1
|
Sun R, Wang Z, Li M, Du T, Jia S, Yang W, Yang L. Regulatory Effects of Copper on Ghrelin Secretion in Rat Fundic Glands. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39545633 DOI: 10.1111/jpn.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Copper (Cu) is an effective additive in feed for promoting growth. Growth dan axis comprising growth hormone (GH), somatostatin (SS) and GH-releasing hormone (GHRH), with ghrelin regulating their release. The growth-promoting effects of Cu are closely related to ghrelin, but the specific mechanism behind the relationship remains unknown. We investigated the adjustment of ghrelin synthesis and secretion by Cu. Sprague-Dawley rats were fed basal diets with an addition of 0, 120 or 240 mg/kg Cu sulfate for 28 day to establish a growth-promoting model. Signalling molecules relevant to ghrelin synthesis and secretion were detected and mechanistically explored using enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction and Western blot analysis. The 120 mg/kg supplement improved growth performance; significantly increased the serum levels of ghrelin, ghrelin O-acyltransferase (GOAT), acylated ghrelin (AG), GH, and reactive oxygen species (ROS) and decreased those of SS; significantly increased the mRNA and protein expression of ghrelin, GOAT, ghrelin receptor (GHS-R1α), and activator protein 1 (AP-1); increased the phosphorylation ratio of JNK and p38 MAPK; and inhibited the mRNA and protein expression of SS and SS receptor subtype 2 (SSTR2) in gastric fundic gland tissues. Thus, Cu may affect gastric ghrelin synthesis at the transcriptional level by activating the JNK/p38 MAPK pathway through increased ROS levels and regulating the activation of the downstream redox-sensitive transcription factor AP-1. SS plays a crucial determinant role in ghrelin regulation via intragastric Cu. Cu promotes GOAT activity and ghrelin secretion by inhibiting SS secretion, affecting AG levels, and promoting ghrelin acylation through ghrelin/GOAT/GHS-R1α system, modulating ghrelin secretion.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Meng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Tianyang Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Shuang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Alanazi ST, Salama SA, Althobaiti MM, Alotaibi RA, AlAbdullatif AA, Musa A, Harisa GI. Alleviation of Copper-Induced Hepatotoxicity by Bergenin: Diminution of Oxidative Stress, Inflammation, and Apoptosis via Targeting SIRT1/FOXO3a/NF-κB Axes and p38 MAPK Signaling. Biol Trace Elem Res 2024:10.1007/s12011-024-04401-3. [PMID: 39347884 DOI: 10.1007/s12011-024-04401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Despite its biological importance, excess copper induces organ damage, especially to the liver. Disruption of critical signaling cascades that control redox status, inflammatory responses, and cellular apoptosis significantly contributes to the copper-induced hepatotoxicity. The present work explored the hepatoprotective ability of bergenin against the copper-induced hepatotoxicity using male Wistar rats as a mammalian model. The results revealed that bergenin suppressed the copper-evoked histopathological changes and hepatocellular necrosis as indicated by decreased activity of the liver enzymes ALT and AST in the sera of the copper-intoxicated rats. It decreased hepatic copper content and the copper-induced oxidative stress as revealed by reduced lipid peroxidation and improved activity of the antioxidant enzymes thioredoxin reductase, glutathione peroxidase, catalase, and superoxide dismutase. Bergenin downregulated the inflammatory cytokines TNF-α and IL-6, and the inflammatory cell infiltration to the liver tissues. Additionally, it inhibited the copper-induced apoptosis as indicated by significant reduction in caspase-3 activity. At the molecular level, bergenin activated the antioxidant transcription factor FOXO3a, inhibited the nuclear translocation of the inflammatory transcription factor NF-κB, and suppressed the inflammatory signaling molecules p38 MAPK and c-Fos. Interestingly, bergenin improved the expression of the anti-apoptotic protein Bcl2 and reduced the pro-apoptotic protein BAX. Bergenin markedly enhanced the expression of the histone deacetylase protein SIRT1 that regulates activity of NF-κB and FOXO3a. Collectively, these findings highlight the alleviating activity of bergenin against the copper-induced hepatotoxicity via controlling oxidative stress, inflammation, and apoptosis potentially through upregulation of SIRT1, activation of FOXO3a along with suppression of NF-κB and p38 MAPK signaling.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rana A Alotaibi
- College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ammar A AlAbdullatif
- Pharmaceutical Care Services, Ministry of the National Guard-Health Affairs, P.O. Box 4616, 31412, Dammam, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Torrez CZ, Easley A, Bouamar H, Zheng G, Gu X, Yang J, Chiu YC, Chen Y, Halff GA, Cigarroa FG, Sun LZ. STEAP2 promotes hepatocellular carcinoma progression via increased copper levels and stress-activated MAP kinase activity. Sci Rep 2024; 14:12753. [PMID: 38830975 PMCID: PMC11148201 DOI: 10.1038/s41598-024-63368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Carla Zeballos Torrez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Acarizia Easley
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hakim Bouamar
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guixi Zheng
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiang Gu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Junhua Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
5
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023; 62:e202213644. [PMID: 36653724 PMCID: PMC10754205 DOI: 10.1002/anie.202213644] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Vanha N Pham
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J, Ren Z, Geng Y, Ouyang P, Xu Z, Deng Y, Zhu Y. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol Trace Elem Res 2023; 201:539-548. [PMID: 35312958 DOI: 10.1007/s12011-022-03171-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Copper (Cu) is an essential micronutrient for both human and animals. However, excessive intake of copper will cause damage to organs and cells. Inflammation is a biological response that can be induced by various factors such as pathogens, damaged cells, and toxic compounds. Dysregulation of inflammatory responses are closely related to many chronic diseases. Recently, Cu toxicological and inflammatory effects have been investigated in various animal models and cells. In this review, we summarized the known effect of Cu on inflammatory responses and sum up the molecular mechanism of Cu-regulated inflammation. Excessive Cu exposure can modulate a huge number of cytokines in both directions, increase and/or decrease through a variety of molecular and cellular signaling pathways including nuclear factor kappa-B (NF-κB) pathway, mitogen-activated protein kinase (MAPKs) pathway, JAK-STAT (Janus Kinase- signal transducer and activator of transcription) pathway, and NOD-like receptor protein 3 (NLRP3) inflammasome. Underlying the molecular mechanism of Cu-regulated inflammation could help further understanding copper toxicology and copper-associated diseases.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huiru Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
