1
|
Cronan JE. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation. Proteins 2024; 92:435-448. [PMID: 37997490 PMCID: PMC10932917 DOI: 10.1002/prot.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Yang X, Yuan Z, Cai X, Gui S, Zhou M, Hou Y. The ATP Synthase Subunits FfATPh, FfATP5, and FfATPb Regulate the Development, Pathogenicity, and Fungicide Sensitivity of Fusarium fujikuroi. Int J Mol Sci 2023; 24:13273. [PMID: 37686077 PMCID: PMC10487771 DOI: 10.3390/ijms241713273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
ATP synthase catalyzes the synthesis of ATP by consuming the proton electrochemical gradient, which is essential for maintaining the life activity of organisms. The peripheral stalk belongs to ATP synthase and plays an important supporting role in the structure of ATP synthase, but their regulation in filamentous fungi are not yet known. Here, we characterized the subunits of the peripheral stalk, FfATPh, FfATP5, and FfATPb, and explored their functions on development and pathogenicity of Fusarium Fujikuroi. The FfATPh, FfATP5, and FfATPb deletion mutations (∆FfATPh, ∆FfATP5, and ∆FfATPb) presented deficiencies in vegetative growth, sporulation, and pathogenicity. The sensitivity of ∆FfATPh, ∆FfATP5, and ∆FfATPb to fludioxonil, phenamacril, pyraclostrobine, and fluazinam decreased. In addition, ∆FfATPh exhibited decreased sensitivity to ionic stress and osmotic stress, and ∆FfATPb and ∆FfATP5 were more sensitive to oxidative stress. FfATPh, FfATP5, and FfATPb were located on the mitochondria, and ∆FfATPh, ∆FfATPb, and ∆FfATP5 disrupted mitochondrial location. Furthermore, we demonstrated the interaction among FfATPh, FfATP5, and FfATPb by Bimolecular Fluorescent Complimentary (BiFC) analysis. In conclusion, FfATPh, FfATP5, and FfATPb participated in regulating development, pathogenicity, and sensitivity to fungicides and stress factors in F. fujikuroi.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (Z.Y.); (X.C.); (S.G.); (M.Z.)
| |
Collapse
|
3
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
4
|
Abstract
ATP synthases are macromolecular machines consisting of an ATP-hydrolysis-driven F1 motor and a proton-translocation-driven FO motor. The F1 and FO motors oppose each other’s action on a shared rotor subcomplex and are held stationary relative to each other by a peripheral stalk. Structures of resting mitochondrial ATP synthases revealed a left-handed curvature of the peripheral stalk even though rotation of the rotor, driven by either ATP hydrolysis in F1 or proton translocation through FO, would apply a right-handed bending force to the stalk. We used cryoEM to image yeast mitochondrial ATP synthase under strain during ATP-hydrolysis-driven rotary catalysis, revealing a large deformation of the peripheral stalk. The structures show how the peripheral stalk opposes the bending force and suggests that during ATP synthesis proton translocation causes accumulation of strain in the stalk, which relaxes by driving the relative rotation of the rotor through six sub-steps within F1, leading to catalysis. CryoEM of mitochondrial ATP synthase frozen during rotary catalysis reveals dramatic conformational changes in the peripheral stalk subcomplex, which enable the enzyme’s efficient synthesis of ATP.
Collapse
|
5
|
Reisman BJ, Guo H, Ramsey HE, Wright MT, Reinfeld BI, Ferrell PB, Sulikowski GA, Rathmell WK, Savona MR, Plate L, Rubinstein JL, Bachmann BO. Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nat Chem Biol 2022; 18:360-367. [PMID: 34857958 PMCID: PMC8967781 DOI: 10.1038/s41589-021-00900-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.
