around the defective bone region is gaining importance over the extensive use of antimicrobial inhibitors. Herein, we synthesized a novel bone-adhesive and thermoresponsive hydrogel via conjugation of poly(N-isopropylacrylamide-co-glycidyl methacrylate) (PNIPAM-co-GMA) and cysteine (CYS). Thiolation of the polymer enables chemical cross-linking with the bone glycoprotein, enhancing bone adhesion and permitting control of scaffold retention time. The PNIPAM-co-GMA-CYS hydrogel shows higher cross-linking behavior at 37 °C, forms a strong gel in 260 s, and has 151 kPa adhesion strength on cortical bone. The lead compounds 5-methyl-5H-[1,2,4]triazino[5,6-b]indole-3-thiol (MTIT) and N-tert-butyl-4-methyl-6-(5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)pyrimidin-2-amine (TMTIPA) were identified by a high-throughput screening method. Effective MTIT and TMTIPA are encapsulated in bone-adhesive hydrogel separately, and both have a high release rate above >70% in 180 h. The MTIT- and TMTIPA-loaded PNIPAM-co-GMA-CYS showed an excellent bactericidal effect, reducing the relative intracellular bacterial survival in macrophages. Furthermore, the as-synthesized hydrogel has outstanding mechanical and biocompatibility properties to become a bone-replacing material and provide support to promote bone repair. This work presents a novel bone-adhesive PNIPAM-co-GMA-CYS for the sustained release of lead compounds toward promising alternative bone TB treatment.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai , Tamil Nadu 600 025, India
| | - Marimuthu Sathish Kumar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613 401, India
| | - Karuppannan Chitra
- Translational Research Platform for Veterinary Biologicals, Madhavaram Milk Colony, Chennai, Tamil Nadu 600 051, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai , Tamil Nadu 600 025, India
| |
Collapse
|
20
|
Seid A, Kassa M, Girma Y, Dereb E, Nureddin S, Abebe A, Berhane N. Molecular characterization of genetic mutations with fitness loss in pulmonary tuberculosis patients associated with HIV co-infection in Northwest Amhara, Ethiopia. SAGE Open Med 2023; 11:20503121231208266. [PMID: 37933292 PMCID: PMC10625730 DOI: 10.1177/20503121231208266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
Objectives Molecular approaches to identifying resistance-conferring mutations suggest a revolution in the field of tuberculosis. The aim of the study was to determine the association between resistance-conferring mutations with fitness loss in Mycobacterium tuberculosis clinical isolates and HIV co-infection in the Amhara region of Ethiopia. Methods A laboratory-based cross-sectional study was conducted between September 2022 and June 2023. A line probe assay was performed on 146 culture-positive clinical isolates. Logistic regression analysis was used to measure the strength of the association between the drug-resistance-conferring mutations with fitness loss in M. tuberculosis isolates and tuberculosis/HIV co-infection. A p-value ⩽ 0.05 was considered statistically significant. Results A total of 11 distinct mutations at four genetic loci among 19 resistant isolates were detected. The frequency of rifampicin, isoniazid, and fluoroquinolones resistance-conferring mutations was identified in 12 (8.2%), 17 (11.6%), and 2 (1.4%) of the isolates, respectively. The most prominent specific mutations were S450L (5/9, 55.6%), S315T (11/11, 100%), C-15T (4/4, 100%), and D94G (1/1, 100%). Double mutations were observed in 10 (52.6%) multidrug-resistant tuberculosis isolates; the most common were detected in both the rpoB and katG genes (8/10, 80.0%). The HIV-co-infected tuberculosis patients carried a higher proportion of low fitness of non-rpoB S450L variants than those tuberculosis patients without HIV (80.0% vs 14.3%) and showed a significant association (cOR = 0.042, 95% CI: 0.002-0.877, p = 0.041), but not with the low fitness of non-katG S315T variants (cOR = 3.00, 95% CI: 0.348-25.870, p = 0.318). Conclusion This study provides valuable information on the genetic variants with fitness loss associated with HIV co-infection, but requires further whole-genome-based mutation analysis.
Collapse
Affiliation(s)
- Aynias Seid
- Department of Biology, College of Natural and Computational Science, Debre-Tabor University, Debre-Tabor, Ethiopia
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Eseye Dereb
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Semira Nureddin
- Department of Biology, College of Natural and Computational Science, Woldia University, Woldia, Ethiopia
| | - Ayenesh Abebe
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Nega Berhane
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
21
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
22
|
Shi S, Xu M, Zhao Y, Feng L, Liu Q, Yao Z, Sun Y, Zhou T, Ye J. Tigecycline-Rifampicin Restrains Resistance Development in Carbapenem-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:1858-1866. [PMID: 37669401 DOI: 10.1021/acsinfecdis.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.