8
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Christopher J. Chang
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute University of California Berkeley CA 94720 USA
| |
Collapse
|
9
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Fouad MM, Ramadan MA. Serum intracellular adhesion molecule-1 and interleukin-8 as predictors of pulmonary impairment among workers in secondary copper smelters. Int Arch Occup Environ Health 2021; 95:365-375. [PMID: 34609586 DOI: 10.1007/s00420-021-01770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Copper smelter workers are exposed to harmful chemical agents in dust and fumes which contain harmful metals such as copper and arsenic. These substances are known to be respiratory irritants. METHODS This study aimed at investigating the effect of occupational exposure to copper and arsenic on the respiratory system. A group of 75 male exposed workers, and 75 male administrative employees (control group) were recruited from a secondary copper smelting factory. Full history, complete clinical examination, ventilatory function parameters (FVC, FEV1, FVC/FEV1 and FEF), and chest X-ray were done for both groups. Serum levels of ICAM-1 and IL8 (as markers of epithelial injury) were measured by ELISA. Serum copper and arsenic were measured by atomic absorption spectrophotometer. RESULTS The exposed group was associated with increased respiratory symptoms, higher serum copper, arsenic, and ICAM-1and Il-8 as compared to the control group. There was a significant decrease in ventilatory parameters among the exposed group: 58.7% of the exposed group had restrictive lung impairment, 40% had obstructive impairment. In the exposed group a positive correlation between serum copper, arsenic and serum ICAM and IL8 was found. While a negative correlation was observed between both serum ICAM, IL8 and ventilatory parameters among the exposed group. Moreover, 36% of the exposed group had radiological infiltrates on chest X.ray. CONCLUSION Occupational exposure to copper and arsenic was associated with ventilatory and radiological impairment, with a corresponding increase in the serum level of ICAM-1 and IL8, which can be used as biomarkers for pulmonary impairment among copper smelter workers.
Collapse
Affiliation(s)
- Marwa Mohammed Fouad
- Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Abdallah Ramadan
- Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:311-364. [PMID: 34112357 DOI: 10.1016/bs.afnr.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity. Recent studies further associate copper with disruption of lipid homeostasis, as is frequently seen in, for example, non-alcoholic fatty liver disease (NAFLD). Moreover, continuing investigation of copper chaperones has revealed new roles for these intracellular copper-binding proteins. Despite these (and many other) significant advances, many questions related to copper biology remain unanswered. For example, what are the most sensitive and specific biomarkers of copper status, and which ones are useful in marginal (or "sub-clinical" copper deficiency)? Further research on this topic is required to inform future investigations of copper metabolism in humans (so the copper status of study participants can be fully appreciated). Also, are current recommendations for copper intake adequate? Recent studies suggest that overt copper deficiency is more common than once thought, and further, some have suggested that the copper RDAs for adults may be too low. Additional human balance and interventional studies are necessary and could provide the impetus for reconsidering the copper RDAs in the future. These and myriad other unresolved aspects of copper nutrition will undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
12
|
Malekirad AA, Hassani S, Abdollahi M. Oxidative stress and copper smelter workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Liu H, Guo H, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Copper induces hepatic inflammatory responses by activation of MAPKs and NF-κB signalling pathways in the mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110806. [PMID: 32512418 DOI: 10.1016/j.ecoenv.2020.110806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the expressions of signalling molecules and inflammatory cytokines involved in copper-induced inflammatory responses of the mouse liver. A total of 240 institute of cancer research (ICR) mice (half male and half female) aged four weeks were randomly allocated to four groups treated with 0, 4, 8, and 16 mg/kg of [Cu] (Cu2+-CuSO4) for 42 days, respectively. [Cu] exceeding 4 mg/kg was found to induce inflammatory responses of the liver. Results showed significant up-regulation of mRNA and protein levels of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinases 3/6 (MEK3/6), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK), mitogen-activated protein kinase kinases 4/7 (MEK4/7), mitogen-activated protein kinase kinases 1/2 (MEK1/2), and extracellular signal-regulated protein kinases 1/2 (Erk1/2) due to Cu. By doing so, copper could activate the mitogen-activated protein kinases (MAPKs) signalling pathway. Concurrently, the nuclear factor-kappa B (NF-κB) signalling pathway was also activated in the Cu-treatment, as demonstrated by higher expressions of NF-κB and cyclooxygenase-2 (COX-2), activities of inducible nitric oxide synthase (iNOS), contents of nitric oxide (NO) and prostaglandin E2 (PGE2), and reducing levels of expression of inhibitory kappa B (IκB). High Cu intake also up-regulated expression levels of some pro-inflammatory mediators such as interleukin-2 (IL-2), interleukin-1β (IL-1β), and interleukin-8 (IL-8), and down-regulated the levels of expression of transforming growth factor beta (TGF-β), an anti-inflammatory mediator. Additionally, our results indicated that Cu caused hepatic dysfunction, with evidence of occurrence of histopathological lesions and higher serum activities of alkaline phosphatase (AKP), aspartic acid transferase (AST), alanine amino transferase (ALT), and gamma-glutamyl transpeptidase (GGT), contents of albumin (ALB) and total bilirubin (TBIL). Altogether, the aforementioned results indicate that [Cu], at more than 4 mg/kg, induces the inflammatory responses in the liver via NF-κB and MAPKs signalling pathways, subsequently inducing hepatic dysfunction.
