1
|
Fei R, Zhang H, Zhong S, Xue B, Gao Y, Zhou X. Anti-inflammatory activity of a thermophilic serine protease inhibitor from extremophile Pyrobaculum neutrophilum. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17739516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Serine protease inhibitors (serpins) are a superfamily of proteins involved in many important biological processes, including inflammation. Serpins dysfunction-related diseases are mainly treated by augmentation therapy using serpins purified from human plasma. Pnserpin from hyperthermophilic archaeon Pyrobaculum neutrophilum showed protease inhibition activity and high stability. In this study, we examined the anti-inflammatory activity of Pnserpin using xylene-induced acute inflammatory model of mouse ear swelling and lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages cellular model. The inhibition of mouse ear swelling and the production of pro-inflammatory cytokines in mouse serum or in macrophages cell were used to evaluate the anti-inflammatory effect of Pnserpin. Our results showed that Pnserpin could inhibit the xylene-induced mouse ear swelling and suppress the production of pro-inflammatory cytokines in mouse serum and in LPS-induced RAW264.7 cells. This study indicated that Pnserpin might have anti-inflammatory effect in vivo and in vitro.
Collapse
Affiliation(s)
- Rui Fei
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sheng Zhong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Baigong Xue
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanqi Gao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoli Zhou
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Goulas T, Ksiazek M, Garcia-Ferrer I, Sochaj-Gregorczyk AM, Waligorska I, Wasylewski M, Potempa J, Gomis-Rüth FX. A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome. J Biol Chem 2017; 292:10883-10898. [PMID: 28512127 PMCID: PMC5491774 DOI: 10.1074/jbc.m117.786533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Enduring host-microbiome relationships are based on adaptive strategies within a particular ecological niche. Tannerella forsythia is a dysbiotic member of the human oral microbiome that inhabits periodontal pockets and contributes to chronic periodontitis. To counteract endopeptidases from the host or microbial competitors, T. forsythia possesses a serpin-type proteinase inhibitor called miropin. Although serpins from animals, plants, and viruses have been widely studied, those from prokaryotes have received only limited attention. Here we show that miropin uses the serpin-type suicidal mechanism. We found that, similar to a snap trap, the protein transits from a metastable native form to a relaxed triggered or induced form after cleavage of a reactive-site target bond in an exposed reactive-center loop. The prey peptidase becomes covalently attached to the inhibitor, is dragged 75 Å apart, and is irreversibly inhibited. This coincides with a large conformational rearrangement of miropin, which inserts the segment upstream of the cleavage site as an extra β-strand in a central β-sheet. Standard serpins possess a single target bond and inhibit selected endopeptidases of particular specificity and class. In contrast, miropin uniquely blocked many serine and cysteine endopeptidases of disparate architecture and substrate specificity owing to several potential target bonds within the reactive-center loop and to plasticity in accommodating extra β-strands of variable length. Phylogenetic studies revealed a patchy distribution of bacterial serpins incompatible with a vertical descent model. This finding suggests that miropin was acquired from the host through horizontal gene transfer, perhaps facilitated by the long and intimate association of T. forsythia with the human gingiva.
