1
|
Gebbia M, Zimmerman D, Jiang R, Nguyen M, Weile J, Li R, Gavac M, Kishore N, Sun S, Boonen RA, Hamilton R, Dines JN, Wahl A, Reuter J, Johnson B, Fowler DM, Couch FJ, van Attikum H, Roth FP. A missense variant effect map for the human tumor-suppressor protein CHK2. Am J Hum Genet 2024; 111:2675-2692. [PMID: 39642869 PMCID: PMC11639082 DOI: 10.1016/j.ajhg.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024] Open
Abstract
The tumor suppressor CHEK2 encodes the serine/threonine protein kinase CHK2 which, upon DNA damage, is important for pausing the cell cycle, initiating DNA repair, and inducing apoptosis. CHK2 phosphorylation of the tumor suppressor BRCA1 is also important for mitotic spindle assembly and chromosomal stability. Consistent with its cell-cycle checkpoint role, both germline and somatic variants in CHEK2 have been linked to breast and other cancers. Over 90% of clinical germline CHEK2 missense variants are classified as variants of uncertain significance, complicating diagnosis of CHK2-dependent cancer. We therefore sought to test the functional impact of all possible missense variants in CHK2. Using a scalable multiplexed assay based on the ability of human CHK2 to complement DNA sensitivity of Saccharomyces cerevisiae cells lacking the CHEK2 ortholog, RAD53, we generated a systematic "missense variant effect map" for CHEK2 missense variation. The map reflects known biochemical features of CHK2 while offering new biological insights. It also provides strong evidence toward pathogenicity for some clinical missense variants and supporting evidence toward benignity for others. Overall, this comprehensive missense variant effect map contributes to understanding of both known and yet-to-be-observed CHK2 variants.
Collapse
Affiliation(s)
- Marinella Gebbia
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Daniel Zimmerman
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Rosanna Jiang
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Maria Nguyen
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Jochen Weile
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Roujia Li
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Michelle Gavac
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Nishka Kishore
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Song Sun
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Rick A Boonen
- Leiden University Medical Center, Leiden, the Netherlands
| | - Rayna Hamilton
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jennifer N Dines
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | - Frederick P Roth
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Li X. Based proteomics analyses reveal response mechanisms of Apis mellifera (Hymenoptera: Apidae) against the heat stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 39600210 PMCID: PMC11599371 DOI: 10.1093/jisesa/iead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2024]
Abstract
Heat stress can significantly affect the survival, metabolism, and reproduction of honeybees. It is important to understand the proteomic changes of honeybees under heat stress to understand the molecular mechanism behind heat resistance. However, the proteomic changes of honeybees under heat stress are poorly understood. We analyzed the proteomic changes of Apis mellifera Ligustica (Hymenoptera: Apidae) under heat stress using mass spectrometry-based proteomics with TMT (Tandem mass tags) stable isotope labeling. A total of 3,799 proteins were identified, 85 of which differentially abundance between experimental groups. The most significant categories affected by heat stress were associated with transcription and translation processes, metabolism, and stress-resistant pathways. We found that heat stress altered the protein profiles in A. mellifera, with momentous resist proteins being upregulated in heat groups. These results show a proof of molecular details that A. mellifera can respond to heat stress by increasing resist proteins. Our findings add research basis for studying the molecular mechanisms of honeybees' resistance to heat stress. The differentially expressed proteins identified in this study can be used as biomarkers of heat stress in bees, and provide a foundation for future research on honeybees under heat stress. Our in-depth proteomic analysis provides new insights into how bees cope with heat stress.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong Province, China
- Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Lokhandwala J, Matlack JK, Smalley TB, Miner RE, Tran TH, Binning JM. Structural basis for FN3K-mediated protein deglycation. Structure 2024; 32:1711-1724.e5. [PMID: 39173621 PMCID: PMC11455621 DOI: 10.1016/j.str.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Protein glycation is a universal, non-enzymatic modification that occurs when a sugar covalently attaches to a primary amine. These spontaneous modifications may have deleterious or regulatory effects on protein function, and their removal is mediated by the conserved metabolic kinase fructosamine-3-kinase (FN3K). Despite its crucial role in protein repair, we currently have a poor understanding of how FN3K engages or phosphorylates its substrates. By integrating structural biology and biochemistry, we elucidated the catalytic mechanism for FN3K-mediated protein deglycation. Our work identifies key amino acids required for binding and phosphorylating glycated substrates and reveals the molecular basis of an evolutionarily conserved protein repair pathway. Additional structural-functional studies revealed unique structural features of human FN3K as well as differences in the dimerization behavior and regulation of FN3K family members. Our findings improve our understanding of the structure of FN3K and its catalytic mechanism, which opens new avenues for therapeutically targeting FN3K.
Collapse
Affiliation(s)
- Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jenet K Matlack
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tracess B Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Chemical Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Timothy H Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jennifer M Binning
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Zhang N, Wu J, Zheng Q. Chemical proteomics approaches for protein post-translational modification studies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141017. [PMID: 38641087 DOI: 10.1016/j.bbapap.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The diversity and dynamics of proteins play essential roles in maintaining the basic constructions and functions of cells. The abundance of functional proteins is regulated by the transcription and translation processes, while the alternative splicing enables the same gene to generate distinct protein isoforms of different lengths. Beyond the transcriptional and translational regulations, post-translational modifications (PTMs) are able to further expand the diversity and functional scope of proteins. PTMs have been shown to make significant changes in the surface charges, structures, activation states, and interactome of proteins. Due to the functional complexity, highly dynamic nature, and low presence percentage, the study of protein PTMs remains challenging. Here we summarize and discuss the major chemical biology tools and chemical proteomics approaches to enrich and investigate the protein PTM of interest.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
5
|
Wang J, Gao Y, Xiong X, Yan Y, Lou J, Noman M, Li D, Song F. The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum. Front Microbiol 2024; 15:1397688. [PMID: 38690366 PMCID: PMC11058995 DOI: 10.3389/fmicb.2024.1397688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiajing Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Luo L, Sun L, Li S, Liu H, Chen Z, Huang S, Mo Y, Li G. miR-124-3p regulates the involvement of Ptpn1 in testicular development and spermatogenesis in mouse. Gene 2024; 893:147967. [PMID: 37931856 DOI: 10.1016/j.gene.2023.147967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Testicular development and spermatogenesis in mouse are a complex process in which phosphorylation modifications and regulation of genes by non-coding RNAs play an important role. However, protein tyrosine phosphatase, non-receptor type 1 (Ptpn1) is widely expressed in mammalian tissues. In this study, we analyzed the expression of Ptpn1 mRNA and its encoded proteins in testicular tissues of juvenile and adult mice by using experimental techniques such as biological information, real-time fluorescence quantitative PCR (RT-qPCR), western blot (WB), immunofluorescence (IF) and transfection, and further analyzed the possible target-regulatory relationship and regulatory mechanisms of miR-124-3p and Ptpn1. We found that Ptpn1 mRNA and its encoded protein were up-regulated in adult mouse testis compared to juvenile mouse testis. The expression trend of miR-124-3p was opposite to that of Ptpn1. In other cell types, Ptpn1 protein is localized in cell membrane, cytoplasm, endoplasmic reticulum and cytoplasmic vesicles. Immunofluorescence showed that Ptpn1 protein was mainly localized in the cytoplasm of male germ cells and was expressed at a high level in early-stage cells (spermatogonia) and at a low level in late-stage cells (sperm). Transfection results showed that the expression levels of Ptpn1 mRNA and its protein were significantly down-regulated after miR-124-3p overexpression in mouse spermatogonia. Bioinformatics analysis showed that Ptpn1 can involved in biological processes such as protein kinase inactivation through peptidyl tyrosine dephosphorylation. The reduction of miR-124-3p may be a key factor in promoting the high expression of Ptpn1 in testicular tissues of adult mice. Increased miR-124-3p may be a key factor in suppressing Ptpn1 expression in the mouse spermatogonia mimics group. The differential expression results from the negative regulation of miR-124-3p.