Collapse
Affiliation(s)
- Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Hui Guo
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Haley E Ramsey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Artika IM. Current understanding of structure, function and biogenesis of yeast mitochondrial ATP synthase. J Bioenerg Biomembr 2019; 51:315-328. [DOI: 10.1007/s10863-019-09809-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
7
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
8
|
Miranda-Astudillo H, Colina-Tenorio L, Jiménez-Suárez A, Vázquez-Acevedo M, Salin B, Giraud MF, Remacle C, Cardol P, González-Halphen D. Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [PMID: 29540299 DOI: 10.1016/j.bbabio.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico; Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
| | - Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra Jiménez-Suárez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Bénédicte Salin
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Claire Remacle
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
9
|
Guo H, Bueler SA, Rubinstein JL. Atomic model for the dimeric F O region of mitochondrial ATP synthase. Science 2017; 358:936-940. [PMID: 29074581 DOI: 10.1126/science.aao4815] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
Abstract
Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded FO region turns the rotor that drives ATP synthesis in the soluble F1 region. Although crystal structures of the F1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the FO region. Using cryo-electron microscopy, we determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae.
Collapse
Affiliation(s)
- Hui Guo
- Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stephanie A Bueler
- Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - John L Rubinstein
- Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Osanai T, Mikami K, Kitajima M, Urushizaka M, Kawasaki K, Tomisawa T, Itaki C, Noto Y, Magota K, Tomita H. Nutritional regulation of coupling factor 6, a novel vasoactive and proatherogenic peptide. Nutrition 2016; 37:74-78. [PMID: 28359367 DOI: 10.1016/j.nut.2016.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
High sodium, high glucose, and obesity are important risk factors for age-related diseases such as cardiovascular disease (CVDs), stroke, and cancer. Coupling factor 6 (CF6) is released from vascular endothelial cells and functions as a circulating peptide that inhibits prostacyclin and nitric oxide generation by intracellular acidosis. High glucose elevates CF6 by activation of protein kinase C and p38 mitogen-activated protein kinase, whereas CF6 causes type 2 diabetes mellitus, resulting in a high glucose vicious cycle. Low glucose increases inhibitory factor peptide 1, an endogenous inhibitor of CF6. High salt intake increases CF6 through nuclear factor κB signaling, whereas CF6 induces salt-sensitive hypertension and salt-induced congestive heart failure. Oral administration of vitamin C cancels salt-induced increase in CF6, and estrogen replacement leads to the delayed onset of CF6-induced salt-sensitive hypertension and the rescue from cardiac systolic dysfunction. Because CF6 contributes to the onset of CVDs, nutritional regulation of CF6 will shed light on the understanding of preventive strategy and mechanisms for CVDs and a target for therapy.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan.
| | - Kasumi Mikami
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Maiko Kitajima
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Mayumi Urushizaka
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Kumiko Kawasaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Toshiko Tomisawa
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Chieko Itaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Yuka Noto
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Koji Magota
- Daiichi Sankyo Co., Ltd., Biologics Technology Research Laboratories Group 1, Pharmaceutical Technology Division, Gunma, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
11
|
Abstract
The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
Collapse
|
12
|
Benlekbir S, Bueler SA, Rubinstein JL. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol 2012; 19:1356-62. [PMID: 23142977 DOI: 10.1038/nsmb.2422] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 09/21/2012] [Indexed: 11/09/2022]
Abstract
Vacuolar-type ATPases (V-type ATPases) in eukaryotic cells are large membrane protein complexes that acidify various intracellular compartments. The enzymes are regulated by dissociation of the V(1) and V(O) regions of the complex. Here we present the structure of the Saccharomyces cerevisiae V-type ATPase at 11-Å resolution by cryo-EM of protein particles in ice. The structure explains many cross-linking and protein interaction studies. Docking of crystal structures suggests that inhibition of ATPase activity by the dissociated V(1) region involves rearrangement of the N- and C-terminal domains of subunit H and also suggests how this inhibition is triggered upon dissociation. We provide support for this model by demonstrating that mutation of subunit H to increase the rigidity of the linker between its two domains decreases its ability to inhibit ATPase activity.