Collapse
Affiliation(s)
- Shiyi Shi
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| |
Collapse
|
23
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
24
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
25
|
Murase LS, Lima DDS, Souza JVPD, Palomo CT, Caleffi-Ferracioli KR, Scodro RBDL, Siqueira VLD, Seixas FAV, Cardoso RF. Binding of piperine to mycobacterial RNA polymerase improves the efficacy of rifampicin activity against Mycobacterium leprae and nontuberculous mycobacteria. J Biomol Struct Dyn 2023; 41:8671-8681. [PMID: 36255291 DOI: 10.1080/07391102.2022.2135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Piperine (PPN) is a known inhibitor of efflux pumps in Mycobacterium tuberculosis and in vitro synergism with rifampicin (RIF) has been proven. The current study evaluates the activity of PPN and synergism with RIF in rapidly and slowly growing nontuberculous mycobacteria (NTM). Also, to propose a possible mechanism of interaction of PPN with M. leprae (Mlp) RNA polymerase (RNAp). Minimal inhibitory concentration and drug combination assay was determined by resazurin microtiter assay and resazurin drug combination assay, respectively. In silico evaluation of PPN binding was performed by molecular docking and molecular dynamics (MD). PPN showed higher antimicrobial activity against rapidly growing NTM (32-128 mg/L) rather than for slowly growing NTM (≥ 256 mg/L). Further, 77.8% of NTM tested exhibited FICI ≤ 0.5 when exposed to PPN and RIF combination, regardless of growth speed. Docking and MD simulations showed a possible PPN binding site at the interface between β and β' subunits of RNAp, in close proximity to the trigger-helix and bridge-helix elements. MD results indicated that PPN binding hindered the mobility of these elements, which are essential for RNA transcription. We hypothesize that PPN binding might affect mycobacterial RNAp activity, and, possibly, RIF activity and that this mechanism is partially responsible for synergic behaviors with RIF reported in vitro. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Brazil
| | - Diego de Souza Lima
- Postgraduate Program in Biological Sciences, State University of Maringa, Maringa, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringa, Maringa, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Komakech K, Nakiyingi L, Fred A, Achan B, Joloba M, Kirenga BJ, Ssengooba W. Effect of mixed Mycobacterium tuberculosis infection on rapid molecular diagnostics among patients starting MDR-TB treatment in Uganda. RESEARCH SQUARE 2023:rs.3.rs-3324330. [PMID: 37841871 PMCID: PMC10571598 DOI: 10.21203/rs.3.rs-3324330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background We evaluated the effect of mixed-MTB strain infection on the performance of Line Probe Assay (LPA) and GeneXpert MTB/RIF (Xpert) assays among patients initiating MDR-TB treatment in Uganda. Methods This was a cross-sectional study using sputum specimens collected from participants screened for STREAM 2 clinical trial between October 2017 and October 2019. Samples from 62 MTB smear-positive patients and rifampicin-resistant patients from the peripheral health facilities were processed for Xpert and LPA as screening tests for eligibility in the trial. From November 2020, processed stored sputum samples were retrieved and genotyped to determine the presence of mixed-MTB strain infection using a standard 24-locus Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem-Repeat (MIRU-VNTR). Samples with at least 20/24 MIRU-VNTR loci amplified were considered for analysis. Agar proportional Drug Susceptibility Test (DST) was performed on culture isolates of samples that had discordant results between LPA and Xpert. The impact of the presence of mixed-MTB strain on Xpert and LPA test interpretation was analyzed. Results A total of 53/62 (85%) samples had analyzable results from MIRU-VNTR. The overall prevalence of mixed-MTB infection was 5/53 (9.4%). The prevalence was highest among males 3/33 (9.7%) and among middle-aged adults, 4/30 (13.3%). Lineage 4 of MTB contributed 3/33 (9.1%) of the mixed-MTB infection prevalence. Having mixed MTB strain infection increased the odds of false susceptible Xpert test results (OR 7.556, 95% CI 0.88-64.44) but not for LPA. Being HIV-positive (P=0.04) independently predicted the presence of mixed MTB infection. Conclusions The presence of mixed-MTB strain infection may affect the performance of the GeneXpert test but not for LPA. For patients with high pre-test probability of rifampicin resistance, an alternative rapid method such as LPA should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce J Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences
| | | |
Collapse
|
27
|
Sachan RK, Mistry V, Dholaria M, Rana A, Devgon I, Ali I, Iqbal J, Eldin SM, Mohammad Said Al-Tawaha AR, Bawazeer S, Dutta J, Karnwal A. Overcoming Mycobacterium tuberculosis Drug Resistance: Novel Medications and Repositioning Strategies. ACS OMEGA 2023; 8:32244-32257. [PMID: 37720746 PMCID: PMC10500578 DOI: 10.1021/acsomega.3c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is a global health concern, affecting millions worldwide. This bacterium has earned a reputation as a formidable adversary due to its multidrug-resistant nature, allowing it to withstand many antibiotics. The development of this drug resistance in Mycobacterium tuberculosis is attributed to innate and acquired mechanisms. In the past, rifampin was considered a potent medication for treating tuberculosis infections. However, the rapid development of resistance to this drug by the bacterium underscores the pressing need for new therapeutic agents. Fortunately, several other medications previously overlooked for tuberculosis treatment are already available in the market. Moreover, several innovative drugs are under clinical investigation, offering hope for more effective treatments. To enhance the effectiveness of these drugs, it is recommended that researchers concentrate on identifying unique target sites within the bacterium during the drug development process. This strategy could potentially circumvent the issues presented by Mycobacterium drug resistance. This review primarily focuses on the characteristics of novel drug resistance mechanisms in Mycobacterium tuberculosis. It also discusses potential medications being repositioned or sourced from novel origins. The ultimate objective of this review is to discover efficacious treatments for tuberculosis that can successfully tackle the hurdles posed by Mycobacterium drug resistance.
Collapse
Affiliation(s)
| | - Vyoma Mistry
- C.