Collapse
Affiliation(s)
- Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
14
|
Jian Z, Guo H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Oxidative stress, apoptosis and inflammatory responses involved in copper-induced pulmonary toxicity in mice. Aging (Albany NY) 2020; 12:16867-16886. [PMID: 32952128 PMCID: PMC7521514 DOI: 10.18632/aging.103585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
At present, there are few studies focused on the relationship between copper (Cu) and oxidative stress, apoptosis, or inflammatory responses in animal and human lungs. This study was conducted to explore the effects of Cu on pulmonary oxidative stress, apoptosis and inflammatory responses in mice orally administered with 0 mg/kg (control), 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. The results showed that CuSO4 increased ROS production, and MDA, 8-OHdG and NO contents as well as iNOS activities and mRNA expression levels. Meanwhile, CuSO4 reduced the activities and mRNA expression levels of antioxidant enzymes (GSH-Px, CAT, and SOD) and GSH contents, and ASA and AHR abilities. Also, CuSO4 induced apoptosis, which was accompanied by decreasing Bcl-2, Bcl-xL mRNA expression levels and protein expression levels, and increasing Bax, Bak, cleaved-caspase-3, cleaved-caspase-9 mRNA, and protein expression levels, and Bax/Bcl-2 ratio. Concurrently, CuSO4 caused inflammation by increasing MPO activities and activating the NF-κB signalling pathway, and down-regulating the mRNA and protein expression levels of anti-inflammatory cytokines (IL-2, IL-4, IL-10). In conclusion, the abovementioned findings demonstrated that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, and inflammatory responses, which contribute to pulmonary lesions and dysfunction in mice.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China,Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan 625014, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| |
Collapse
|
15
|
Li Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB Life 2020; 72:1900-1908. [PMID: 32599675 DOI: 10.1002/iub.2341] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Copper (Cu) is an essential micronutrient involved in a variety of fundamental biological processes. Recently, disorder of Cu homeostasis can be observed in many malignancies. Elevated Cu levels in serum and tissue are correlated with cancer progression. Hence, targeting Cu has emerged as a novel strategy in cancer treatment. This review provides an overview of physiological Cu metabolism and its homeostasis, followed by a discussion of the dysregulation of Cu homeostasis in cancer and the effects of Cu on cancer progression. Finally, recent therapeutic advances using Cu coordination complexes as anticancer agents, as well as the mechanisms of their anti-cancer action are discussed. This review contributes full comprehension to the role of Cu in cancer and demonstrates the broad application prospect of Cu coordination compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Yueqin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Shiqun Shao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Jingxing Si
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceClinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou 310014 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
17
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
18
|
de Francisco P, Amaro F, Martín-González A, Gutiérrez JC. AP-1 (bZIP) Transcription Factors as Potential Regulators of Metallothionein Gene Expression in Tetrahymena thermophila. Front Genet 2018; 9:459. [PMID: 30405686 PMCID: PMC6205968 DOI: 10.3389/fgene.2018.00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Metallothioneins (MT) are multi-stress proteins mainly involved in metal detoxification. MT gene expression is normally induced by a broad variety of stimulus and its gene expression regulation mainly occurs at a transcriptional level. Conserved motifs in the Tetrahymena thermophila MT promoters have been described. These motifs show a consensus sequence very similar to AP-1 sites, and bZIP type transcription factors might participate in the MT gene expression regulation. In this research work, we characterize four AP-1 transcription factors in each of four different analyzed Tetrahymena species, detecting a high conservation among them. Each AP-1 molecule has its counterpart in the other three Tetrahymena species. A comparative qRT-PCR analysis of these AP-1 genes have been carried out in different T. thermophila strains (including metal-adapted, knockout and/or knockdown strains among others), and under different metal-stress conditions (1 or 24 h Cd2+, Cu2+, or Pb2+ treatments). The possible interaction of these transcription factors with the conserved AP-1 motifs present in MT promoters has been corroborated by protein-DNA interaction experiments. Certain connection between the expression patterns of the bZIP and MT genes seems to exist. For the first time, and based on our findings, a possible gene expression regulation model including both AP-1 transcription factors and MT genes from the ciliate T. thermophila has been elaborated.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Martín-González
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Gutiérrez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Hsu PY, Yen HH, Yang TH, Su CC. Tetrathiomolybdate, a copper chelator inhibited imiquimod-induced skin inflammation in mice. J Dermatol Sci 2018; 92:30-37. [PMID: 30126748 DOI: 10.1016/j.jdermsci.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Copper is an essential metal for maintenance of many biological functions; however, excessive amount can induce inflammation and oxidative stress. Tetrathiomolybdate (TM) is a copper chelator for treatment of Wilson's disease, and decreased the severity of autoimmune arthritis in mice. OBJECTIVE In this report, we evaluated the effects of TM in a mouse model for psoriasis. METHODS Imiquimod-induced psoriasis murine model was used. We applied immunohistochemistry staining and ELISA to determine levels of cytokines in the inflamed skin, splenocytes, and draining lymph nodes. In addition, we used keratinocytes and splenocytes to test the inhibitory effects of TM on cytokine production and activation of transcription factors. RESULTS Our results showed that TM significantly reduced cumulative scores, epidermis thickness, and ki-67 expression in the inflamed skin. In addition, TM decreased skin cytokine levels and systemic inflammation. Moreover, TM suppressed activation in keratinocytes and splenocytes with reduction in phosphorylation of Erk1/2 and STAT3. CONCLUSION These findings are strong evidence that TM can inhibit psoriasis in the model.