Collapse
Affiliation(s)
- Theodoros Goulas
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Miroslaw Ksiazek
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Irene Garcia-Ferrer
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Alicja M Sochaj-Gregorczyk
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and
| | - Irena Waligorska
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
| | - Marcin Wasylewski
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain,
| |
Collapse
|
3
|
Zhang H, Fei R, Xue B, Yu S, Zhang Z, Zhong S, Gao Y, Zhou X. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum. Int J Mol Sci 2017; 18:ijms18010113. [PMID: 28067849 PMCID: PMC5297747 DOI: 10.3390/ijms18010113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Rui Fei
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Baigong Xue
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shanshan Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Sheng Zhong
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yuanqi Gao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xiaoli Zhou
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Gaczynska M, Karpowicz P, Stuart CE, Norton MG, Teckman JH, Marszal E, Osmulski PA. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor. PLoS One 2016; 11:e0151902. [PMID: 27008547 PMCID: PMC4805282 DOI: 10.1371/journal.pone.0151902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Przemyslaw Karpowicz
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christine E. Stuart
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Malgorzata G. Norton
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey H. Teckman
- Department of Pediatrics and Biochemistry, Saint Louis University School of Medicine, Cardinal Glennon Children’s Medical Center, St. Louis, Missouri, United States of America
| | - Ewa Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
López-González I, Pérez-Mediavilla A, Zamarbide M, Carmona M, Torrejón Escribano B, Glatzel M, Galliciotti G, Ferrer I. Limited Unfolded Protein Response and Inflammation in Neuroserpinopathy. J Neuropathol Exp Neurol 2016; 75:121-33. [PMID: 26733586 DOI: 10.1093/jnen/nlv011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare disease characterized by the deposition of multiple intracytoplasmic neuronal inclusions that contain mutated neuroserpin. Tg-Syracuse (Tg-Syr) mice express Ser49Pro mutated neuroserpin and develop clinical and neuropathological features of human FENIB. We used 8-, 34-, 45- and 80-week-old Tg-Syr mice to characterize neuroinflammation and the unfolded protein response (UPR) in a neurodegenerative disease in which abnormal protein aggregates accumulate within the endoplasmic reticulum (ER). There were scattered neuroserpin inclusions in Tg-Syr mice at 8 weeks of age; the numbers of neurons involved and the amount of neuroserpin per neuron increased with age throughout the CNS to 80 weeks of age; no similar inclusions were found in wild type (Tg-WT) mice at any age. Increases in numbers of astrocytes and microglia occurred at advanced disease stages. Among 22 markers in 80-week-old Tg-Syr mice, only II1b and II10rb mRNAs in the somatosensory cortex and CxCl10 and Il10rb mRNAs in the olfactory bulb were upregulated when compared with Tg-WT mice indicating a limited relationship between neuroserpin inclusions and inflammatory responses. The changes were accompanied by a transient increase in expression of Xbp1 spliced at 45 weeks and increased ERdJ4 mRNAs at 80 weeks. The sequestration of UPR activators GRP78 and GRP94 in neuroserpin inclusions might explain the limited UPR responses despite the accumulation of neuroserpin in the ER in this FENIB mouse model.
Collapse
|
6
|
Caccia S, Ricagno S, Bolognesi M. Molecular bases of neuroserpin function and pathology. Biomol Concepts 2015; 1:117-30. [PMID: 25961991 DOI: 10.1515/bmc.2010.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serpins build a large and evolutionary widespread protein superfamily, hosting members that are mainly Ser-protease inhibitors. Typically, serpins display a conserved core domain composed of three main β-sheets and 9-10 α-helices, for a total of approximately 350 amino acids. Neuroserpin (NS) is mostly expressed in neurons and in the central and peripheral nervous systems, where it targets tissue-type plasminogen activator. NS activity is relevant for axogenesis, synaptogenesis and synaptic plasticity. Five (single amino acid) NS mutations are associated with severe neurodegenerative disease in man, leading to early onset dementia, epilepsy and neuronal death. The functional aspects of NS protease inhibition are linked to the presence of a long exposed loop (reactive center loop, RCL) that acts as bait for the incoming partner protease. Large NS conformational changes, associated with the cleavage of the RCL, trap the protease in an acyl-enzyme complex. Contrary to other serpins, this complex has a half-life of approximately 10 min. Conformational flexibility is held to be at the bases of NS polymerization leading to Collins bodies intracellular deposition and neuronal damage in the pathological NS variants. Two main general mechanisms of serpin polymerization are currently discussed. Both models require the swapping of the RCL among neighboring serpin molecules. Specific differences in the size of swapped regions, as well as differences in the folding stage at which polymerization can occur, distinguish the two models. The results provided by recent crystallographic and biophysical studies allow rationalization of the functional and pathological roles played by NS based on the analysis of four three-dimensional structures.
Collapse
|
7
|
Tan L, Perez J, Mela M, Miranda E, Burling KA, Rouhani FN, DeMeo DL, Haq I, Irving JA, Ordóñez A, Dickens JA, Brantly M, Marciniak SJ, Alexander GJM, Gooptu B, Lomas DA. Characterising the association of latency with α(1)-antitrypsin polymerisation using a novel monoclonal antibody. Int J Biochem Cell Biol 2014; 58:81-91. [PMID: 25462157 PMCID: PMC4305080 DOI: 10.1016/j.biocel.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p<10(-14)). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.