G. Bhakta Institute of Biotechnology, Uka
Tarsadia University, Bardoli 394350, Surat, India
| | - Mayuri Dholaria
- Naran
Lala College of Professional and Applied Sciences, Navsari 396450, Gujarat, India
| | - Abhishek Rana
- Jindal
Global Law School, OP Jindal Global University, Sonepat 131001, Haryana, India
| | - Inderpal Devgon
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Iftikhar Ali
- Center
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Javed Iqbal
- Department
of Botany, Bacha Khan University, Charsadda, 24420 Khyber Pakhtunkhwa, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | | | - Sami Bawazeer
- Faculty
of Pharmacy, Department of Pharmacognosy, Umm Al-Qura University, Makkah 4041-4152, Kingdom of Saudi Arabia
| | - Joydeep Dutta
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Arun Karnwal
- Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
28
|
Tilahun M, Wegayehu T, Wondale B, Gebresilase TT, Gebreyohannes T, Tekola A, Alemu M, Neway S, Adnew B, Nassir MF, Kassahun Y, Aseffa A, Bobosha K. Phenotypic and genotypic drug susceptibility patterns of Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Central and Southern Ethiopia. PLoS One 2023; 18:e0285063. [PMID: 37682820 PMCID: PMC10491001 DOI: 10.1371/journal.pone.0285063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The persistence of tuberculosis (TB) infection in some patients after treatment has highlighted the importance of drug susceptibility testing (DST). This study aimed to determine the drug susceptibility patterns of Mycobacterium tuberculosis (M. tuberculosis) isolates from pulmonary TB (PTB) patients in Central and Southern Ethiopia. METHODS A health institution-based cross-sectional study was conducted between July 2021 and April 2022. Sputum samples were collected from newly diagnosed smear microscopy and/or Xpert MTB/RIF-positive PTB patients. The samples were processed and cultivated in Lowenstein-Jensen (LJ) pyruvate and glycerol medium. M. tuberculosis isolates were identified using polymerase chain reaction (PCR) based region of difference 9 (RD9) deletion typing. Phenotypic DST patterns of the isolates were characterized using the BACTEC MGIT™ 960 instrument with SIRE kit. Isoniazid (INH) and Rifampicin (RIF) resistant M. tuberculosis isolates were identified using the GenoType® MTBDRplus assay. RESULTS Sputum samples were collected from 350 PTB patients, 315 (90%) of which were culture-positive, and phenotypic and genotypic DST were determined for 266 and 261 isolates, respectively. Due to invalid results and missing data, 6% (16/266) of the isolates were excluded, while 94% (250/266) were included in the paired analysis. According to the findings, 14.4% (36/250) of the isolates tested positive for resistance to at least one anti-TB drug. Gene mutations were observed only in the rpoB and katG gene loci, indicating RIF and high-level INH resistance. The GenoType® MTBDRplus assay has a sensitivity of 42% and a specificity of 100% in detecting INH-resistant M. tuberculosis isolates, with a kappa value of 0.56 (95%CI: 0.36-0.76) compared to the BACTEC MGIT™ DST. The overall discordance between the two methods was 5.6% (14/250) for INH alone and 0% for RIF resistance and MDR-TB (resistance to both INH and RIF) detection. CONCLUSION This study reveals a higher prevalence of phenotypic and genotypic discordant INH-resistant M. tuberculosis isolates in the study area. The use of whole-genome sequencing (WGS) is essential for gaining a comprehensive understanding of these discrepancies within INH-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Melaku Tilahun
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Teklu Wegayehu
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Biniam Wondale
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | | | | | - Abraham Tekola
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Mekdes Alemu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Sebsib Neway
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Bethlehem Adnew
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | | | - Yonas Kassahun
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Ansari MA, Shoaib S, Alomary MN, Ather H, Ansari SMA, Hani U, Jamous YF, Alyahya SA, Alharbi JN, Imran MA, Wahab S, Ahmad W, Islam N. Deciphering the emerging role of phytocompounds: Implications in the management of drug-resistant tuberculosis and ATDs-induced hepatic damage. J Infect Public Health 2023; 16:1443-1459. [PMID: 37523915 DOI: 10.1016/j.jiph.2023.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia.
| | - Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Jameela Naif Alharbi
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 120752, Republic of Korea
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
30
|
Wu R, Li S, Liu Y, Zhang H, Liu D, Liu Y, Chen W, Wang F. A high proportion of caseous necrosis, abscess, and granulation tissue formation in spinal tuberculosis. Front Microbiol 2023; 14:1230572. [PMID: 37645226 PMCID: PMC10461047 DOI: 10.3389/fmicb.2023.1230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The special blood circulation, anatomy, and tissue structure of the spine may lead to significant differences in pathological features and drug resistance between spinal tuberculosis and pulmonary tuberculosis. Here, we collected 168 spinal tuberculosis cases and 207 pulmonary tuberculosis cases, and compared their clinical and pathological features as well as drug resistance. From the anatomical location, the highest incidence was of lumbar tuberculosis, followed by thoracic tuberculosis. PET-CT scans showed increased FDG uptake in the diseased vertebrae, discernible peripheral soft tissue shadow, visible internal capsular shadow, and an abnormal increase in FDG uptake. MRI showed infectious lesions in the diseased vertebral body, formation of paravertebral and bilateral psoas muscle abscess, and edema of surrounding soft tissues. As with control tuberculosis, the typical pathological features of spinal tuberculosis were chronic granulomatous inflammation with caseous necrosis. The incidence of granulomas was not statistically different between the groups. However, the proportions of caseous necrosis, acute inflammation, abscess, exudation, and granulation tissue formation in the spinal tuberculosis group were all significantly increased relative to the control tuberculosis group. Compared to the control tuberculosis group, the incidences of resistance to rifampicin (RFP) + isoniazid (INH) + streptomycin (STR) and INH + ethambutol (EMB) were lower in the spinal tuberculosis group, while the incidences of resistance to RFP + INH + EMB and RFP + EMB were higher. Moreover, we also found some differences in drug-resistance gene mutations. In conclusion, there are noticeable differences between spinal Mycobacterium tuberculosis and pulmonary tuberculosis in pathological characteristics, drug resistance, and drug resistance gene mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Huang Z, Zhang G, Lyon CJ, Hu TY, Lu S. Outlook for CRISPR-based tuberculosis assays now in their infancy. Front Immunol 2023; 14:1172035. [PMID: 37600797 PMCID: PMC10436990 DOI: 10.3389/fimmu.2023.1172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Tuberculosis (TB) remains a major underdiagnosed public health threat worldwide, being responsible for more than 10 million cases and one million deaths annually. TB diagnosis has become more rapid with the development and adoption of molecular tests, but remains challenging with traditional TB diagnosis, but there has not been a critical review of this area. Here, we systematically review these approaches to assess their diagnostic potential and issues with the development and clinical evaluation of proposed CRISPR-based TB assays. Based on these observations, we propose constructive suggestions to improve sample pretreatment, method development, clinical validation, and accessibility of these assays to streamline future assay development and validation studies.