Collapse
Affiliation(s)
- Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Lishuang Sun
- Hainan General Hospital, Haikou, Hainan 570311, China; Hainan Affiliated Hospital of Hainan Medical University, Hainan 570311, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Shi Huang
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yinyin Mo
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
7
|
Crawford JJ, Feng J, Brightbill HD, Johnson AR, Wright M, Kolesnikov A, Lee W, Castanedo GM, Do S, Blaquiere N, Staben ST, Chiang PC, Fan PW, Baumgardner M, Wong S, Godemann R, Grabbe A, Wiegel C, Sujatha-Bhaskar S, Hymowitz SG, Liau N, Hsu PL, McEwan PA, Ismaili MHA, Landry ML. Filling a nick in NIK: extending the half-life of a NIK inhibitor through structure-based drug design. Bioorg Med Chem Lett 2023; 89:129277. [PMID: 37105490 DOI: 10.1016/j.bmcl.2023.129277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.
Collapse
Affiliation(s)
- James J Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianwen Feng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans D Brightbill
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam R Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Wright
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicole Blaquiere
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter W Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matt Baumgardner
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Susan Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Godemann
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Alice Grabbe
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Catharina Wiegel
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | | | - Sarah G Hymowitz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Liau
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter L Hsu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul A McEwan
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | | | - Matthew L Landry
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Zhang B, Li X, Jiang Y, Liu J, Zhang J, Ma W. Comparative transcriptome analysis of adult worker bees under short-term heat stress. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
High temperature affects behavior, physiology, survival, and the expression of related genes in adult honeybees. Apis mellifera is the common pollinator in greenhouse and is susceptible to high temperature stress. To further explore the molecular basis related to heat stress, we compared the transcriptome profiles of adult worker bees at 25 and 45°C, and detected the expression patterns of some differentially expressed genes (DEGs) in different tissues by q RT-PCR. Differential expression analysis showed that 277 DEGs were identified, including 167 genes upregulated and 110 genes downregulated after heat stress exposure in adult worker bees. In GO enrichment analysis, DEGs were mostly enriched for protein folding, unfold protein binding, and heme binding terms. Protein processing in endoplasmic reticulum and longevity regulating pathway-multiple species were significantly enriched in KEGG. The expression levels of 16 DEGs were consistent with the transcriptome results. The expression patterns of 9 DEGs in different tissues revealed high levels in the thorax, which was supposed that the thorax may be the most important part in the response to heat stress. This study provided valuable data for exploring the function of heat resistance-related genes.
Collapse
|
9
|
Beltman RJ, Pflum MKH. Kinase-Catalyzed Crosslinking and Immunoprecipitation (K-CLIP) to Explore Kinase-Substrate Pairs. Curr Protoc 2022; 2:e539. [PMID: 36135312 PMCID: PMC9885979 DOI: 10.1002/cpz1.539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kinases are responsible for phosphorylation of proteins and are involved in many biological processes, including cell signaling. Identifying the kinases that phosphorylate specific phosphoproteins is critical to augment the current understanding of cellular events. Herein, we report a general protocol to study the kinases of a target substrate phosphoprotein using kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP). K-CLIP uses a photocrosslinking γ-phosphoryl-modified ATP analog, such as ATP-arylazide, to covalently crosslink substrates to kinases with UV irradiation. Crosslinked kinase-substrate complexes can then be enriched by immunoprecipitating the target substrate phosphoprotein, with bound kinase(s) identified using Western blot or mass spectrometry analysis. K-CLIP is an adaptable chemical tool to investigate and discover kinase-substrate pairs, which will promote characterization of complex phosphorylation-mediated cell biology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Kinase-catalyzed crosslinking of lysates Basic Protocol 2: Kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP).
Collapse
|
10
|
Yang J, Zhao Y, Yang B. Different binding modes of human centrin with peptides of Kar1p, Rad4 and Sfi1. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
12
|
Gromiha MM, Orengo CA, Sowdhamini R, Thornton AJM. Srinivasan (1962-2021) in Bioinformatics and beyond. Bioinformatics 2022; 38:2377-2379. [PMID: 35134112 PMCID: PMC9004639 DOI: 10.1093/bioinformatics/btac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Christine A Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bangalore, Karnataka 560065, India,Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India,Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | | |
Collapse
|
13
|
Weng JH, Aoto PC, Lorenz R, Wu J, Schmidt SH, Manschwetus JT, Kaila-Sharma P, Silletti S, Mathea S, Chatterjee D, Knapp S, Herberg FW, Taylor SS. LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biol 2022; 20:e3001427. [PMID: 35192607 PMCID: PMC8863276 DOI: 10.1371/journal.pbio.3001427] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The 2 major molecular switches in biology, kinases and GTPases, are both contained in the Parkinson disease-related leucine-rich repeat kinase 2 (LRRK2). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations, we generated a comprehensive dynamic allosteric portrait of the C-terminal domains of LRRK2 (LRRK2RCKW). We identified 2 helices that shield the kinase domain and regulate LRRK2 conformation and function. One helix in COR-B (COR-B Helix) tethers the COR-B domain to the αC helix of the kinase domain and faces its activation loop, while the C-terminal helix (Ct-Helix) extends from the WD40 domain and interacts with both kinase lobes. The Ct-Helix and the N-terminus of the COR-B Helix create a "cap" that regulates the N-lobe of the kinase domain. Our analyses reveal allosteric sites for pharmacological intervention and confirm the kinase domain as the central hub for conformational control.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Phillip C. Aoto
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Sven H. Schmidt
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | | | - Pallavi Kaila-Sharma
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego, California, United States of America
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, California, United States of America
| |
Collapse
|
14
|
Stephens C, Hammond-Kosack KE, Kanyuka K. WAKsing plant immunity, waning diseases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:22-37. [PMID: 34520537 DOI: 10.1093/jxb/erab422] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/11/2021] [Indexed: 05/02/2023]
Abstract
With the requirement to breed more productive crop plants in order to feed a growing global population, compounded by increasingly widespread resistance to pesticides exhibited by pathogens, plant immunity is becoming an increasingly important area of research. Of the genes that contribute to disease resistance, the wall-associated receptor-like kinases (WAKs) are increasingly shown to play a major role, in addition to their contribution to plant growth and development or tolerance to abiotic stresses. Being transmembrane proteins, WAKs form a central pillar of a plant cell's ability to monitor and interact with the extracellular environment. Found in both dicots and monocots, WAKs have been implicated in defence against pathogens with diverse lifestyles and contribute to plant immunity in a variety of ways. Whilst some act as cell surface-localized immune receptors recognizing either pathogen- or plant-derived invasion molecules (e.g. effectors or damage-associated molecular patterns, respectively), others promote innate immunity through cell wall modification and strengthening, thus limiting pathogen intrusion. The ability of some WAKs to provide both durable resistance against pathogens and other agronomic benefits makes this gene family important targets in the development of future crop ideotypes and important to a greater understanding of the complexity and robustness of plant immunity.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| |
Collapse
|
15
|
Zhang XH, Chen CH, Li H, Hsiang J, Wu X, Hu W, Horne D, Nam S, Shively J, Rosen ST. Targeting the non-ATP-binding pocket of the MAP kinase p38γ mediates a novel mechanism of cytotoxicity in cutaneous T-cell lymphoma (CTCL). FEBS Lett 2021; 595:2570-2592. [PMID: 34455585 PMCID: PMC8577799 DOI: 10.1002/1873-3468.14186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
We describe here for the first time a lipid‐binding‐domain (LBD) in p38γ mitogen‐activated protein kinase (MAPK) involved in the response of T cells to a newly identified inhibitor, CSH71. We describe how CSH71, which binds to both the LBD and the ATP‐binding pocket of p38γ, is selectively cytotoxic to CTCL Hut78 cells but spares normal healthy peripheral blood mononuclear (PBMC) cells, and propose possible molecular mechanisms for its action. p38γ is a key player in CTCL development, and we expect that the ability to regulate its expression by specifically targeting the lipid‐binding domain will have important clinical relevance. Our findings characterize novel mechanisms of gene regulation in T lymphoma cells and validate the use of computational screening techniques to identify inhibitors for therapeutic development.