Collapse
Affiliation(s)
- Samir Benlekbir
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
13
|
Kim LY, Johnson MC, Schmidt‐Krey I. Cryo‐EM in the Study of Membrane Transport Proteins. Compr Physiol 2012; 2:283-93. [DOI: 10.1002/cphy.c110028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
BAKER LINDSAYA, RUBINSTEIN JOHNL. SINGLE PARTICLE ELECTRON MICROSCOPY OF THE MITOCHONDRIAL ATP SYNTHASE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial ATP synthase is a large, membrane-bound protein complex that plays a central role in cellular metabolism. Since the identification of this assembly in micrographs of mitochondrial membranes, electron microscopy has been crucial in elucidating the structure and mechanism of the enzyme. This review addresses the recent use of single particle electron microscopy for structure determination of ATP synthase, including subunit localization, the challenges posed by the protein, and areas in which further work is needed.
Collapse
Affiliation(s)
- LINDSAY A. BAKER
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - JOHN L. RUBINSTEIN
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
15
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
16
|
Schmidt-Krey I, Rubinstein JL. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 2010; 42:107-16. [PMID: 20678942 DOI: 10.1016/j.micron.2010.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 01/08/2023]
Abstract
Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed.
Collapse
Affiliation(s)
- Ingeborg Schmidt-Krey
- Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, 310 Ferst Drive, Rm. A118, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
17
|
Wittig I, Meyer B, Heide H, Steger M, Bleier L, Wumaier Z, Karas M, Schägger H. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1004-11. [PMID: 20188060 DOI: 10.1016/j.bbabio.2010.02.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 12/22/2022]
Abstract
Here we study ATP synthase from human rho0 (rho zero) cells by clear native electrophoresis (CNE or CN-PAGE) and show that ATP synthase is almost fully assembled in spite of the absence of subunits a and A6L. This identifies subunits a and A6L as two of the last subunits to complete the ATP synthase assembly. Minor amounts of dimeric and even tetrameric forms of the large assembly intermediate were preserved under the conditions of CNE, suggesting that it associated further into higher order structures in the mitochondrial membrane. This result was reminiscent to the reduced amounts of dimeric and tetrameric ATP synthase from yeast null mutants of subunits e and g detected by CNE. The dimer/oligomer-stabilizing effects of subunits e/g and a/A6L seem additive in human and yeast cells. The mature IF1 inhibitor was specifically bound to the dimeric/oligomeric forms of ATP synthase and not to the monomer. Conversely, nonprocessed pre-IF1 still containing the mitochondrial targeting sequence was selectively bound to the monomeric assembly intermediate in rho0 cells and not to the dimeric form. This supports previous suggestions that IF1 plays an important role in the dimerization/oligomerization of mammalian ATP synthase and in the regulation of mitochondrial structure and function.
Collapse
Affiliation(s)
- Ilka Wittig
- Molecular Bioenergetics Group, Medical School, Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wagner K, Rehling P, Sanjuán Szklarz LK, Taylor RD, Pfanner N, van der Laan M. Mitochondrial F1Fo-ATP Synthase: The Small Subunits e and g Associate with Monomeric Complexes to Trigger Dimerization. J Mol Biol 2009; 392:855-61. [DOI: 10.1016/j.jmb.2009.07.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
19
|
Osanai T, Magota K, Okumura K. Coupling factor 6 as a novel vasoactive and proatherogenic peptide in vascular endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:205-14. [PMID: 19488738 DOI: 10.1007/s00210-009-0431-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 05/19/2009] [Indexed: 11/30/2022]
Abstract
Coupling factor 6 (CF6) is composed of 76 amino acids and is present in the peripheral stalk of mitochondrial ATP synthase. The generation of CF6 is positively regulated by tumor necrosis factor alpha and shear stress via nuclear factor kappaB, and by high glucose via protein kinase C and p38 mitogen-activated protein kinase. CF6 is released outside of the cells from vascular endothelial cells, and binds to the beta-subunit of the plasma membrane-bound ATP synthase in vascular endothelial cells and leads to intracellular acidosis. CF6 produces vasoconstriction, and the biological active site resides at the C-terminal portion. CF6 suppresses prostacyclin generation via inhibition of cytosolic phospholipase A(2). CF6 also suppresses nitric oxide synthase activity via an increase in asymmetric dimethylarginine and a decrease in platelet/endothelial cell adhesion molecule-1. CF6 induces the gene and protein expression of proatherogenic molecules such as endothelin 2, urokinase type plasminogen activator receptor, estrogen receptor beta, a soluble short form of vascular endothelial growth factor receptor-1, and lectin-like oxidized low-density lipoprotein receptor-1. The plasma level of CF6 is elevated in patients with essential hypertension, diabetes mellitus, end-stage renal disease, acute myocardial infarction, and coronary heart disease. It is likely that CF6 contributes to the pathogenesis of cardiovascular diseases, but further intensive investigation is needed.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki, Japan.