Collapse
Affiliation(s)
- Peng-Yang Hsu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Hsu-Heng Yen
- Gastroenterology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Tao-Hsiang Yang
- Environmental and Precision Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan.
| | - Che-Chun Su
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
20
|
Doria HB, Ferreira MB, Rodrigues SD, Lo SM, Domingues CE, Nakao LS, de Campos SX, Ribeiro CADO, Randi MAF. Time does matter! Acute copper exposure abolishes rhythmicity of clock gene in Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:26-36. [PMID: 29499429 DOI: 10.1016/j.ecoenv.2018.02.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock is a key cellular timing system that coordinates physiology and behavior. Light is a key regulator of the clock mechanism via its activation of Per and Cry clock gene expression. Evidence points to a key role of reactive oxygen species (ROS) in resetting this process. In this context, the aim of the present study was to explore copper as a ROS generator, using an innovative approach investigating its effects on circadian timing. Liver and brain from Danio rerio specimens exposed to 0, 5, 25 and 45 μg/L copper concentrations were obtained. Daily oscillations of superoxide dismutase (SOD) and catalase (CAT) enzymatic activity and their correlations both with clock genes (per1, per2, and cry1a) and with organism energy cost were determined. CAT expression correlates with per2 and cry1a and, thus, provides data to support the hypothesis of hydrogen peroxide production by a phototransducing flavin-containing oxidase. Higher SOD activity is correlated with higher intracellular ATP levels. Copper disturbed the daily oscillation of antioxidant enzymes and clock genes, with disturbed per1 rhythmicity in both the brain and liver, while cry1a rhythmicity was abolished in the liver at 25 μg/L copper. Coordination between the SOD and the CAT enzymes was lost when copper concentrations exceeded the limits established by international laws. These results indicate that organism synchronization with the environment may be impaired due to acute copper exposure.
Collapse
Affiliation(s)
- Halina Binde Doria
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil.
| | - Marianna Boia Ferreira
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Silvia Daniele Rodrigues
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Sze Mei Lo
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Cinthia Eloise Domingues
- Ponta Grossa State University (UEPG), Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Caixa Postal 992, Postal Code: 84030-900, Ponta Grossa, Paraná, Brazil
| | - Lia Sumie Nakao
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Sandro Xavier de Campos
- Ponta Grossa State University (UEPG), Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Caixa Postal 992, Postal Code: 84030-900, Ponta Grossa, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Marco Antonio Ferreira Randi
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med 2018; 115:92-104. [PMID: 29170091 DOI: 10.1016/j.freeradbiomed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 01/13/2023]
Abstract
There is growing evidence for alterations in iron and copper homeostasis during aging that are exacerbated in neurodegenerative diseases such as Alzheimer's disease (AD). However, how iron and copper accumulation leads to nerve cell damage in AD is not clear. In order to better understand how iron and copper can contribute to nerve cell death, a simple, well-defined in vitro model of cell death, the oyxtosis assay, was used. This assay uses glutamate to induce glutathione (GSH) depletion which initiates a form of oxidative stress-induced programmed cell death. A reduction in GSH is seen in the aging brain, is associated with cognitive dysfunction and is accelerated in many CNS diseases including AD. It is shown that both iron and copper potentiate both GSH loss and cell death in this model. Iron and copper also potentiate cell death induced by other GSH depleters but not by compounds that induce oxidative stress via other pathways. At least part of the effects of copper on GSH are related to its ability to reduce the activity of glutamate cysteine ligase, the rate limiting enzyme in GSH synthesis. Both metals also alter several signaling pathways involved in modulating nerve cell death. Together, these results suggest that in vivo iron and copper may specifically enhance nerve cell death under conditions where GSH levels are reduced.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
22
|
Zhang F, Zheng W, Guo R, Yao W. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol 2017; 55:694-702. [PMID: 28865069 DOI: 10.1007/s12275-017-6627-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
In China's swine industry, copper is generally supplemented above the National Research Council (NRC) requirement (2012) because of its antimicrobial properties and the potential for growth promotion. Yet few are concerned about whether this excess supplementation is necessary. In this study, the 16S rRNA pyrosequencing was designed and used to investigate the effect of dietary copper level on the diversity of the fecal microbial community and the correlation of copper level with the serum level of inflammatory cytokines in Sprague-Dawley rat models. The results showed that the diet containing a high level of Cu (120 and 240 mg/kg) changed the microbial richness and diversity of rat feces associated with the increased copper content in the rat ileac and colonic digesta. Furthermore, a Pearson's correlation analysis indicated that an accumulation of unabsorbed copper in the chyme was correlated with the microbial composition of the rat feces, which was linked with TNF-α in serum. The results suggest that dietary copper level may have a direct impact on circulating inflammatory cytokines in the serum, perhaps inducing an inflammatory response by altering the microbial composition of rat feces. Serum TNF-α could be the chief responder to excessive copper exposure.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rong Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China. .,Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, P. R. China.