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Hang NTL, Hijikata M, Maeda S, Thuong PH, Huan HV, Hoang NP, Tam DB, Anh PT, Huyen NT, Cuong VC, Kobayashi N, Wakabayashi K, Miyabayashi A, Seto S, Keicho N. Host-pathogen relationship in retreated tuberculosis with major rifampicin resistance-conferring mutations. Front Microbiol 2023; 14:1187390. [PMID: 37469437 PMCID: PMC10352910 DOI: 10.3389/fmicb.2023.1187390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction It is assumed that host defense systems eliminating the pathogen and regulating tissue damage make a strong impact on the outcome of tuberculosis (TB) disease and that these processes are affected by rifampicin (RIF) resistance-conferring mutations of Mycobacterium tuberculosis (Mtb). However, the host responses to the pathogen harboring different mutations have not been studied comprehensively in clinical settings. We analyzed clinico-epidemiological factors and blood transcriptomic signatures associated with major rpoB mutations conferring RIF resistance in a cohort study. Methods Demographic data were collected from 295 active pulmonary TB patients with treatment history in Hanoi, Vietnam. When recruited, drug resistance-conferring mutations and lineage-specific variations were identified using whole-genome sequencing of clinical Mtb isolates. Before starting retreatment, total RNA was extracted from the whole blood of HIV-negative patients infected with Mtb that carried either the rpoB H445Y or rpoB S450L mutation, and the total RNA was subjected to RNA sequencing after age-gender matching. The individual RNA expression levels in the blood sample set were also measured using real-time RT-PCR. Logistic and linear regression models were used to assess possible associations. Results In our cohort, rpoB S450L and rpoB H445Y were major RIF resistance-conferring mutations [32/87 (36.8%) and 15/87 (17.2%), respectively]. H445Y was enriched in the ancient Beijing genotype and was associated with nonsynonymous mutations of Rv1830 that has been reported to regulate antibiotic resilience. H445Y was also more frequently observed in genetically clustered strains and in samples from patients who had received more than one TB treatment episode. According to the RNA sequencing, gene sets involved in the interferon-γ and-α pathways were downregulated in H445Y compared with S450L. The qRT-PCR analysis also confirmed the low expression levels of interferon-inducible genes, including BATF2 and SERPING1, in the H445Y group, particularly in patients with extensive lesions on chest X-ray. Discussion Our study results showed that rpoB mutations as well as Mtb sublineage with additional genetic variants may have significant effects on host response. These findings strengthen the rationale for investigation of host-pathogen interactions to develop countermeasures against epidemics of drug-resistant TB.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | | | | | | | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Pham Thu Anh
- Tuberculosis Network Management Office, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Nguyen Thu Huyen
- NCGM-BMH Medical Collaboration Center, Hanoi, Vietnam
- Department of Health Policy and Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | | | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Chen S, Liu H, Li T, Lai W, Liu L, Xu Y, Qu J. Using Microfluidic Chip and Allele-Specific PCR to Rapidly Identify Drug Resistance-Associated Mutations of Mycobacterium tuberculosis. Infect Drug Resist 2023; 16:4311-4323. [PMID: 37424666 PMCID: PMC10327919 DOI: 10.2147/idr.s410779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Background The currently used conventional susceptibility testing for drug-resistant Mycobacterium tuberculosis (M.TB) is limited due to being time-consuming and having low efficiency. Herein, we propose the use of a microfluidic-based method to rapidly detect drug-resistant gene mutations using Kompetitive Allele-Specific PCR (KASP). Methods A total of 300 clinical samples were collected, and DNA extraction was performed using the "isoChip®" Mycobacterium detection kit. Phenotypic susceptibility testing and Sanger sequencing were performed to sequence the PCR products. Allele-specific primers targeting 37 gene mutation sites were designed, and a microfluidic chip (KASP) was constructed using 112 reaction chambers to simultaneously detect multiple mutations. Chip validation was performed using clinical samples. Results Phenotypic susceptibility of clinical isolates revealed 38 rifampicin (RIF)-resistant, 64 isoniazid (INH)-resistant, 48 streptomycin (SM)-resistant and 23 ethambutol (EMB)-resistant strains, as well as 33 multi-drug-resistant TB (MDR-TB) strains and 20 strains fully resistant to all four drugs. Optimization of the chip-based detection system for drug resistance detection showed satisfactory specificity and maximum fluorescence at a DNA concentration of 1×101 copies/µL. Further analysis revealed that 76.32% of the RIF-resistant strains harbored rpoB gene mutations (sensitivity, 76.32%; specificity 100%), 60.93% of the INH-resistant strains had katG gene mutations (sensitivity, 60.93%; specificity, 100%), 66.66% of the SM-resistant strains carried drug resistance gene mutations (sensitivity, 66.66%; specificity, 99.2%), and 69.56% of the EMB-resistant strains had embB gene mutations (sensitivity, 69.56%; specificity, 100%). Further, the overall agreement between the microfluidic chip and Sanger sequencing was satisfactory, with a turnaround time of the microfluidic chip was approximately 2 hours, much shorter than the conventional DST method. Conclusion The proposed microfluidic-based KASP assay provides a cost-effective and convenient method for detecting mutations associated with drug resistance in M. tuberculosis. It represents a promising alternative to the traditional DST method, with satisfactory sensitivity and specificity and a much shorter turnaround time.