| | | | | |
Collapse
|
20
|
Bueler SA, Rubinstein JL. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Biochemistry 2008; 47:11804-10. [PMID: 18937496 DOI: 10.1021/bi801665x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.
Collapse
Affiliation(s)
- Stephanie A Bueler
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute
| | | |
Collapse
|
21
|
Lau WC, Baker LA, Rubinstein JL. Cryo-EM Structure of the Yeast ATP Synthase. J Mol Biol 2008; 382:1256-64. [DOI: 10.1016/j.jmb.2008.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/28/2008] [Accepted: 08/07/2008] [Indexed: 11/17/2022]
|
22
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
23
|
Wittig I, Velours J, Stuart R, Schägger H. Characterization of domain interfaces in monomeric and dimeric ATP synthase. Mol Cell Proteomics 2008; 7:995-1004. [PMID: 18245802 DOI: 10.1074/mcp.m700465-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We disassembled monomeric and dimeric yeast ATP synthase under mild conditions to identify labile proteins and transiently stable subcomplexes that had not been observed before. Specific removal of subunits alpha, beta, oligomycin sensitivity conferring protein (OSCP), and h disrupted the ATP synthase at the gamma-alpha(3)beta(3) rotor-stator interface. Loss of two F(1)-parts from dimeric ATP synthase led to the isolation of a dimeric subcomplex containing membrane and peripheral stalk proteins thus identifying the membrane/peripheral stalk sectors immediately as the dimerizing parts of ATP synthase. Almost all subunit a was found associated with a ring of 10 c-subunits in two-dimensional blue native/SDS gels. We therefore postulate that c10a1-complex is a stable structure in resting ATP synthase until the entry of protons induces a breaking of interactions and stepwise rotation of the c-ring relative to the a-subunit in the catalytic mechanism. Dimeric subunit a was identified in SDS gels in association with two c10-rings suggesting that a c10a2c10-complex may constitute an important part of the monomer-monomer interface in dimeric ATP synthase that seems to be further tightened by subunits b, i, e, g, and h. In contrast to the monomer-monomer interface, the interface between dimers in higher oligomeric structures remains largely unknown. However, we could show that the natural inhibitor protein Inh1 is not required for oligomerization.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Cluster of Excellence "Macromolecular Complexes", Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
24
|
Goyon V, Fronzes R, Salin B, di-Rago JP, Velours J, Brèthes D. Yeast cells depleted in Atp14p fail to assemble Atp6p within the ATP synthase and exhibit altered mitochondrial cristae morphology. J Biol Chem 2008; 283:9749-58. [PMID: 18252710 DOI: 10.1074/jbc.m800204200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within the yeast mitochondrial ATP synthase, subunit h is a small nuclear encoded protein belonging to the so-called "peripheral stalk" that connects the enzyme catalytic F(1) component to the mitochondrial inner membrane. This study examines the role of subunit h in ATP synthase function and assembly using a regulatable, doxycycline-repressible subunit h gene to overcome the strong instability of the mtDNA previously observed in strains lacking the native subunit h gene. Yeast cells expressing less than 3% of subunit h, but still containing intact mitochondrial genomes, grew poorly on respiratory substrates because of a major impairment of ATP synthesis originating from the ATP synthase, whereas the respiratory chain complexes were not affected. The lack of ATP synthesis in the subunit h-depleted (deltah) mitochondria was attributed to defects in the assembly/stability of the ATP synthase. A main feature of deltah-mitochondria was a very low content (<6%) in the mitochondrially encoded Atp6p subunit, an essential component of the enzyme proton channel, which was in large part because of a slowing down in translation. Interestingly, depletion of subunit h resulted in dramatic changes in mitochondrial cristae morphology, which further supports the existence of a link between the ATP synthase and the folding/biogenesis of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Vanessa Goyon