| |
Collapse
|
23
|
Asahi H, Kobayashi F, Inoue SI, Niikura M, Yagita K, Tolba MEM. Copper Homeostasis for the Developmental Progression of Intraerythrocytic Malarial Parasite. Curr Top Med Chem 2017; 16:3048-3057. [PMID: 26881705 PMCID: PMC5068492 DOI: 10.2174/1568026616999160215151704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/10/2016] [Accepted: 02/20/2016] [Indexed: 01/22/2023]
Abstract
Malaria is one of the world’s most devastating diseases, particularly in the tropics. In humans, Plasmodium falciparum lives mainly within red blood cells, and malaria pathogenesis depends on the red blood cells being infected with the parasite. Non-esterified fatty acids (NEFAs), including cis-9-octadecenoic acid, and phospholipids have been critical for complete parasite growth in serum-free culture, although the efficacy of NEFAs in sustaining the growth of P. falciparum has varied markedly. Hexadecanoic acid and trans-9-octadecenoic acid have arrested development of the parasite, in association with down-regulation of genes encoding copper-binding proteins. Selective removal of Cu+ ions has blockaded completely the ring–trophozoite–schizont progression of the parasite. The importance of copper homeostasis for the developmental progression of P. falciparum has been confirmed by inhibition of copper-binding proteins that regulate copper physiology and function by associating with copper ions. These data have provided strong evidence for a link between healthy copper homeostasis and successive developmental progression of P. falciparum. Perturbation of copper homeostasis may be, thus, instrumental in drug and vaccine development for the malaria medication. We review the importance of copper homeostasis in the asexual growth of P. falciparum in relation to NEFAs, copper-binding proteins, apoptosis, mitochondria, and gene expression.
Collapse
Affiliation(s)
- Hiroko Asahi
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181 8611, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Increased inflammation in rheumatoid arthritis patients living where farm soils contain high levels of copper. J Formos Med Assoc 2016; 115:991-996. [DOI: 10.1016/j.jfma.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022] Open
|
25
|
Wang D, Ju X, Zhang G, Wang D, Wei G. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst. Carbohydr Polym 2016; 150:209-15. [DOI: 10.1016/j.carbpol.2016.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022]
|
26
|
Copper transporters and chaperones: Their function on angiogenesis and cellular signalling. J Biosci 2016; 41:487-96. [DOI: 10.1007/s12038-016-9629-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Guo R, Lim WA, Ki JS. Genome-wide analysis of transcription and photosynthesis inhibition in the harmful dinoflagellate Prorocentrum minimum in response to the biocide copper sulfate. HARMFUL ALGAE 2016; 57:27-38. [PMID: 30170719 DOI: 10.1016/j.hal.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 06/08/2023]
Abstract
Copper is an essential trace metal for organisms; however, excess copper may damage cellular processes. Their efficiency and physiological effects of biocides have been well documented; however, molecular transcriptome responses to biocides are insufficiently studied. In the present study, a 6.0K oligonucleotide chip was developed to investigate the molecular responses of the harmful dinoflagellate Prorocentrum minimum to copper sulfate (CuSO4) treatment. The results revealed that 515 genes (approximately 8.6%) responded to CuSO4, defined as being within a 2-fold change. Further, KEGG pathway analysis showed that differentially expressed genes (DEGs) were involved in ribosomal function, RNA transport, carbon metabolism, biosynthesis of amino acids, photosystem maintenance, and other cellular processes. Among the DEGs, 49 genes were related to chloroplasts and mitochondria. Furthermore, the genes involved in the RAS signaling pathway, MAPK signaling pathway, and transport pathways were identified. An additional experiment showed that the photosynthesis efficiency decreased considerably, and reactive oxygen species (ROS) production increased in P. minimum after CuSO4 exposure. These results suggest that CuSO4 caused cellular oxidative stress in P. minimum, affecting the ribosome and mitochondria, and severely damaged the photosystem. These effects may potentially lead to cell death, although the dinoflagellate has developed a complex signal transduction process to combat copper toxicity.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Weol-Ae Lim
- Oceanic Climate & Ecology Research Division, the National Institute of Fisheries Science (NISF), Busan 46083, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
28
|
Zhou XY, Zhang T, Ren L, Wu JJ, Wang W, Liu JX. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:1-11. [PMID: 26991749 DOI: 10.1016/j.aquatox.2016.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Copper, as an essential trace mineral, can cause diseases such as childhood leukemia at excess levels, but has been applied in anemia therapy for a long time. However, few reports have studied its role during hematopoiesis at the molecular level in an animal model. In this study, by microarray, qRT-PCR, whole-mount in situ hybridization and O-dianisidine staining detections, we revealed the increased expression of hemoglobin in copper-exposed embryos. Secondly, we found that copper-exposed embryos exhibited high levels of reactive oxygen species (ROS), and genes in oxygen binding and oxygen transporting were up-regulated in the embryos. Finally, we found that ROS scavengers NAC, GSH, and DMTU not only inhibited in vivo ROS levels induced by copper, but also significantly decreased high expression of hemoglobin back to almost normal levels in copper exposed embryos, and also helped with copper elimination from the embryos. Our data first demonstrated that ROS mediated copper induced hemoglobin expression in vertebrates, partly revealing the underlying molecular mechanism of copper therapy for anemia. Moreover, we revealed that copper homeostasis was broken by its induced ROS and ROS helped with copper overloading in the body, which could be applied as a novel therapy target for copper-caused diseases.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Ren
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Jie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weimin Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, China.