Collapse
Affiliation(s)
- Shan Chen
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| | - Houming Liu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| | - Tianpin Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| | - Wenjie Lai
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| | - Lei Liu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| | - Youchun Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, People’s Republic of China
| |
Collapse
|
34
|
D'Elia JA, Weinrauch LA. Gated Calcium Ion Channel and Mutation Mechanisms in Multidrug-Resistant Tuberculosis. Int J Mol Sci 2023; 24:ijms24119670. [PMID: 37298620 DOI: 10.3390/ijms24119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A wide spectrum of Gram-positive/Gram-negative bacteria has been found resistant to a wide spectrum of antibiotics in the United States of America during the past decade. Drug-resistant tuberculosis is not yet a major threat in North/South America, Europe, and the Middle East. However, the migration of populations in times of drought, famine, and hostilities may increase the global reach of this ancient pathogen. Given an increased spread from China and India to African countries, drug-resistant Mycobacterium tuberculosis has become an emerging topic of concern for Europe and North America. Due to the dangers associated with the spread of pathogens among different populations, the World Health Organization continues to expand healthcare advisories for therapeutic approaches for both stationary and migrating populations. As much of the literature focuses on endemic to pandemic viruses, we remain concerned that other treatable communicable diseases may be ignored. One such disease is multidrug-resistant tuberculosis. We focus on molecular mechanisms that this pathogen relies upon for the development of multidrug resistance via gene mutation and the evolutionary development of new enzyme and calcium channels.
Collapse
Affiliation(s)
- John A D'Elia
- Kidney/Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Larry A Weinrauch
- Kidney/Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Leowattana W, Leowattana P, Leowattana T. Tuberculosis of the spine. World J Orthop 2023; 14:275-293. [PMID: 37304201 PMCID: PMC10251269 DOI: 10.5312/wjo.v14.i5.275] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Pott's spine, commonly known as spinal tuberculosis (TB), is an extrapulmonary form of TB caused by Mycobacterium TB. Pott's paraplegia occurs when the spine is involved. Spinal TB is usually caused by the hematogenous spread of infection from a central focus, which can be in the lungs or another location. Spinal TB is distinguished by intervertebral disc involvement caused by the same segmental arterial supply, which can result in severe morbidity even after years of approved therapy. Neurological impairments and spine deformities are caused by progressive damage to the anterior vertebral body. The clinical, radiographic, microbiological, and histological data are used to make the diagnosis of spinal TB. In Pott's spine, combination multidrug antitubercular therapy is the basis of treatment. The recent appearance of multidrug-resistant/extremely drug-resistant TB and the growth of human immunodeficiency virus infection have presented significant challenges in the battle against TB infection. Patients who come with significant kyphosis or neurological impairments are the only ones who require surgical care. Debridement, fusion stabilization, and correction of spinal deformity are the cornerstones of surgical treatment. Clinical results for the treatment of spinal TB are generally quite good with adequate and prompt care.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakarinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
36
|
El-Azazy M, El-Shafie AS, Al-Mulla R, Hassan SS, Nimir HI. Enhanced adsorptive removal of rifampicin and tigecycline from single system using nano-ceria decorated biochar of mango seed kernel. Heliyon 2023; 9:e15802. [PMID: 37180896 PMCID: PMC10172925 DOI: 10.1016/j.heliyon.2023.e15802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Pharmaceutically active compounds (PhACs) represent an emerging class of contaminants. With a potential to negatively impact human health and the ecosystem, existence of pharmaceuticals in the aquatic systems is becoming a worrying concern. Antibiotics is a major class of PhACs and their existence in wastewater signifies a health risk on the long run. With the purpose of competently removing antibiotics from wastewater, cost-effective, and copiously available waste-derived adsorbents were structured. In this study, mango seeds kernel (MSK), both as a pristine biochar (Py-MSK) and as a nano-ceria-laden (Ce-Py-MSK) were applied for the remediation of rifampicin (RIFM) and tigecycline (TIGC). To save time and resources, adsorption experiments were managed using a multivariate-based scheme executing the fractional factorial design (FrFD). Percentage removal (%R) of both antibiotics was exploited in terms of four variables: pH, adsorbent dosage, initial drug concentration, and contact time. Preliminary experiments showed that Ce-Py-MSK has higher adsorption efficiency for both RIFM and TIGC compared to Py-MSK. The %R was 92.36% for RIFM compared to 90.13% for TIGC. With the purpose of comprehending the adsorption process, structural elucidation of both sorbents was performed using FT-IR, SEM, TEM, EDX, and XRD analyses which confirmed the decoration of the adsorbent surface with the nano-ceria. BET analysis revealed that Ce-Py-MSK has a higher surface area (33.83 m2/g) contrasted to the Py-MSK (24.72 m2/g). Isotherm parameters revealed that Freundlich model best fit Ce-Py-MSK-drug interactions. A maximum adsorption capacity (qm) of 102.25 and 49.28 mg/g was attained for RIFM and TIGC, respectively. Adsorption kinetics for both drugs conformed well with both pseudo-second order (PSO) and Elovich models. This study, therefore, has established the suitability of Ce-Py-MSK as a green, sustainable, cost-effective, selective, and efficient adsorbent for the treatment of pharmaceutical wastewater.