- Université Victor Segalen Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Centre National de Recherche Scientifique/UMR 5095, 1 Rue Camille Saint-Saëns, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
26
|
Meyer B, Wittig I, Trifilieff E, Karas M, Schägger H. Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics 2007; 6:1690-9. [PMID: 17575325 DOI: 10.1074/mcp.m700097-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine mitochondrial ATP synthase commonly is isolated as a monomeric complex that contains 16 protein subunits and the natural IF(1) inhibitor protein in substoichiometric amounts. Alternatively ATP synthase can be isolated in dimeric and higher oligomeric states using digitonin for membrane solubilization and blue native or clear native electrophoresis for separation of the native mitochondrial complexes. Using blue native electrophoresis we could identify two ATP synthase-associated membrane proteins with masses smaller than 7 kDa and isoelectric points close to 10 that previously had been removed during purification. We show that in the mitochondrial membrane both proteins are almost quantitatively bound to ATP synthase. Both proteins had been identified earlier in a different context, but their association with ATP synthase was unknown. The first one had been named 6.8-kDa mitochondrial proteolipid because it can be isolated by chloroform/methanol extraction from mitochondrial membranes. The second one had been denoted as diabetes-associated protein in insulin-sensitive tissue (DAPIT), which may provide a clue for further functional and clinical investigations.
Collapse
Affiliation(s)
- Björn Meyer
- Institut für Pharmazeutische Chemie, Biozentrum, Centre of Excellence "Macromolecular Complexes," Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
27
|
Dickson VK, Silvester JA, Fearnley IM, Leslie AGW, Walker JE. On the structure of the stator of the mitochondrial ATP synthase. EMBO J 2006; 25:2911-8. [PMID: 16791136 PMCID: PMC1500866 DOI: 10.1038/sj.emboj.7601177] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 11/08/2022] Open
Abstract
The structure of most of the peripheral stalk, or stator, of the F-ATPase from bovine mitochondria, determined at 2.8 A resolution, contains residues 79-183, 3-123 and 5-70 of subunits b, d and F6, respectively. It consists of a continuous curved alpha-helix about 160 A long in the single b-subunit, augmented by the predominantly alpha-helical d- and F6-subunits. The structure occupies most of the peripheral stalk in a low-resolution structure of the F-ATPase. The long helix in subunit b extends from near to the top of the F1 domain to the surface of the membrane domain, and it probably continues unbroken across the membrane. Its uppermost region interacts with the oligomycin sensitivity conferral protein, bound to the N-terminal region of one alpha-subunit in the F1 domain. Various features suggest that the peripheral stalk is probably rigid rather than resembling a flexible rope. It remains unclear whether the transient storage of energy required by the rotary mechanism takes place in the central stalk or in the peripheral stalk or in both domains.