| |
Collapse
|
29
|
Chen QL, Luo Z, Huang C, Pan YX, Wu K. De novo characterization of the liver transcriptome of javelin goby Synechogobius hasta and analysis of its transcriptomic profile following waterborne copper exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:979-994. [PMID: 26719065 DOI: 10.1007/s10695-015-0190-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
Previous studies have investigated the physiological responses to chronic copper (Cu) exposure in the liver of Synechogobius hasta; however, little information is available on the underlying molecular mechanisms. In an effort to better understand the mechanisms of Cu toxicity and to illuminate global gene expression patterns modulated by Cu exposure, we obtained the liver transcriptome information of S. hasta by RNA sequencing (RNA-seq) technology and also investigated the differential expression of genes following waterborne Cu exposure. Using the Illumina sequencing platform, as many as 60,217 unigenes were generated, with 815 bp of average length and 1298 bp of unigene N50 after filtering and assembly. For functional annotation analysis, 34,860, 31,526, 31,576, 25,808, 11,542, and 21,721 unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and total annotation unigenes were 37,764. After 30 days of exposure to 55 μg Cu/l, a total of 292 and 1076 genes were significantly up- and down-regulated, respectively. By KEGG analysis, 660 had a specific pathway annotation. Subsequent bioinformatics analysis revealed that the differentially expressed genes were mainly related to lipid metabolism, immune system, apoptosis, and signal transduction, suggesting that these signaling pathways may be regulated by Cu exposure. The present study provides comprehensive sequence information for subsequent gene expression studies regarding S. hasta, and the transcriptome profiling after Cu exposure is also expected to improve our understanding of the molecular toxicology of Cu.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China.
- Department of Animal Sciences, Cornell University, Morrison Hall, Ithaca, NY, 14850, USA.
| | - Chao Huang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| |
Collapse
|
30
|
Sebastian A, Prasad MNV. Modulatory role of mineral nutrients on cadmium accumulation and stress tolerance in Oryza sativa L. seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1224-33. [PMID: 26354111 DOI: 10.1007/s11356-015-5346-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/01/2015] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd)-contaminated rice is a serious health concern. In the present study, Cd accumulation and stress responses in Oryza sativa L. cv MTU 7029 seedlings were characterized under varying concentrations of plant nutrients in Hoagland media. It has been found that nutrient supplement modulates Cd accumulation and related stress tolerance while efficacy of each nutrient varies. Supplementation of Fe, Mn, N, Ca, and S were found to reduce Cd accumulation in leaf whereas Mn and Fe supply effect was also observed in roots. Analysis of maximum quantum efficiency of photosynthesis indicated that Fe and S supplements confer highest Cd stress tolerance. The present study highlighted the potential of plant nutrients for minimizing Cd accumulation and its toxicity in rice seedlings.
Collapse
Affiliation(s)
- Abin Sebastian
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
31
|
Dudakova L, Liskova P, Jirsova K. Is copper imbalance an environmental factor influencing keratoconus development? Med Hypotheses 2015; 84:518-24. [PMID: 25758858 DOI: 10.1016/j.mehy.2015.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- L Dudakova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - P Liskova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Ophthalmology, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
32
|
Song S, Zhang X, Wu H, Han Y, Zhang J, Ma E, Guo Y. Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans. PLoS One 2014; 9:e107685. [PMID: 25243607 PMCID: PMC4171499 DOI: 10.1371/journal.pone.0107685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/15/2014] [Indexed: 11/21/2022] Open
Abstract
Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes.