Collapse
Affiliation(s)
- Lu Tan
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Juan Perez
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
| | - Marianna Mela
- Division of Gastroenterology & Hepatology, University Department of Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies Charles Darwin and Pasteur Institute-Cenci Bolognetti Foundation-University of Rome La Sapienza, Rome, Italy
| | - Keith A Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Farshid N Rouhani
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Imran Haq
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Jennifer A Dickens
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Mark Brantly
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Graeme J M Alexander
- Division of Gastroenterology & Hepatology, University Department of Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Bibek Gooptu
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, 5th Floor, Tower Wing, London, UK.
| | - David A Lomas
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
8
|
Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 2014; 10:884-91. [PMID: 25325699 PMCID: PMC4416114 DOI: 10.1038/nchembio.1670] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023]
Abstract
Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King’s College London, Denmark Hill Campus, London, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Lomas DA. Twenty Years of Polymers: A Personal Perspective on Alpha-1 Antitrypsin Deficiency. COPD 2013; 10 Suppl 1:17-25. [DOI: 10.3109/15412555.2013.764401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordóñez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA. Unravelling the twists and turns of the serpinopathies. FEBS J 2011; 278:3859-67. [DOI: 10.1111/j.1742-4658.2011.08201.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Thompson LC, Goswami S, Ginsberg DS, Day DE, Verhamme IM, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Protein Sci 2011; 20:353-65. [PMID: 21280127 DOI: 10.1002/pro.568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1-2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
12
|
Huntington JA, Whisstock JC. Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers. Biol Chem 2011; 391:973-82. [PMID: 20731544 DOI: 10.1515/bc.2010.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the serpin (serine protease inhibitor) superfamily fold into a metastable conformation that is crucial for proper function. As a consequence, serpins are susceptible to mutations that cause misfolding and the intracellular accumulation of pathogenic polymers. The mechanism of serpin polymerisation remains to be resolved, however, over the past two decades the 'loop-sheet' hypothesis has gained wide acceptance. In this mechanism the reactive centre loop of one serpin monomer inserts into the beta-sheet A of another (in trans), in a manner similar to what is seen for reactive centre loop-cleaved and latent conformations (in cis). The hypothesis has been refined in response to certain experimental data, but it has proved difficult to assess the various propositions without creating molecular models. Here we evaluate the loop-sheet mechanism by creating models of pentamers of the archetypal serpin alpha(1)-antitrypsin. We conclude that an inescapable consequence of the loop-sheet mechanism is polymer compaction and rigidity, properties that are inconsistent with the 'beads-on-a-string' morphology of polymers obtained from human tissue. The recent crystal structure of a domain-swapped serpin dimer suggests an alternative mechanism that is consistent with known polymer properties, including the requirement of partial unfolding to induce polymer formation in vitro, and polymerisation from a folding intermediate in vivo.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | | |
Collapse
|
13
|
|
14
|
|
15
|
Tanaka SI, Koga Y, Takano K, Kanaya S. Inhibition of chymotrypsin- and subtilisin-like serine proteases with Tk-serpin from hyperthermophilic archaeon Thermococcus kodakaraensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:299-307. [PMID: 21112419 DOI: 10.1016/j.bbapap.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 12/16/2022]
Abstract
A serpin homologue (Tk-serpin) from the hyperthermophilic archaeon Thermococcus kodakaraensis was overproduced in E. coli, purified, and characterized. Tk-serpin irreversibly inhibits Tk-subtilisin (TKS) from the same organism with the second-order association rate constants (k(ass)) of 5.2×10³ M⁻¹ s⁻¹ at 40°C and 3.1×10⁵ M⁻¹ s⁻¹ at 80°C, indicating that Tk-serpin inhibits TKS more strongly at 80°C than at 40°C. It also irreversibly inhibits chymotrypsin, subtilisin Carlsberg, and proteinase K at 40°C with the k(ass) values comparable to that for TKS at 80°C. Casein zymography showed that Tk-serpin inhibits these proteases by forming a SDS-resistant complex, which is typical to inhibitory serpins. The ratio of moles of Tk-serpin needed to inhibit 1 mol of protease (stoichiometry of inhibition, SI) varies from 40 to 80 at 20°C, but decreases to the minimum values of 3-7 as the temperature increases. The inhibitory activities of Tk-serpin for these proteases increase as the stabilities of these proteases decrease, suggesting that a flexibility of the active-site of protease is one of the determinants for susceptibility of protease to inhibition by Tk-serpin. This report showed for the first time that Tk-serpin inhibits both chymotrypsin- and subtilisin-like serine proteases and its inhibitory activity increases as the temperature increases up to 100°C.