Collapse
|
37
|
Gaglani P, Dwivedi M, Upadhyay TK, Kaushal RS, Ahmad I, Saeed M. A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Front Cell Infect Microbiol 2023; 13:1152269. [PMID: 37153159 PMCID: PMC10155705 DOI: 10.3389/fcimb.2023.1152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB), caused by the bacillus M. tuberculosis, is one of the deadliest infectious illnesses of our day, along with HIV and malaria.Chemotherapy, the cornerstone of TB control efforts, is jeopardized by the advent of M. tuberculosis strains resistant to many, if not all, of the existing medications.Isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are used to treat drug-susceptible TB for two months, followed by four months of INH and RIF, but chemotherapy with potentially harmful side effects is sometimes needed to treat multidrug-resistant (MDR) TB for up to two years. Chemotherapy might be greatly shortened by drugs that kill M. tuberculosis more quickly while simultaneously limiting the emergence of drug resistance.Regardless of their intended target, bactericidal medicines commonly kill pathogenic bacteria (gram-negative and gram-positive) by producing hydroxyl radicals via the Fenton reaction.Researchers have concentrated on vitamins with bactericidal properties to address the rising cases globally and have discovered that these vitamins are effective when given along with first-line drugs. The presence of elevated iron content, reactive oxygen species (ROS) generation, and DNA damage all contributed to VC's sterilizing action on M. tb in vitro. Moreover, it has a pleiotropic effect on a variety of biological processes such as detoxification, protein folding - chaperons, cell wall processes, information pathways, regulatory, virulence, metabolism etc.In this review report, the authors extensively discussed the effects of VC on M. tb., such as the generation of free radicals and bactericidal mechanisms with existing treatments, and their further drug development based on ROS production.
Collapse
Affiliation(s)
- Pratikkumar Gaglani
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
38
|
Azırak S, Özgöçmen M. Linalool prevents kidney damage by inhibiting rifampicin-induced oxidative stress and apoptosis. Tissue Cell 2023; 82:102097. [PMID: 37104973 DOI: 10.1016/j.tice.2023.102097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Today, kidney diseases are increasing day by day and life quality is decreasing. In hospitalized patients of all ages, acute kidney injury (AKI) is commonly observed and associated with high rates of morbidity and mortality. Rifampicin (RF) or rifampin is an antibiotic drug from the rifamycin group with a bactericidal effect. RF causes acute kidney injury, often anemia, thrombocytopenia, liver damage and side effect such as cell death. RF causes tissue damage by means of oxidative stress and apoptosis. Thus, in this study, it was examined whether linalool (LN) which had antinociceptive, antimicrobial, antioxidant and anti-inflammatory effects, was beneficial for kidney damage in order to eliminate the side effects of RF. NGAL mRNA, creatinine (Cr), blood urea nitrogen (BUN), Caspase 9 (CAS-9) and nuclear factor-κB (NF-κB) levels increased in the group treated with RF compared to the control group, while the levels of albumin, uric acid and total protein were decreased in the RF-treated group. NGAL mRNA, BUN, Cr, CAS-9 and NF-κB levels decreased significantly in RF+LN administered rats, while it was observed that there was an increase in the levels of albumin, uric acid and total protein. From the results obtained, it was observed that LN was determined to be very effective in preventing tissue damage in kidneys caused by oxidative stress by RF.
Collapse
Affiliation(s)
- Sebile Azırak
- Vocational School of Health Services, University of Adıyaman, Adıyaman, Turkey.
| | - Meltem Özgöçmen
- Suleyman Demirel University, Faculty of Medicine, Department of Histology and Embryology, Isparta, Turkey
| |
Collapse
|
39
|
Wu X, Liang R, Xiao Y, Liu H, Zhang Y, Jiang Y, Liu M, Tang J, Wang W, Li W, Hu L, Wang A, Yu F, Xia H. Application of targeted next generation sequencing technology in the diagnosis of Mycobacterium Tuberculosis and first line drugs resistance directly from cell-free DNA of bronchoalveolar lavage fluid. J Infect 2023; 86:399-401. [PMID: 36706961 DOI: 10.1016/j.jinf.2023.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaocui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruobing Liang
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Yanqun Xiao
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Huan Liu
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Ye Zhang
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Yue Jiang
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Mengdi Liu
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Jianzhong Tang
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Wei Wang
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Wei Li
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Long Hu
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China
| | - Aihua Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Han Xia
- Department of Scientific Affaires, Hugobiotech Co., Ltd., Beijing, China.
| |
Collapse
|
40
|
Augustin L, Agarwal N. Designing a Cas9/gRNA-assisted quantitative Real-Time PCR (CARP) assay for identification of point mutations leading to rifampicin resistance in the human pathogen Mycobacterium tuberculosis. Gene 2023; 857:147173. [PMID: 36627091 DOI: 10.1016/j.gene.2023.147173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
A simple, rapid and low-cost diagnostic test, which can detect both the drug-sensitive and the drug-resistant tuberculosis (TB) cases is the need of the hour. Here, we developed a Cas9/gRNA-assisted quantitative Real-Time PCR (qRT-PCR) (CARP) assay to detect single nucleotide mutations causing drug resistance in the TB pathogen, Mycobacterium tuberculosis (Mtb). Guide RNAs (gRNAs) were designed against S531 and H526 positions in the rifampicin (RIF)-resistance-determining region (RRDR) of the Mtb rpoB gene that exhibit frequent mutations in the RR clinical isolates of Mtb. Conditions were optimised for in vitro Cas9 cleavage such that single nucleotide changes at these positions can be recognised by Cas9/gRNA complex with high sensitivity and 100% specificity. Further estimation of Cas9/gRNA-based cleavage of target DNA by qRT-PCR led to rapid detection of drug-resistant sequences. The newly designed CARP assay holds a great deal of promise in the diagnosis and prognosis of patients suffering from TB, in a cost-effective manner.