Collapse
Affiliation(s)
- Shaojuan Song
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yan Han
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yaping Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
33
|
Jazvinšćak Jembrek M, Vlainić J, Radovanović V, Erhardt J, Oršolić N. Effects of copper overload in P19 neurons: impairment of glutathione redox homeostasis and crosstalk between caspase and calpain protease systems in ROS-induced apoptosis. Biometals 2014; 27:1303-22. [PMID: 25216733 DOI: 10.1007/s10534-014-9792-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Abstract
Copper, a transition metal with essential biological functions, exerts neurotoxic effects when present in excess. The aim of the present study was to better elucidate cellular and molecular mechanisms of CuSO4 toxicity in differentiated P19 neurons. Exposure to 0.5 mM CuSO4 for 24 h provoked moderate decrease in viability, accompanied with barely increased generation of reactive oxygen species (ROS) and caspase-3/7 activity. Glutathione (GSH) and ATP contents were depleted, lactate dehydrogenase inactivated, and glyceraldehyde-3-phosphate dehydrogenase overexpressed. In severely damaged neurons exposed to only two times higher concentration, classical caspase-dependent apoptosis was triggered as evidenced by marked caspase-3/7 activation and chromatin condensation. Multifold increase in ROS, together with very pronounced ATP and GSH loss, strongly suggests impairment of redox homeostasis. At higher copper concentration protease calpains were also activated, and neuronal injury was prevented in the presence of calpain inhibitor leupeptin through the mechanism that affects caspase activation. MK-801 and nifedipine, inhibitors of calcium entry, and H-89 and UO126, inhibitors of PKA and ERK signaling respectively, exacerbated neuronal death only in severely damaged neurons, while ROS-scavenger quercetin and calcium chelator BAPTA attenuated toxicity only at lower concentration. In a dose-dependent manner copper also provoked transcriptional changes of genes involved in intracellular signaling and induction of apoptosis (p53, c-fos, Bcl-2 and Bax). The obtained results emphasize differences in triggered neuronal-death processes in a very narrow range of concentrations and give further insight into the molecular mechanisms of copper toxicity with the potential to improve current therapeutic approaches in curing copper-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia,
| | | | | | | | | |
Collapse
|
34
|
Hamann I, Petroll K, Grimm L, Hartwig A, Klotz LO. Insulin-like modulation of Akt/FoxO signaling by copper ions is independent of insulin receptor. Arch Biochem Biophys 2014; 558:42-50. [PMID: 24933099 DOI: 10.1016/j.abb.2014.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/19/2014] [Accepted: 06/04/2014] [Indexed: 11/26/2022]
Abstract
Copper ions are known to induce insulin-like effects in various cell lines, stimulating the phosphoinositide 3'-kinase (PI3K)/Akt signaling cascade and leading to the phosphorylation of downstream targets, including FoxO transcription factors. The aim of this work was to study the role of insulin- and IGF1-receptors (IR and IGF1R) in insulin-like signaling induced by copper in HepG2 human hepatoma cells. Cells were exposed to Cu(II) at various concentrations for up to 60 min. While Akt and FoxO1a/FoxO3a were strongly phosphorylated in copper- and insulin-treated cells at all time points studied, only faint tyrosine phosphorylation of IR/IGF1R was detected in cells exposed to Cu(II) by either immunoprecipitation/immunoblot or by immunoblotting using phospho-specific antibodies, whereas insulin triggered strong phosphorylation at these sites. Pharmacological inhibition of IR/IGF1R modestly attenuated Cu-induced Akt and FoxO phosphorylation, whereas no attenuation of Cu-induced Akt activation was achieved by siRNA-mediated IR depletion. Cu(II)-induced FoxO1a nuclear exclusion was only slightly impaired by pharmacological inhibition of IR/IGF1R, whereas insulin-induced effects were blunted. In contrast, genistein, a broad-spectrum tyrosine kinase inhibitor, at concentrations not affecting IR/IGF1R, attenuated Cu(II)-induced Akt phosphorylation, pointing to the requirement of tyrosine kinases other than IR/IGF1R for Cu(II)-induced signaling.
Collapse
Affiliation(s)
- Ingrit Hamann
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kerstin Petroll
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Larson Grimm
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Lars-Oliver Klotz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller Universität Jena, Germany.
| |
Collapse
|
35
|
Abstract
Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.
Collapse
|
36
|
Lung S, Li H, Bondy SC, Campbell A. Low concentrations of copper in drinking water increase AP-1 binding in the brain. Toxicol Ind Health 2013; 31:1178-84. [DOI: 10.1177/0748233713491805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson’s, Menkes’, Alzheimer’s, and Parkinson’s diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.
Collapse
Affiliation(s)
- Shyang Lung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Huihui Li
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, CA, USA
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
37
|
San Miguel SM, Opperman LA, Allen EP, Zielinski JE, Svoboda KK. Antioxidant combinations protect oral fibroblasts against metal-induced toxicity. Arch Oral Biol 2013; 58:299-310. [DOI: 10.1016/j.archoralbio.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
38
|
Mechanistic study on liver tumor promoting effects of flutamide in rats. Arch Toxicol 2011; 86:497-507. [DOI: 10.1007/s00204-011-0776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022]
|
39
|
Arnal N, de Alaniz MJ, Marra CA. Carnosine and neocuproine as neutralizing agents for copper overload-induced damages in cultured human cells. Chem Biol Interact 2011; 192:257-63. [DOI: 10.1016/j.cbi.2011.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/28/2010] [Accepted: 03/28/2011] [Indexed: 12/11/2022]
|
40
|
Abstract
In the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, a number of AR inhibitors have been developed and tested for diabetic complications. Although, these inhibitors have found to be safe for human use, they have not been successful at the clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR besides reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Since lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-kB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-kB and AP1 signals that lead to cell death or growth. Further, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in-vitro and in-vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how the recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
41
|
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283:65-87. [PMID: 21414382 DOI: 10.1016/j.tox.2011.03.001] [Citation(s) in RCA: 2168] [Impact Index Per Article: 166.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
Abstract
Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha-tocopherol (vitamin E), glutathione (GSH), carotenoids, flavonoids, and other antioxidants) are capable of chelating metal ions reducing thus their catalytic activity to form ROS. A novel therapeutic approach to suppress oxidative stress is based on the development of dual function antioxidants comprising not only chelating, but also scavenging components. Parodoxically, two major antioxidant enzymes, superoxide dismutase (SOD) and catalase contain as an integral part of their active sites metal ions to battle against toxic effects of metal-induced free radicals. The aim of this review is to provide an overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, SK-949 74 Nitra, Slovakia.