Collapse
Affiliation(s)
| | - Chih-Hong Chen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hongzhi Li
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Hsiang
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Weidong Hu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - David Horne
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Sangkil Nam
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Shively
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
16
|
Ahmed HS, Nsrallah AAM, Abdel-Fatah AH, Mahmoud AA, Fikry AA. Association of Thyroid Peroxidase Gene Polymorphisms and Serum Anti- TPO Levels in Egyptian Patients with Autoimmune Hypothyroidism. Endocr Metab Immune Disord Drug Targets 2021; 21:734-742. [PMID: 32669082 DOI: 10.2174/1871530320666200715101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/06/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thyroid peroxidase (TPO) gene mutation leads to a change in enzyme built structure resulting in the anti-TPO autoantibodies production that may cause thyroid destruction. AIM To evaluate the association of three single nucleotide polymorphisms (SNPs) of the TPO gene and anti-TPO levels in Egyptian patients with autoimmune hypothyroidism and correlate them with the disease severity. METHODS Two hundred patients with newly discovered autoimmune hypothyroidism were included in the study (100 with subclinical hypothyroidism and 100 of them with overt hypothyroidism) and 100 healthy individuals as a control group were genotyped by PCR-REFLP. RESULTS The TT genotype of rs2071400 C/T and the T allele were significantly more frequent in patients with subclinical hypothyroidism and overt hypothyroidism than in the control group. But there were no significant differences in the TT genotype and T allele between subclinical and overt hypothyroidism patients. As regards TPO rs732609 A/C polymorphism, the CC genotype of rs732609 A/C and the C allele were significantly increased in patients with subclinical hypothyroidism and overt hypothyroidism than in controls. There was a significant difference in the CC genotype and C allele between subclinical and overt hypothyroidism patients. Concerning TPO rs1126797 C/T polymorphism, there were no significant differences of genotype or allele frequencies between patients groups and control group. CONCLUSION We found an association of rs2071400 C/T and rs732609A/C polymorphisms with autoimmune hypothyroidism and correlated anti-TPO levels with different genotypes in hypothyroid patients. Also, we found an association of rs732609A/C polymorphism with the disease severity.
Collapse
Affiliation(s)
- Hanan S Ahmed
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A M Nsrallah
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Azza H Abdel-Fatah
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Mahmoud
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Fikry
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Martin-Almedina S, Ogmen K, Sackey E, Grigoriadis D, Karapouliou C, Nadarajah N, Ebbing C, Lord J, Mellis R, Kortuem F, Dinulos MB, Polun C, Bale S, Atton G, Robinson A, Reigstad H, Houge G, von der Wense A, Becker WH, Jeffery S, Mortimer PS, Gordon K, Josephs KS, Robart S, Kilby MD, Vallee S, Gorski JL, Hempel M, Berland S, Mansour S, Ostergaard P. Janus-faced EPHB4-associated disorders: novel pathogenic variants and unreported intrafamilial overlapping phenotypes. Genet Med 2021; 23:1315-1324. [PMID: 33864021 PMCID: PMC8257501 DOI: 10.1038/s41436-021-01136-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. Methods Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. Results Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype–genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. Conclusion This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.
Collapse
Affiliation(s)
| | - Kazim Ogmen
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Ege Sackey
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Dionysios Grigoriadis
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Christina Karapouliou
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Noeline Nadarajah
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Cathrine Ebbing
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | | | - Rhiannon Mellis
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Fanny Kortuem
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Mary Beth Dinulos
- Departments of Pediatrics - Section of Genetics and Child Development, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Cassandra Polun
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sherri Bale
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, USA
| | - Giles Atton
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Alexandra Robinson
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Hallvard Reigstad
- Neonatal intensive care unit, Children's Department, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Axel von der Wense
- Department of Neonatology and Paediatric Intensive Care, Altona Children's Hospital, Hamburg, Germany
| | | | - Steve Jeffery
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,Dermatology & Lymphovascular Medicine, St George's Universities NHS Foundation Trust, London, UK
| | - Kristiana Gordon
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,Dermatology & Lymphovascular Medicine, St George's Universities NHS Foundation Trust, London, UK
| | - Katherine S Josephs
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,South West Thames Regional Genetics Service, St George's NHS Foundation Trust, London, UK
| | - Sarah Robart
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mark D Kilby
- The Institute of Metabolism & Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK.,West Midlands Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
| | - Stephanie Vallee
- Departments of Pediatrics - Section of Genetics and Child Development, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jerome L Gorski
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK. .,South West Thames Regional Genetics Service, St George's NHS Foundation Trust, London, UK.