Collapse
Affiliation(s)
- Linus Augustin
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India.
| |
Collapse
|
41
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
42
|
Guan Z, Han X, Huang W, Wang X, Wang H, Fan Y. Construction and application of a heterogeneous quality control library for the Xpert MTB/RIF assay in tuberculosis diagnosis. Front Cell Infect Microbiol 2023; 13:1128337. [PMID: 37009507 PMCID: PMC10063913 DOI: 10.3389/fcimb.2023.1128337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Proficiency testing based on quality control materials is an important component of the quality assurance system for detection methods. However, in the detection of infectious diseases, it is a challenge to use quality control materials derived from clinical samples or pathogens owing to their infectious nature. The Xpert MTB/RIF assay, endorsed by the World Health Organization, is one of the most widely implemented assays in the detection of Mycobacterium tuberculosis along with rifampicin resistance and its heterogeneity. Clinical isolates are typically used as quality controls for this assay, leading to concerns about biosafety, constrained target sequence polymorphisms, and time-consuming preparation. In this study, a heterogeneous quality control library for the Xpert MTB/RIF assay was constructed based on DNA synthesis and site-directed mutation, which provides sufficient rifampicin resistance polymorphisms, enabling monitoring all five probes of Xpert MTB/RIF and its combinations. Escherichia coli and Bacillus subtilis were used as heterogeneous hosts rather than the pathogen itself to eliminate biosafety risks; thus, preparation does not require a biosafety level III laboratory and the production time is reduced from a few months to a few days. The panel was stable for more than 15 months stored at 4°C and could be distributed at room temperature. All 11 laboratories in Shanghai participating in a pilot survey identified the specimens with corresponding probe patterns, and discordant results highlighted inappropriate operations in the process. Collectively, we show, for the first time, that this library, based on heterogeneous hosts, is an appropriate alternative for M. tuberculosis detection.
Collapse
Affiliation(s)
- Zehao Guan
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Xuefei Han
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Weigang Huang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Xueliang Wang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Hualiang Wang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
- Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Yun Fan
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
- *Correspondence: Yun Fan,
| |
Collapse
|
43
|
Wang S, Hao J, Yang J, Zhang Q, Li A. The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture. J Microbiol Biotechnol 2023; 33:167-179. [PMID: 36734130 PMCID: PMC9998210 DOI: 10.4014/jmb.2210.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jicheng Yang
- Dalian Ocean University, Dalian 116023, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
44
|
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int J Mol Sci 2023; 24:ijms24043313. [PMID: 36834726 PMCID: PMC9965755 DOI: 10.3390/ijms24043313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural-dynamical attributes that may be essential for the protein's catalytic functions, particularly at the βfork loop 2, β'zinc-binding domain, the β' trigger loop and β'jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.
Collapse
|
45
|
Su F, Cao L, Ren X, Hu J, Tavengana G, Wu H, Zhou Y, Fu Y, Jiang M, Wen Y. The mutation rate of rpoB gene showed an upward trend with the increase of MIRU10, MIRU39 and QUB4156 repetitive number. BMC Genomics 2023; 24:26. [PMID: 36646991 PMCID: PMC9843906 DOI: 10.1186/s12864-023-09120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) is a frequently used typing method for identifying the Beijing genotype of Mycobacterium tuberculosis (Mtb), which is easily transformed into rifampicin (RIF) resistance. The RIF resistance of Mtb is considered to be highly related with the mutation of rpoB gene. Therefore, this study aimed to analyze the relationship between the repetitive number of MIRU loci and the mutation of rpoB gene. METHODS An open-source whole-genome sequencing data of Mtb was used to detect the mutation of rpoB gene and the repetitive number of MIRU loci by bioinformatics methods. Cochran-Armitage analysis was performed to analyze the trend of the rpoB gene mutation rate and the repetitive number of MIRU loci. RESULTS Among 357 rifampicin-resistant tuberculosis (RR-TB), 304 strains with mutated rpoB genes were detected, and 6 of 67 rifampicin susceptible strains were detected mutations. The rpoB gene mutational rate showed an upward trend with the increase of MIRU10, MIRU39, QUB4156 and MIRU16 repetitive number, but only the repetitive number of MIRU10, MRIU39 and QUB4156 were risk factors for rpoB gene mutation. The Hunter-Gaston discriminatory index (HGDI) of MIRU10 (0.65) and QUB4156 (0.62) was high in the overall sample, while MIRU39 (0.39) and MIRU16 (0.43) showed a moderate discriminatory Power. CONCLUSION The mutation rate of rpoB gene increases with the addition of repetitive numbers of MIRU10, QUB4156 and MIRU39 loci.
Collapse
Affiliation(s)
- Fan Su
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Lei Cao
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Xia Ren
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Jian Hu
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Grace Tavengana
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Huan Wu
- grid.443626.10000 0004 1798 4069School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui Province China
| | - Yumei Zhou
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Yuhan Fu
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Mingfei Jiang
- grid.443626.10000 0004 1798 4069School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui Province China
| | - Yufeng Wen
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| |
Collapse
|
46
|
Inbaraj LR, Daniel J, Rajendran P, Bhaskar A, Srinivasalu VA, Narayanan MKS, Shewade HD, Kirubakaran R, Scandrett K, Malaisamy M, Takwoingi Y, Padmapriyadarsini C. Truenat MTB assays for pulmonary tuberculosis and rifampicin resistance in adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015543. [PMCID: PMC9837843 DOI: 10.1002/14651858.cd015543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This is a protocol for a Cochrane Review (diagnostic). The objectives are as follows: To determine the diagnostic accuracy of Truenat assays (MTB, MTB Plus, and MTB RIF Dx) for detecting pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis.