Collapse
Affiliation(s)
| | | | - Ian M Fearnley
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 248011; Fax: +44 1223 213556; E-mail:
| | - John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
- Dunn Human Nutrition Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. Tel.: +44 1223 252701; Fax: +44 1223 252705; E-mail:
| |
Collapse
|
28
|
Fronzes R, Weimann T, Vaillier J, Velours J, Brèthes D. The Peripheral Stalk Participates in the Yeast ATP Synthase Dimerization Independently of e and g Subunits. Biochemistry 2006; 45:6715-23. [PMID: 16716082 DOI: 10.1021/bi0601407] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is now clearly established that dimerization of the F(1)F(o) ATP synthase takes place in the mitochondrial inner membrane. Interestingly, oligomerization of this enzyme seems to be involved in cristae morphogenesis. As they were able to form homodimers, subunits 4, e, and g have been proposed as potential ATP synthase dimerization subunits. In this paper, we provide evidence that subunit h, a peripheral stalk component, is located either at or near the ATP synthase dimerization interface. Subunit h homodimers were formed in mitochondria and were found to be associated to ATP synthase dimers. Moreover, homodimerization of subunit h and of subunit i turned out to be independent of subunits e and g, confirming the existence of an ATP synthase dimer in the mitochondrial inner membrane in the absence of subunits e and g. For the first time, this dimer has been observed by BN-PAGE. Finally, from these results we are now able to update our model for the supramolecular organization of the ATP synthase in the membrane and propose a role for subunits e and g, which stabilize the ATP synthase dimers and are involved in the oligomerization of the complex.
Collapse
Affiliation(s)
- Rémi Fronzes
- Institut de Biochimie et Génétique Cellulaires du Centre National de la Recherche Scientifique, UMR5095, Université Victor Segalen Bordeaux 2, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:286-96. [PMID: 16697972 DOI: 10.1016/j.bbabio.2006.01.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/04/2006] [Indexed: 12/23/2022]
Abstract
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.
Collapse
Affiliation(s)
- John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
30
|
Carrozzo R, Wittig I, Santorelli FM, Bertini E, Hofmann S, Brandt U, Schägger H. Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann Neurol 2005; 59:265-75. [PMID: 16365880 DOI: 10.1002/ana.20729] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE METHODS We describe biochemically and clinically relevant aspects of mitochondrial ATP synthase, the enzyme that supplies most ATP for the cells energy demand. RESULTS Analyzing human Rho zero cells we could identify three subcomplexes of ATP synthase: F1 catalytic domain, F1 domain with bound natural IF1 inhibitor protein, and F1-c subcomplex, an assembly of F1 domain and a ring of F(O)-subunits c. Large amounts of F1 subcomplexes accumulated also in mitochondria of patients with specific mitochondrial disorders. By quantifying the F1 subcomplexes and other oxidative phosphorylation complexes in parallel, we were able to discriminate three classes of defects in mitochondrial biosynthesis, namely, mitochondrial DNA depletion, mitochondrial transfer RNA (tRNA) mutations, and mutations in the mitochondrial ATP6 gene. INTERPRETATION The relatively simple electrophoretic assay used here is a straightforward approach to differentiate between various types of genetic alterations affecting the biosynthesis of oxidative phosphorylation complexes and will be useful to guide molecular genetic diagnostics in the field of mitochondrial neuromuscular disorders.
Collapse
Affiliation(s)
- Rosalba Carrozzo
- Unit of Molecular Medicine, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J Mol Biol 2005; 351:824-38. [PMID: 16045926 DOI: 10.1016/j.jmb.2005.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
The peripheral stalk of ATP synthase holds the alpha3beta3 catalytic subcomplex stationary against the torque of the rotating central stalk. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha-subunits of the F1 subcomplex. Here we present the solution structure of OSCP-NT and an NMR titration study of its interaction with peptides representing N-terminal tails of F1 alpha-subunits. The structure comprises a bundle of six alpha-helices, and its interaction site contains adjoining hydrophobic surfaces of helices 1 and 5; residues in the region 1-8 of the alpha-subunit are essential for the interaction. The OSCP-NT is similar to the N-terminal domain of the delta-subunit from Escherichia coli ATP synthase (delta-NT), except that their surface charges differ (basic and acidic, respectively). As the charges of the adjacent crown regions in their alpha3beta3 complexes are similar, the OSCP-NT and delta-NT probably do not contact the crowns extensively. The N-terminal tails of alpha-subunit tails are probably alpha-helical, and so this interface, which is essential for the rotary mechanism of the enzyme, appears to consist of helix-helix interactions.
Collapse
|
32
|
Current awareness on yeast. Yeast 2005; 22:745-52. [PMID: 16106592 DOI: 10.1002/yea.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|