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.
| |
Collapse
|
18
|
Ravikumar A, de Brevern AG, Srinivasan N. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. J Phys Chem B 2021; 125:2597-2606. [PMID: 33666418 DOI: 10.1021/acs.jpcb.1c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on energy associated with free dipeptides have shown that conformers with unfavorable (ϕ,ψ) torsion angles have higher energy compared to conformers with favorable (ϕ,ψ) angles. It is expected that higher energy confers higher dynamics and flexibility to that part of the protein. Here, we explore a potential relationship between conformational strain in a residue due to unfavorable (ϕ,ψ) angles and its flexibility and dynamics in the context of protein structures. We compared flexibility of strained and relaxed residues, which are recognized based on outlier/allowed and favorable (ϕ,ψ) angles respectively, using normal-mode analysis (NMA). We also performed in-depth analysis on flexibility and dynamics at catalytic residues in protein kinases, which exhibit different strain status in different kinase structures using NMA and molecular dynamics simulations. We underline that strain of a residue, as defined by backbone torsion angles, is almost unrelated to the flexibility and dynamics associated with it. Even the overall trend observed among all high-resolution structures in which relaxed residues tend to have slightly higher flexibility than strained residues is counterintuitive. Consequently, we propose that identifying strained residues based on (ϕ,ψ) values is not an effective way to recognize energetic strain in protein structures.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India, 560012
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, Paris F-75739, France.,University of Paris, Paris F-75739, France.,Institut National de la Transfusion Sanguine (INTS), Paris F-75739, France.,Laboratoire d'Excellence GR-Ex, Paris F-75739, France
| | | |
Collapse
|
19
|
Liu L, Li Y, Dai X, Zhu Y, Hao W, Yang X. Effects of synergistic modification with enzymatic hydrolysis and phosphorylation on functional and structural properties of ovalbumin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lili Liu
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Yuanyuan Li
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Xiaoning Dai
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Yang Zhu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Weiming Hao
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Xiaopan Yang
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| |
Collapse
|
20
|
Shaaya M, Fauser J, Zhurikhina A, Conage-Pough JE, Huyot V, Brennan M, Flower CT, Matsche J, Khan S, Natarajan V, Rehman J, Kota P, White FM, Tsygankov D, Karginov AV. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. eLife 2020; 9:e60647. [PMID: 32965214 PMCID: PMC7577742 DOI: 10.7554/elife.60647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
Collapse
Affiliation(s)
- Mark Shaaya
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Jason E Conage-Pough
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Martin Brennan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Cameron T Flower
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Shahzeb Khan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
- Division of Cardiology, Department of Medicine, The University of Illinois, College of MedicineChicagoUnited States
| | - Pradeep Kota
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North CarolinaChapel HillUnited States
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Andrei V Karginov
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
21
|
Maitra A, Sarkar MC, Raheja H, Biswas NK, Chakraborti S, Singh AK, Ghosh S, Sarkar S, Patra S, Mondal RK, Ghosh T, Chatterjee A, Banu H, Majumdar A, Chinnaswamy S, Srinivasan N, Dutta S, Das S. Mutations in SARS-CoV-2 viral RNA identified in Eastern India: Possible implications for the ongoing outbreak in India and impact on viral structure and host susceptibility. J Biosci 2020. [PMID: 32515358 PMCID: PMC7269891 DOI: 10.1007/s12038-020-00046-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Direct massively parallel sequencing of SARS-CoV-2 genome was undertaken from nasopharyngeal and oropharyngeal swab samples of infected individuals in Eastern India. Seven of the isolates belonged to the A2a clade, while one belonged to the B4 clade. Specific mutations, characteristic of the A2a clade, were also detected, which included the P323L in RNA-dependent RNA polymerase and D614G in the Spike glycoprotein. Further, our data revealed emergence of novel subclones harbouring nonsynonymous mutations, viz. G1124V in Spike (S) protein, R203K, and G204R in the nucleocapsid (N) protein. The N protein mutations reside in the SR-rich region involved in viral capsid formation and the S protein mutation is in the S2 domain, which is involved in triggering viral fusion with the host cell membrane. Interesting correlation was observed between these mutations and travel or contact history of COVID-19 positive cases. Consequent alterations of miRNA binding and structure were also predicted for these mutations. More importantly, the possible implications of mutation D614G (in SD domain) and G1124V (in S2 subunit) on the structural stability of S protein have also been discussed. Results report for the first time a bird’s eye view on the accumulation of mutations in SARS-CoV-2 genome in Eastern India.
Collapse
Affiliation(s)
- Arindam Maitra
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Mamta Chawla Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700 010 India
| | - Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560 012 India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560 012 India
| | | | - Shekhar Ghosh
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Subrata Patra
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Rajiv Kumar Mondal
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Trinath Ghosh
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
| | - Ananya Chatterjee
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700 010 India
| | - Hasina Banu
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700 010 India
| | - Agniva Majumdar
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700 010 India
| | | | | | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700 010 India
| | - Saumitra Das
- National Institute of Biomedical Genomics, PO: NSS, Kalyani, 741 251 India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560 012 India
| |
Collapse
|
22
|
Transcriptomic analysis to elucidate the response of honeybees (Hymenoptera: Apidae) to amitraz treatment. PLoS One 2020; 15:e0228933. [PMID: 32143212 PMCID: PMC7060074 DOI: 10.1371/journal.pone.0228933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning, memory, behavior, immunity, and various other physiological processes. Despite this, few studies have explored the molecular mechanisms underlying the action of amitraz on honeybees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L amitraz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381, LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activation, and protein digestion and absorption.
Collapse
|
23
|
Ma W, Li X, Shen J, Du Y, Xu K, Jiang Y. Transcriptomic analysis reveals Apis mellifera adaptations to high temperature and high humidity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109599. [PMID: 31494308 DOI: 10.1016/j.ecoenv.2019.109599] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Temperature and humidity are the most important factors affecting the growth, reproduction, and survival of bees. Apis mellifera are important pollinating bees that are widely used in agricultural systems. However, the higher temperatures and humidity in greenhouses are not conducive to the survival of bees. Although previous research has revealed the behavioral responses and physiological mechanisms of honeybees to adapt to high temperature and humidity, there are few data on the exact molecular mechanisms involved. In our study, we investigated gene expression in A. mellifera under different temperature and humidity treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes. Based on the transcriptomic results, we selected several genes with significant differences in expression, and detected the expression patterns of these genes at different temperatures or humidity or different treatment times by q-RT PCR. In the high temperature treatments, 434 DEGs were identified; in the high humidity treatments, 86 DEGs were identified; in the combined high temperature and humidity treatments, 266 DEGs were identified. Analysis results showed that DEGs were enriched in pathways related to amino acid and fatty acid biosynthesis and metabolism under each treatment. In addition, heat shock proteins, zinc finger proteins, serine/threonine-protein kinases, and antioxidase were differentially expressed between the different treatments. The results of the q-RT PCR showed that the expression levels of these genes increased with increasing temperature and over treatment time. Our findings provide a general expression profile of the adaptive expression of heat-resistance genes responding to high temperature and high humidity in A. mellifera, including the expression patterns of several DEGs. Our data provide a basis for future research on the mechanisms underlying the adaptation of insects to high temperature and humidity.
Collapse
Affiliation(s)
- Weihua Ma
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xinyu Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinshan Shen
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yali Du
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Xu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
24
|
Kanev GK, de Graaf C, de Esch IJP, Leurs R, Würdinger T, Westerman BA, Kooistra AJ. The Landscape of Atypical and Eukaryotic Protein Kinases. Trends Pharmacol Sci 2019; 40:818-832. [PMID: 31677919 DOI: 10.1016/j.tips.2019.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Kinases are attractive anticancer targets due to their central role in the growth, survival, and therapy resistance of tumor cells. This review explores the two primary kinase classes, the eukaryotic protein kinases (ePKs) and the atypical protein kinases (aPKs), and provides a structure-centered comparison of their sequences, structures, hydrophobic spines, mutation and SNP hotspots, and inhibitor interaction patterns. Despite the limited sequence similarity between these two classes, atypical kinases commonly share the archetypical kinase fold but lack conserved eukaryotic kinase motifs and possess altered hydrophobic spines. Furthermore, atypical kinase inhibitors explore only a limited number of binding modes both inside and outside the orthosteric binding site. The distribution of genetic variations in both classes shows multiple ways they can interfere with kinase inhibitor binding. This multilayered review provides a research framework bridging the eukaryotic and atypical kinase classes.