Collapse
Affiliation(s)
- Shun-ichi Tanaka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
16
|
Ricagno S, Pezzullo M, Barbiroli A, Manno M, Levantino M, Santangelo MG, Bonomi F, Bolognesi M. Two latent and two hyperstable polymeric forms of human neuroserpin. Biophys J 2010; 99:3402-11. [PMID: 21081089 PMCID: PMC2980742 DOI: 10.1016/j.bpj.2010.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 02/02/2023] Open
Abstract
Human neuroserpin (hNS) is a serine protease inhibitor that belongs to the serpin superfamily and is expressed in nervous tissues. The serpin fold is generally characterized by a long exposed loop, termed the reactive center loop, that acts as bait for the target protease. Intramolecular insertion of the reactive center loop into the main serpin β-sheet leads to the serpin latent form. As with other known serpins, hNS pathological mutants have been shown to accumulate as polymers composed of quasi-native protein molecules. Although hNS polymerization has been intensely studied, a general agreement about serpin polymer organization is still lacking. Here we report a biophysical characterization of native hNS that is shown to undergo two distinct conformational transitions, at 55°C and 85°C, both leading to distinct latent and polymeric species. The latent and polymer hNS forms obtained at 45°C and 85°C differ in their chemical and thermal stabilities; furthermore, the hNS polymers also differ in size and morphology. Finally, the 85°C polymer shows a higher content of intermolecular β-sheet interactions than the 45°C polymer. Together, these results suggest a more complex conformational scenario than was previously envisioned, and, in a general context, may help reconcile the current contrasting views on serpin polymerization.
Collapse
Affiliation(s)
- Stefano Ricagno
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
- Dipartimento di Biochimica, Università di Pavia, Pavia, Italy
- Laboratori di Biotecnologie, Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Policlinico San Matteo, Pavia, Italy
| | - Margherita Pezzullo
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
| | - Alberto Barbiroli
- Sezione di Biochimica, Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Milan, Italy
| | - Mauro Manno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, CNR, Palermo, Italy
| | - Matteo Levantino
- Dipartimento di Scienze Fisiche ed Astronomiche, Università of Palermo, Palermo, Italy
| | | | - Francesco Bonomi
- Sezione di Biochimica, Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Milan, Italy
| | - Martino Bolognesi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
| |
Collapse
|
17
|
Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem 2009; 78:147-76. [PMID: 19245336 DOI: 10.1146/annurev.biochem.78.082107.133320] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Point mutations cause members of the serine protease inhibitor (serpin) superfamily to undergo a novel conformational transition, forming ordered polymers. These polymers characterize a group of diseases termed the serpinopathies. The formation of polymers underlies the retention of alpha(1)-antitrypsin within hepatocytes and of neuroserpin within neurons to cause cirrhosis and dementia, respectively. Point mutations of antithrombin, C1 inhibitor, alpha(1)-antichymotrypsin, and heparin cofactor II cause a similar conformational transition, resulting in a plasma deficiency that is associated with thrombosis, angioedema, and emphysema. Polymers of serpins can also form in extracellular tissues where they activate inflammatory cascades. This is best described for the Z variant of alpha(1)-antitrypsin in which the proinflammatory properties of polymers provide an explanation for both progressive emphysema and the selective advantage of this mutant allele. Therapeutic strategies are now being developed to block the aberrant conformational transitions and so treat the serpinopathies.
Collapse
Affiliation(s)
- Bibek Gooptu
- School of Crystallography, Birkbeck College, University of London, London, UK.
| | | |
Collapse
|
18
|
Tsutsui Y, Kuri B, Sengupta T, Wintrode PL. The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2008; 283:30804-11. [PMID: 18794298 DOI: 10.1074/jbc.m804048200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.
Collapse
Affiliation(s)
- Yuko Tsutsui
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|