| | | |
Collapse
|
42
|
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2011; 88:204-19. [PMID: 20393586 DOI: 10.1139/y09-135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondria are unique cellular organelles that contain their own genome and, in conjunction with the nucleus, are able to transcribe and translate genes encoding components of the electron transport chain (ETC). To do so, the mitochondria must communicate with the nucleus via the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), which are produced as a byproduct of aerobic respiration within the mitochondria. Mitochondrial signaling is proposed to be altered in cancer cells, where the mitochondria are frequently found to harbor mutations within their genome and display altered functional characteristics leading to increased glycolysis. As signaling molecules, ROS oxidize and inhibit MAPK phosphatases resulting in enhanced proliferation and survival, an effect particularly advantageous to cancer cells. In terms of transcriptional regulation, ROS affect the phosphorylation, activation, oxidation, and DNA binding of transcription factors such as AP-1, NF-kappaB, p53, and HIF-1alpha, leading to changes in target gene expression. Increased ROS production by defective cancer cell mitochondria also results in the upregulation of the transcription factor Ets-1, a factor that has been increasingly associated with aggressive cancers.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
43
|
Jakubowicz M, Gałgańska H, Nowak W, Sadowski J. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3475-91. [PMID: 20581125 PMCID: PMC2905205 DOI: 10.1093/jxb/erq177] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 05/20/2023]
Abstract
In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.
Collapse
Affiliation(s)
- Małgorzata Jakubowicz
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
44
|
Kawai M, Saegusa Y, Dewa Y, Nishimura J, Kemmochi S, Harada T, Ishii Y, Umemura T, Shibutani M, Mitsumori K. Elevation of cell proliferation via generation of reactive oxygen species by piperonyl butoxide contributes to its liver tumor-promoting effects in mice. Arch Toxicol 2010; 84:155-64. [DOI: 10.1007/s00204-009-0498-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/02/2009] [Indexed: 12/15/2022]
|
45
|
Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL. Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci 2010; 10:529-35. [PMID: 19538144 DOI: 10.2174/138920309789352056] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/12/2009] [Indexed: 11/22/2022]
Abstract
Current research suggests that the function of the prion protein (PrP) is linked to its ability to bind copper. PrP is implicated in copper regulation, copper buffering and copper-dependent signaling. Moreover, in the development of prion disease, copper may modulate the rate of protein misfolding. PrP possesses a number of copper sites, each with distinct chemical characteristics. Most studies thus far have concentrated on elucidating chemical features of the octarepeat region (residues 60-91, hamster sequence), which can take up to four equivalents of copper, depending on the ratio of Cu2+ to protein. However, other sites have been proposed, including those at histidines 96 and 111, which are adjacent to the octarepeats, and also at histidines within PrP's folded C-terminal domain. Here, we review the literature of these copper sites extrinsic to the octarepeat region and add new findings and insights from recent experiments.
Collapse
Affiliation(s)
- Eric D Walter
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Chen HL, Chang CY, Lee HT, Lin HH, Lu PJ, Yang CN, Shiau CW, Shaw AY. Synthesis and pharmacological exploitation of clioquinol-derived copper-binding apoptosis inducers triggering reactive oxygen species generation and MAPK pathway activation. Bioorg Med Chem 2009; 17:7239-47. [DOI: 10.1016/j.bmc.2009.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 11/29/2022]
|
47
|
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 2009; 41:2403-12. [PMID: 19576997 DOI: 10.1016/j.biocel.2009.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Genetics Department, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Copper-induced germline apoptosis in Caenorhabditis elegans: The independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem Biol Interact 2009; 180:151-7. [DOI: 10.1016/j.cbi.2009.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 11/22/2022]
|
49
|
Joseph B, Kapoor S, Schilsky ML, Gupta S. Bile salt-induced pro-oxidant liver damage promotes transplanted cell proliferation for correcting Wilson disease in the Long-Evans Cinnamon rat model. Hepatology 2009; 49:1616-24. [PMID: 19185006 PMCID: PMC2677114 DOI: 10.1002/hep.22792] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Insights into disease-specific mechanisms for liver repopulation are needed for cell therapy. To understand the efficacy of pro-oxidant hepatic perturbations in Wilson disease, we studied Long-Evans Cinnamon (LEC) rats with copper toxicosis under several conditions. Hepatocytes from healthy Long-Evans Agouti (LEA) rats were transplanted intrasplenically into the liver. A cure was defined as lowering of copper to below 250 microg/g liver, presence of ATPase, Cu++ transporting, beta polypeptide (atp7b) messenger RNA (mRNA) in the liver and improvement in liver histology. Treatment of animals with the hydrophobic bile salt, cholic acid, or liver radiation before cell transplantation produced cure rates of 14% and 33%, respectively; whereas liver radiation plus partial hepatectomy followed by cell transplantation proved more effective, with cure in 55%, P < 0.01; and liver radiation plus cholic acid followed by cell transplantation was most effective, with cure in 75%, P < 0.001. As a group, cell therapy cures in rats preconditioned with liver radiation plus cholic acid resulted in less hepatic copper, indicating greater extent of liver repopulation. We observed increased hepatic catalase and superoxide dismutase activities in LEC rats, suggesting chronic oxidative stress. After liver radiation or cholic acid, hepatic lipid peroxidation levels increased, indicating further oxidative injury, although we did not observe overt additional cytotoxicity. This contrasted with healthy animals in which liver radiation and cholic acid produced hepatic steatosis and loss of injured hepatocytes. We concluded that pro-oxidant perturbations were uniquely effective for cell therapy in Wilson disease because of the nature of preexisting hepatic damage.
Collapse
Affiliation(s)
- Brigid Joseph
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Sorabh Kapoor
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Michael L. Schilsky
- The Yale-New Haven Transplantation Center, Yale-New Haven Hospital, New Haven, Connecticut
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
50
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|