Collapse
Affiliation(s)
- Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Ahiri A, Garmes H, Podlipnik C, Aboulmouhajir A. Insights into evolutionary interaction patterns of the 'Phosphorylation Activation Segment' in kinase. Bioinformation 2019; 15:666-677. [PMID: 31787816 PMCID: PMC6859708 DOI: 10.6026/97320630015666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
We are interested in studying the phosphorylation of the kinase activation loop, distinguishing the passage from the unphosphorylated to the phosphorylated form without allostery. We performed an interaction study to trace the change of interactions between the activation segment and the kinase catalytic core, before and after phosphorylation. Results show that the structural changes are mainly due to the attraction between the phosphate group and guanidine groups of the arginine side chains of RD-pocket, which are constituted mainly of guanidine groups of the catalytic loop, the β9, and the αC helix. This attraction causes propagation of structural variation of the activation segment, principally towards the N-terminal. The structural variations are not made on all the amino acids of the activation segment; they are conditioned by the existence of two beta sheets stabilizing the loop during phosphorylation. The first,β6-β9 sheet is usually present in most of the kinases; the second, β10-β11 is formed due to the interaction between the main chain amino acids of the activation loop and the αEF/αF loop.
Collapse
Affiliation(s)
- Adil Ahiri
- Modeling and Molecular Spectroscopy Team, Faculty of Sciences, University Chouaib Doukkali, El-Jadida, Morroco
| | - Hocine Garmes
- Analytical Chemistry and Environmental Sciences Team, Department of chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morroco
| | - Crtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aziz Aboulmouhajir
- Modeling and Molecular Spectroscopy Team, Faculty of Sciences, University Chouaib Doukkali, El-Jadida, Morroco
- Extraction, Spectroscopy and Valorization Team, Organic synthesis, Extraction and Valorization Laboratory, Faculty of Sciences of Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
26
|
Hao L, Lin G, Chen C, Zhou H, Chen H, Zhou X. Phosphorylated Zein as Biodegradable and Aqueous Nanocarriers for Pesticides with Sustained-Release and anti-UV Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9989-9999. [PMID: 31430135 DOI: 10.1021/acs.jafc.9b03060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zein's prevalent hydrophobic character is one of the major challenges associated with ineffective utilization as an aqueous nanocarrier for pesticides. Herein, we report an effective approach to hydrophilic modification of zein by phosphorylation using nontoxic sodium tripolyphosphate (STP), thereby improving the water-solubility, foliage wettability, and adhesion ability of zein as a nanocarrier for sustained release of pesticides. The procedure relied on zein grafted with STP via N- and O- phosphate bonds and encapsulation of avermectin (AVM) as a hydrophobic model drug using phosphorylated zein (P-Zein), which achieved pH sensitivity to controlled release of AVM in various applicable environments. The chemical interaction between zein and STP was confirmed by Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimetric. Scanning electron microscopy, dynamic light scattering, and zeta potential technique were applied to investigate their structural characteristics and stability, from which it was found that AVM encapsulated in P-Zein (AVM@P-Zein) formed uniform nanoparticles with average sizes in the range of 174-278 nm under different conditions, and had an excellent stability in aqueous solution. Besides, AVM@P-Zein facilitated the wettability on the foliage surface evidenced from contact angle values owing to the amphiphilic character after phosphorylation as well as enhanced the adhesion ability between liquid and leaf, restricting the pesticide runoff. Ultraviolet-visible spectroscopy was employed to explore the anti-UV property and encapsulation as well as release behavior, which revealed that the presence of P-Zein like a shell protects AVM from UV photolysis with encapsulation efficiency of approximately 81.52%, and the release of AVM from P-Zein showed pH-responsive behavior ascribed to protonation and deprotonation of phosphate under various pH conditions fitting to Elovich kinetic model, achieving the relatively more rapid release under acidic conditions. More importantly, AVM@P-Zein retained the toxicity for insecticidal effect.
Collapse
Affiliation(s)
- Li Hao
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Guanquan Lin
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Chuangyu Chen
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Hongjun Zhou
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Huayao Chen
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| |
Collapse
|
27
|
Ahrari S, Mogharrab N, Navapour L. Structure and dynamics of inactive and active MARK4: conformational switching through the activation process. J Biomol Struct Dyn 2019; 38:2468-2481. [DOI: 10.1080/07391102.2019.1655479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sajjad Ahrari
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
28
|
Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles. Int J Biol Macromol 2019; 136:653-660. [DOI: 10.1016/j.ijbiomac.2019.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022]
|
29
|
Ahuja LG, Aoto PC, Kornev AP, Veglia G, Taylor SS. Dynamic allostery-based molecular workings of kinase:peptide complexes. Proc Natl Acad Sci U S A 2019; 116:15052-15061. [PMID: 31285328 PMCID: PMC6660753 DOI: 10.1073/pnas.1900163116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.
Collapse
Affiliation(s)
- Lalima G Ahuja
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
| | - Phillip C Aoto
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Alexandr P Kornev
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Susan S Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
30
|
Das T, Kim EE, Song EJ. Phosphorylation of USP15 and USP4 Regulates Localization and Spliceosomal Deubiquitination. J Mol Biol 2019; 431:3900-3912. [PMID: 31330151 DOI: 10.1016/j.jmb.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Deubiquitinating enzymes have key roles in diverse cellular processes whose enzymatic activities are regulated by different mechanisms including post-translational modification. Here, we show that USP15 is phosphorylated, and its localization and activity are dependent on the phosphorylation status. Nuclear-cytoplasmic fractionation and mass spectrometric analysis revealed that Thr149 and Thr219 of human USP15, which is conserved among different species, are phosphorylated in the cytoplasm. The phosphorylation status of USP15 at these two positions alters the interaction with its partner protein SART3, consequently leading to its nuclear localization and deubiquitinating activity toward the substrate PRP31. Treatment of cells with purvalanol A, a cyclin-dependent kinase inhibitor, results in nuclear translocation of USP15. USP4, another deubiquitinating enzyme with a high sequence homology and domain structure as USP15, also showed purvalanol A-dependent changes in activity and localization. Collectively, our data suggest that modifications of USP15 and USP4 by phosphorylation are important for the regulation of their localization required for cellular function in the spliceosome.
Collapse
Affiliation(s)
- Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea 03760.
| |
Collapse
|
31
|
Craveur P, Narwani TJ, Rebehmed J, de Brevern AG. Investigation of the impact of PTMs on the protein backbone conformation. Amino Acids 2019; 51:1065-1079. [DOI: 10.1007/s00726-019-02747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
32
|
Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9218903. [PMID: 30915365 PMCID: PMC6409061 DOI: 10.1155/2019/9218903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 11/17/2022]
Abstract
Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity.