Collapse
Affiliation(s)
| | - Leeberk Raja Inbaraj
- Department of Clinical ResearchICMR – National Institute for Research in TuberculosisChennaiIndia
| | - Jefferson Daniel
- Department of Pulmonary MedicineChristian Medical CollegeVelloreIndia
| | - Priya Rajendran
- Department of BacteriologyICMR – National Institute for Research in TuberculosisChennaiIndia
| | - Adhin Bhaskar
- Department of BiostatisticsICMR – National Institute for Research in TuberculosisChennaiIndia
| | - Vignes Anand Srinivasalu
- Department of Clinical ResearchICMR - National Institute for Research in TuberculosisChennaiIndia
| | - Mukesh KS Narayanan
- Department of EpidemiologyICMR – National Institute for Research in TuberculosisChennaiIndia
| | - Hemant D Shewade
- Division of Health System ResearchICMR – National Institute of EpidemiologyChennaiIndia
| | - Richard Kirubakaran
- Prof. BV Moses Center for Evidence-Informed Health Care and Health PolicyChristian Medical CollegeVelloreIndia
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health ResearchUniversity of BirminghamBirminghamUK
| | - Muniyandi Malaisamy
- Department of Health EconomicsICMR – National Institute for Research in TuberculosisChennaiIndia
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health ResearchUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
47
|
Li S, Chen W, Feng M, Liu Y, Wang F. Drug Resistance and Molecular Characteristics of Mycobacterium tuberculosis: A Single Center Experience. J Pers Med 2022; 12:jpm12122088. [PMID: 36556308 PMCID: PMC9783070 DOI: 10.3390/jpm12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the incidence of tuberculosis (TB) and mortality caused by the disease have been decreasing. However, the number of drug-resistant tuberculosis patients is increasing rapidly year by year. Here, a total of 380 Mycobacterium tuberculosis (MTB)-positive formalin-fixed and paraffin-embedded tissue (FFPE) specimens diagnosed in the Department of Pathology of the Eighth Medical Center, Chinese PLA General Hospital were collected. Among 380 cases of MTB, 85 (22.37%) were susceptible to four anti-TB drugs and the remaining 295 (77.63%) were resistant to one or more drugs. The rate of MDR-TB was higher in previously treated cases (52.53%) than in new cases [(36.65%), p < 0.05]. Of previously treated cases, the rate of drug resistance was higher in females than in males (p < 0.05). Among specimens obtained from males, the rate of drug resistance was higher in new cases than in previously treated cases (p < 0.05). Of mutation in drug resistance-related genes, the majority (53/380, 13.95%) of rpoB gene carried the D516V mutation, and 13.42% (51/380) featured mutations in both the katG and inhA genes. Among the total specimens, 18.68% (71/380) carried the 88 M mutation in the rpsL gene, and the embB gene focused on the 306 M2 mutation with a mutation rate of 19.74%. Among the resistant INH, the mutation rate of −15 M was higher in resistance to more than one drug than in monodrug-resistant (p < 0.05). In conclusion, the drug resistance of MTB is still very severe and the timely detection of drug resistance is conducive to the precise treatment of TB.
Collapse
|
48
|
Statistical analysis of 914 Mycobacterium tuberculosis genomes reveals single nucleotide polymorphisms in the ponA1 gene associated with rifampicin resistance. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
49
|
Li MC, Wang XY, Xiao TY, Lin SQ, Liu HC, Qian C, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations are Associated with Variable Levels of Rifampin and Rifabutin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2022; 15:6853-6861. [DOI: 10.2147/idr.s386863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
50
|
Drug Resistance (Dapsone, Rifampicin, Ofloxacin) and Resistance-Related Gene Mutation Features in Leprosy Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232012443. [PMID: 36293307 PMCID: PMC9604410 DOI: 10.3390/ijms232012443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
Dapsone (DDS), Rifampicin (RIF) and Ofloxacin (OFL) are drugs recommended by the World Health Organization (WHO) for the treatment of leprosy. In the context of leprosy, resistance to these drugs occurs mainly due to mutations in the target genes (Folp1, RpoB and GyrA). It is important to monitor antimicrobial resistance in patients with leprosy. Therefore, we performed a meta-analysis of drug resistance in Mycobacterium leprae and the mutational profile of the target genes. In this paper, we limited the study period to May 2022 and searched PubMed, Web of Science (WOS), Scopus, and Embase databases for identified studies. Two independent reviewers extracted the study data. Mutation and drug-resistance rates were estimated in Stata 16.0. The results demonstrated that the drug-resistance rate was 10.18% (95% CI: 7.85–12.51). Subgroup analysis showed the highest resistance rate was in the Western Pacific region (17.05%, 95% CI:1.80 to 13.78), and it was higher after 2009 than before [(11.39%, 7.46–15.33) vs. 6.59% (3.66–9.53)]. We can conclude that the rate among new cases (7.25%, 95% CI: 4.65–9.84) was lower than the relapsed (14.26%, 95 CI%: 9.82–18.71). Mutation rates of Folp1, RpoB and GyrA were 4.40% (95% CI: 3.02–5.77), 3.66% (95% CI: 2.41–4.90) and 1.28% (95% CI: 0.87–1.71) respectively, while the rate for polygenes mutation was 1.73% (0.83–2.63). For further analysis, we used 368 drug-resistant strains as research subjects and found that codons (Ser, Pro, Ala) on RpoB, Folp1 and GyrA are the most common mutation sites in the determining region (DRDR). In addition, the most common substitution patterns of Folp1, RpoB, and GyrA are Pro→Leu, Ser→Leu, and Ala→Val. This study found that a higher proportion of patients has developed resistance to these drugs, and the rate has increased since 2009, which continue to pose a challenge to clinicians. In addition, the amino acid alterations in the sequence of the DRDR regions and the substitution patterns mentioned in the study also provide new ideas for clinical treatment options.
Collapse
|