Collapse
|
33
|
Mou S, Gao F, Shen L, Yang S, He W, Cheng W, Wu Y, He S. CaLRR-RLK1, a novel RD receptor-like kinase from Capsicum annuum and transcriptionally activated by CaHDZ27, act as positive regulator in Ralstonia solanacearum resistance. BMC PLANT BIOLOGY 2019; 19:28. [PMID: 30654746 PMCID: PMC6337819 DOI: 10.1186/s12870-018-1609-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases in pepper worldwide, however, the molecular mechanism underlying pepper resistance to bacterial wilt remains poorly understood. RESULTS Herein, a novel RD leucine-rich repeat receptor-like kinase, CaLRR-RLK1, was functionally characterized in immunity against R. solanacearum. CaLRR-RLK1 was targeted exclusively to plasma membrane and was up-regulated by R. solanacearum inoculation (RSI) as well as by the exogenous application of salicylic acid (SA), methyl jasmonate (MeJA) or ethephon (ETH). The silencing of CaLRR-RLK1 led to enhanced susceptibility of pepper plants to RSI, accompanied by down-regulation of immunity-related genes including CaACO1, CaHIR1, CaPR4 and CaPO2. In contrast, transient overexpression of CaLRR-RLK1 triggered hypersensitive response (HR)-like cell death and H2O2 accumulation in pepper leaves, manifested by darker trypan blue and DAB staining respectively. In addition, the ectopic overexpression of CaLRR-RLK1 in tobacco plants enhanced resistance R. solanacearum, accompanied with the immunity associated marker genes including NtPR2, NtPR2, NtHSR203 and NtHSR515. Furthermore, it was found that CaHDZ27, a positive regulator in pepper response to RSI in our previous study, transcriptionally activated CaLRR-RLK1 by direct targeting its promoter probably in a CAATTATTG dependent manner. CONCLUSION The study revealed that CaLRR-RLK1 confers pepper resistance to R. solanacearum as the direct targeting of CaHDZ27.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Feng Gao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Wei Cheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| | - Yang Wu
- College of Life Science, Jinggangshan University, Ji’an, Jiangxi 343000 People’s Republic of China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
| |
Collapse
|
34
|
Guan D, Yang F, Xia X, Shi Y, Yang S, Cheng W, He S. CaHSL1 Acts as a Positive Regulator of Pepper Thermotolerance Under High Humidity and Is Transcriptionally Modulated by CaWRKY40. FRONTIERS IN PLANT SCIENCE 2018; 9:1802. [PMID: 30581449 PMCID: PMC6292930 DOI: 10.3389/fpls.2018.01802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
Pepper (Capsicum annuum) is an economically important vegetable and heat stress can severely impair pepper growth, development, and productivity. The molecular mechanisms underlying pepper thermotolerance are therefore important to understand but remain elusive. In the present study, we characterized the function of CaHSL1, encoding a HAESA-LIKE (HSL) receptor-like protein kinase (RLK), during the response of pepper to high temperature and high humidity (HTHH). CaHSL1 exhibits the typical structural features of an arginine-aspartate RLK. Transient overexpression of CaHSL1 in the mesophyll cells of Nicotiana benthamiana showed that CaHSL1 localizes throughout the cell, including the plasma membrane, cytoplasm, and the nucleus. CaHSL1 was significantly upregulated by HTHH or the exogenous application of abscisic acid but not by R. solanacearum inoculation. However, CaHSL1 was downregulated by exogenously applied salicylic acid, methyl jasmonate, or ethephon. Silencing of CaHSL1 by virus-induced gene silencing significantly was reduced tolerance to HTHH and downregulated transcript levels of an associated gene CaHSP24. In contrast, transient overexpression of CaHSL1 enhanced the transcript abundance of CaHSP24 and increased tolerance to HTHH, as manifested by enhanced optimal/maximal photochemical efficiency of photosystem II in the dark (Fv/Fm) and actual photochemical efficiency of photosystem II in the light. In addition, CaWRKY40 targeted the promoter of CaHSL1 and induced transcription during HTHH but not in response to R. solanacearum. All of these results suggest that CaHSL1 is directly modulated at the transcriptional level by CaWRKY40 and functions as a positive regulator in the response of pepper to HTHH.
Collapse
Affiliation(s)
- Deyi Guan
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Cheng
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Blaquiere N, Castanedo GM, Burch JD, Berezhkovskiy LM, Brightbill H, Brown S, Chan C, Chiang PC, Crawford JJ, Dong T, Fan P, Feng J, Ghilardi N, Godemann R, Gogol E, Grabbe A, Hole AJ, Hu B, Hymowitz SG, Alaoui Ismaili MH, Le H, Lee P, Lee W, Lin X, Liu N, McEwan PA, McKenzie B, Silvestre HL, Suto E, Sujatha-Bhaskar S, Wu G, Wu LC, Zhang Y, Zhong Z, Staben ST. Scaffold-Hopping Approach To Discover Potent, Selective, and Efficacious Inhibitors of NF-κB Inducing Kinase. J Med Chem 2018; 61:6801-6813. [PMID: 29940120 DOI: 10.1021/acs.jmedchem.8b00678] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NF-κB-inducing kinase (NIK) is a protein kinase central to the noncanonical NF-κB pathway downstream from multiple TNF receptor family members, including BAFF, which has been associated with B cell survival and maturation, dendritic cell activation, secondary lymphoid organ development, and bone metabolism. We report herein the discovery of lead chemical series of NIK inhibitors that were identified through a scaffold-hopping strategy using structure-based design. Electronic and steric properties of lead compounds were modified to address glutathione conjugation and amide hydrolysis. These highly potent compounds exhibited selective inhibition of LTβR-dependent p52 translocation and transcription of NF-κB2 related genes. Compound 4f is shown to have a favorable pharmacokinetic profile across species and to inhibit BAFF-induced B cell survival in vitro and reduce splenic marginal zone B cells in vivo.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Georgette M Castanedo
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jason D Burch
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Hans Brightbill
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Suzanne Brown
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Connie Chan
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Po-Chang Chiang
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - James J Crawford
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Teresa Dong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Peter Fan
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jianwen Feng
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Nico Ghilardi
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Robert Godemann
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Emily Gogol
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Alice Grabbe
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Alison J Hole
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Baihua Hu
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Sarah G Hymowitz
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Hoa Le
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Patrick Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wyne Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Xingyu Lin
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Ning Liu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Paul A McEwan
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Brent McKenzie
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Eric Suto
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Guosheng Wu
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Lawren C Wu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Yamin Zhang
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Zoe Zhong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Steven T Staben
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
36
|
Lv Z, Huang Y, Ma B, Xiang Z, He N. LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling. PLANT CELL REPORTS 2018; 37:1101-1112. [PMID: 29846768 DOI: 10.1007/s00299-018-2295-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/12/2018] [Indexed: 05/27/2023]
Abstract
Two LysM-containing proteins, namely, MmLYP1 and MmLYK2, were identified in mulberry. These proteins might be involved in chitin signaling. The LysM1 of MmLYK2 is critical for their interactions. Chitin is a major component of fungal cell walls and acts as an elicitor in plant innate immunity. Lysin motif (LysM)-containing proteins are essential for chitin recognition. However, related studies have been rarely reported in woody plants. In this study, in mulberry, the expression of a LysM-containing protein, MmLYP1, was significantly up-regulated after treatment with chitin and pathogenic fungi. In addition, MmLYP1 has an affinity for insoluble chitin polymers. Thus, MmLYP1 might function in chitin signaling. Since MmLYP1 lacks an intracellular domain, additional protein kinases are required for this signaling. An LysM-containing kinase, MmLYK2, was then identified. Expression of the MmLYK2 did not change significantly after chitin treatment, and the affinity of MmLYK2 for insoluble chitin was not high. The structure of MmLYP1 is similar to that of the chitin elicitor-binding proteins in rice and Arabidopsis. However, MmLYK2 has two LysM motifs, while the chitin elicitor receptor kinase 1 proteins in rice and Arabidopsis have one and three LysM motifs, respectively. The LysM1 of MmLYK2 interacted with all four LysM motifs in MmLYP1 and MmLYK2 in yeast. The chimera lacking the LysM1 of MmLYK2 did not interact with MmLYP1 and MmLYK2 in yeast and Nicotiana benthamiana cells. The LysM1 in MmLYK2 is the key motif in the interaction between MmLYP1 and MmLYK2, which may be involved in chitin signaling.
Collapse
Affiliation(s)
- Zhiyuan Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|
37
|
Ma X, Keller B, McDonald BA, Palma-Guerrero J, Wicker T. Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:420-431. [PMID: 29090630 DOI: 10.1094/mpmi-10-17-0245-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The fungus Zymoseptoria tritici causes septoria tritici blotch (STB) on wheat, an important disease globally and the most damaging wheat disease in Europe. Despite the global significance of STB, the molecular basis of wheat defense against Z. tritici is poorly understood. Here, we use a comparative transcriptomic study to investigate how wheat responds to infection by four distinct strains of Z. tritici. We examined the response of wheat across the entire infection cycle, identifying both shared responses to the four strains and strain-specific responses. We found that the early asymptomatic phase is characterized by strong upregulation of genes encoding receptor-like kinases and pathogenesis-related proteins, indicating the onset of a defense response. We also identified genes that were differentially expressed among the four fungal strains, including genes related to defense. Genes involved in senescence were induced during both the asymptomatic phase and at late stages of infection, suggesting manipulation of senescence processes by both the plant and the pathogen. Our findings illustrate the need, when identifying important genes affecting disease resistance in plants, to include multiple pathogen strains.
Collapse
Affiliation(s)
- Xin Ma
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Beat Keller
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Bruce A McDonald
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Javier Palma-Guerrero
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Thomas Wicker
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
38
|
|
39
|
Huang Q, Zhong Q, Mayaka JBA, Ni J, Shen Y. Autophosphorylation and Cross-Phosphorylation of Protein Kinases from the Crenarchaeon Sulfolobus islandicus. Front Microbiol 2017; 8:2173. [PMID: 29163450 PMCID: PMC5682000 DOI: 10.3389/fmicb.2017.02173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
Protein phosphorylation, one of the most important post-translational modifications, regulates almost every cellular process. Although signal transduction by protein phosphorylation is extensively studied in Eukaryotes and Bacteria, the knowledge of this process in archaea is greatly lagging behind, especially for Ser/Thr/Tyr phosphorylation by eukaryotic-like protein kinases (ePKs). So far, only a few studies on archaeal ePKs have been reported, most of which focused on the phosphorylation activities in vitro, but their physiological functions and interacting network are still largely unknown. In this study, we systematically investigated the autophosphorylation and cross-phosphorylation activities of ePKs from Sulfolobus islandicus REY15A using proteins expressed in Escherichia coli or S. islandicus. In vitro kinase assay showed that 7 out of the 11 putative ePKs have autophosphorylation activity. A protein Ser/Thr phosphatase, SiRe_1009, was able to dephosphorylate various autophosphorylated ePKs, confirming that these proteins are Ser/Thr kinases. Two ePKs, SiRe_2030 and SiRe_2056, homologs of typical eukaryotic PKs involved in peptide synthesis in response to various cellular stresses, exhibit highly efficient phosphorylation activities on both themselves and other ePKs. Overexpression of the protein kinases in vivo revealed that elevated level of either SiRe_1531 or SiRe_2056 inhibited the cell growth of S. islandicus cells. Finally, a phosphorylation network of the protein kinases was proposed and their putative physiological roles were discussed.
Collapse
Affiliation(s)
- Qihong Huang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qing Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Joseph B A Mayaka
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
40
|
Chen ESW, Weng JH, Chen YH, Wang SC, Liu XX, Huang WC, Matsui T, Kawano Y, Liao JH, Lim LH, Bessho Y, Huang KF, Wu WJ, Tsai MD. Phospho-Priming Confers Functionally Relevant Specificities for Rad53 Kinase Autophosphorylation. Biochemistry 2017; 56:5112-5124. [PMID: 28858528 DOI: 10.1021/acs.biochem.7b00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.
Collapse
Affiliation(s)
- Eric Sheng-Wen Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Yu-Hou Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Xiao-Xia Liu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University , Menlo Park, California 94025, United States
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Liang-Hin Lim
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
41
|
Huang S, Nie S, Wang S, Liu J, Zhang Y, Wang X. SlBIR3 Negatively Regulates PAMP Responses and Cell Death in Tomato. Int J Mol Sci 2017; 18:ijms18091966. [PMID: 28902164 PMCID: PMC5618615 DOI: 10.3390/ijms18091966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Bri1-associated kinase 1 (BAK1)-interacting receptor-like kinase (BIR) proteins have been shown to play important roles in regulating growth and development, pathogen associated molecular pattern (PAMP)-triggered immunity (PTI) responses, and cell death in the model plant, Arabidopsis thaliana. We identified four BIR family members in tomato (Solanum lycopersicum), including SlBIR3, an ortholog of AtBIR3 from A. thaliana. SlBIR3 is predicted to encode a membrane localized non-arginine-aspartate (non-RD) kinase that, based on protein sequence, does not have autophosphorylation activity but that can be phosphorylated in vivo. We established that SlBIR3 interacts with SlBAK1 and AtBAK1 using yeast two-hybrid assays and co-immunoprecipitation and maltose-binding protein pull down assays. We observed that SlBIR3 overexpression in tomato (cv. micro-tom) and A. thaliana has weak effect on growth and development through brassinosteroid (BR) signaling. SlBIR3 overexpression in A. thaliana suppressed flg22-induced defense responses, but did not affect infection with the bacterial pathogen Pseudomonas syringae (PstDC3000). This result was confirmed using virus-induced gene silencing (VIGS) in tomato in conjunction with PstDC3000 infection. Overexpression of SlBIR3 in tomato (cv. micro-tom) and A. thaliana resulted in enhanced susceptibility to the necrotrophic fungus Botrytis cinerea. In addition, co-silencing SlBIR3 with SlSERK3A or SlSERK3B using VIGS and the tobacco rattle virus (TRV)-RNA2 vector containing fragments of both the SlSERK3 and SlBIR3 genes induced spontaneous cell death, indicating a cooperation between the two proteins in this process. In conclusion, our study revealed that SlBIR3 is the ortholog of AtBIR3 and that it participates in BR, PTI, and cell death signaling pathways.
Collapse
Affiliation(s)
- Shuhua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shuming Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shufen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jianwei Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yanfeng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling 712100, China.
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Abstract
The TRIM family protein was known to play an important role in many cellular processes, including potential antiviral activity, which has attracted lots of attention. In this study, a TRIM47 homolog from common carp (Cyprinus carpio) was cloned and the full length coding DNA sequence (CDS) of this gene was analyzed, results showed that there was a 97% similarity between common carp and zebrafish (Danio rerio), but only 18% similarity with that of human (Homo sapiens) and mouse (Mus musculus). The tissue distribution analysis showed TRIM47 had the highest mRNA level in the brain, a few immune related organs such as liver and kidney also had a relatively high level of TRIM47 expression. SVCV infection decreased TRIM47 mRNA level significantly both in vitro and in vivo, but its expression was not affected by the virus at the protein level. The recombinant plasmid pcDNA4-TRIM47-His was constructed, the subcellular localization in FHM cells showed that TRIM47 uniformly distributed in the cytoplasm at the form of tiny spots, and partially localized in the mitochondria. Overexpression TRIM47 in FHM cells significantly decreased the mRNA level of SVCV-G gene, and it was accompanied with the increasing of IFN1, a member of type I IFN, at the case of SVCV stimulation. In summary, our results had first demonstrated that TRIM47 of the common carp played an important role in viral resistance processes as well as the regulation of IFN signaling pathway.
Collapse
|
43
|
Joshi P, Gupta M, Vishwakarma RA, Kumar A, Bharate SB. (Z)-2-(3-Chlorobenzylidene)-3,4-dihydro-N-(2-methoxyethyl)-3-oxo-2H-benzo[b][1,4]oxazine-6-carboxamide as GSK-3β inhibitor: Identification by virtual screening and its validation in enzyme- and cell-based assay. Chem Biol Drug Des 2017; 89:964-971. [PMID: 27896926 DOI: 10.1111/cbdd.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases including Alzheimer's disease, cancer, and diabetes mellitus. The present study was aimed to discover new scaffolds for GSK-3β inhibition, through protein structure-guided virtual screening approach. With the availability of large number of GSK-3β crystal structures with varying degree of RMSD in protein backbone and RMSF in side chain geometry, herein appropriate crystal structures were selected based on the characteristic ROC curve and percentage enrichment of actives. The validated docking protocol was employed to screen a library of 50,000 small molecules using molecular docking and binding affinity calculations. Based on the GLIDE docking score, Prime MMGB/SA binding affinity, and interaction pattern analysis, the top 50 ligands were selected for GSK-3β inhibition. (Z)-2-(3-chlorobenzylidene)-3,4-dihydro-N-(2-methoxyethyl)-3-oxo-2H-benzo[b][1,4]oxazine-6-carboxamide (F389-0663, 7) was identified as a potent inhibitor of GSK-3β with an IC50 value of 1.6 μm. Further, GSK-3β inhibition activity was then investigated in cell-based assay. The treatment of neuroblastoma N2a cells with 12.5 μm of F389-0663 resulted in the significant increase in GSK-3β Ser9 levels, which is indicative of the GSK-3β inhibitory activity of a compound. The molecular dynamic simulations were carried out to understand the interactions of F389-0663 with GSK-3β protein.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mehak Gupta
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajay Kumar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
44
|
Liu PL, Du L, Huang Y, Gao SM, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 2017; 17:47. [PMID: 28173747 PMCID: PMC5296948 DOI: 10.1186/s12862-017-0891-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. Results We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Conclusions Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0891-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Liang Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Huang
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shu-Min Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
45
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
46
|
Xiong Z, Zhang M, Ma M. Emulsifying properties of ovalbumin: Improvement and mechanism by phosphorylation in the presence of sodium tripolyphosphate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Fliegmann J, Jauneau A, Pichereaux C, Rosenberg C, Gasciolli V, Timmers ACJ, Burlet-Schiltz O, Cullimore J, Bono JJ. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS Lett 2016; 590:1477-87. [PMID: 27129432 DOI: 10.1002/1873-3468.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/24/2023]
Abstract
LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves.
Collapse
Affiliation(s)
- Judith Fliegmann
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Alain Jauneau
- Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France
| | - Carole Pichereaux
- Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France
| | | | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julie Cullimore
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
48
|
Reckel S, Hantschel O. Kinase Regulation in Mycobacterium tuberculosis: Variations on a Theme. Structure 2016; 23:975-6. [PMID: 26039345 DOI: 10.1016/j.str.2015.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Structure, Lisa et al. (2015) examine how the PknG protein kinase of M. tuberculosis efficiently binds and phosphorylates substrates. The work highlights interesting parallels between PknG and eukaryotic protein kinases.
Collapse
Affiliation(s)
- Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
49
|
Parrott DL, Huang L, Fischer AM. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:130-140. [PMID: 26820571 DOI: 10.1016/j.plaphy.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 05/24/2023]
Abstract
Pattern recognition receptors represent a first line of plant defense against pathogens. Comparing the flag leaf transcriptomes of barley (Hordeum vulgare L.) near-isogenic lines varying in the allelic state of a locus controlling senescence, we have previously identified a leucine-rich repeat receptor-like protein kinase gene (LRR-RLK; GenBank accession: AK249842), which was strongly upregulated in leaves of early-as compared to late-senescing germplasm. Bioinformatic analysis indicated that this gene codes for a subfamily XII, non-arginine-aspartate (non-RD) LRR-RLK. Virus-induced gene silencing resulted in a two-fold reduction of transcript levels as compared to controls. Transcriptomic comparison of leaves from untreated plants, from plants treated with virus only without any plant sequences (referred to as 'empty virus' control), and from plants in which AK249842 expression was knocked down identified numerous genes involved in pathogen defense. These genes were strongly induced in 'empty virus' as compared to untreated controls, but their expression was significantly reduced (again compared to 'empty virus' controls) when AK249842 was knocked down, indicating that their expression partially depends on the LRR-RLK investigated here. Expression analysis, using datasets from BarleyBase/PLEXdb, demonstrated that AK249842 transcript levels are heavily influenced by the allelic state of the well-characterized mildew resistance a (Mla) locus, and that the gene is induced after powdery mildew and stem rust infection. Together, our data suggest that AK249842 is a barley pattern recognition receptor with a tentative role in defense against fungal pathogens, setting the stage for its full functional characterization.
Collapse
Affiliation(s)
- David L Parrott
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA.
| |
Collapse
|
50
|
Liu PL, Xie LL, Li PW, Mao JF, Liu H, Gao SM, Shi PH, Gong JQ. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase ( LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda. FRONTIERS IN PLANT SCIENCE 2016; 7:1952. [PMID: 28066499 PMCID: PMC5179525 DOI: 10.3389/fpls.2016.01952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 05/22/2023]
Abstract
Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17-50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Ping-Li Liu
| | - Lu-Lu Xie
- Department of Chinese Cabbage, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Peng-Wei Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Jian-Feng Mao
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Hui Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Shu-Min Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Peng-Hao Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Jun-Qing Gong
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|