1
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
3
|
Teixeira AP, Fussenegger M. Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309088. [PMID: 38126677 PMCID: PMC10885662 DOI: 10.1002/advs.202309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Arming human cells with synthetic gene circuits enables to expand their capacity to execute superior sensing and response actions, offering tremendous potential for innovative cellular therapeutics. This can be achieved by assembling components from an ever-expanding molecular toolkit, incorporating switches based on transcriptional, translational, or post-translational control mechanisms. This review provides examples from the three classes of switches, and discusses their advantages and limitations to regulate the activity of therapeutic cells in vivo. Genetic switches designed to recognize internal disease-associated signals often encode intricate actuation programs that orchestrate a reduction in the sensed signal, establishing a closed-loop architecture. Conversely, switches engineered to detect external molecular or physical cues operate in an open-loop fashion, switching on or off upon signal exposure. The integration of such synthetic gene circuits into the next generation of chimeric antigen receptor T-cells is already enabling precise calibration of immune responses in terms of magnitude and timing, thereby improving the potency and safety of therapeutic cells. Furthermore, pre-clinical engineered cells targeting other chronic diseases are gathering increasing attention, and this review discusses the path forward for achieving clinical success. With synthetic biology at the forefront, cellular therapeutics holds great promise for groundbreaking treatments.
Collapse
Affiliation(s)
- Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
4
|
Johnson LA, Mart RJ, Allemann RK. A Photoresponsive Homing Endonuclease for Programmed DNA Cleavage. ACS Synth Biol 2024; 13:195-205. [PMID: 38061193 PMCID: PMC10804406 DOI: 10.1021/acssynbio.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
Homing endonucleases are used in a wide range of biotechnological applications including gene editing, in gene drive systems, and for the modification of DNA structures, arrays, and prodrugs. However, controlling nuclease activity and sequence specificity remain key challenges when developing new tools. Here a photoresponsive homing endonuclease was engineered for optical control of DNA cleavage by partitioning DNA binding and nuclease domains of the monomeric homing endonuclease I-TevI into independent polypeptide chains. Use of the Aureochrome1a light-oxygen-voltage domain delivered control of dimerization with light. Illumination reduced the concentration needed to achieve 50% cleavage of the homing target site by 6-fold when compared to the dark state, resulting in an up to 9-fold difference in final yields between cleavage products. I-TevI nucleases with and without a native I-TevI zinc finger motif displayed different nuclease activity and sequence preference impacting the promiscuity of the nuclease domain. By harnessing an alternative DNA binding domain, target preference was reprogrammed only when the nuclease lacked the I-TevI zinc finger motif. This work establishes a first-generation photoresponsive platform for spatiotemporal activation of DNA cleavage.
Collapse
Affiliation(s)
- Luke A. Johnson
- School of Chemistry, Cardiff
University, Main Building, Park Place, CF10 3AT, Cardiff, U.K.
| | | | - Rudolf K. Allemann
- School of Chemistry, Cardiff
University, Main Building, Park Place, CF10 3AT, Cardiff, U.K.
| |
Collapse
|
5
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
6
|
Zhang H, Tu T. Targeting Hepatitis B Virus DNA Using Designer Gene Editors. Clin Liver Dis 2023; 27:895-916. [PMID: 37778776 DOI: 10.1016/j.cld.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious disease that currently has no cure. Key forms of HBV include covalently closed circular DNA, which mediates chronic persistence, and integrated DNA, which contributes to immune evasion and carcinogenesis. These forms are not targeted by current therapies; however, gene editing technologies have emerged as promising tools for disrupting HBV DNA. Gene editor-induced double-stranded breaks at precise locations within the HBV genome can induce effects ranging from inactivation of target genes to complete degradation of the target genome. Although promising, several challenges remain in efficacy and safety that require solutions.
Collapse
Affiliation(s)
- Henrik Zhang
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Thomas Tu
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia.
| |
Collapse
|
7
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
8
|
Tabassum T, Pietrogrande G, Healy M, Wolvetang EJ. CRISPR-Cas9 Direct Fusions for Improved Genome Editing via Enhanced Homologous Recombination. Int J Mol Sci 2023; 24:14701. [PMID: 37834150 PMCID: PMC10572186 DOI: 10.3390/ijms241914701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
DNA repair in mammalian cells involves the coordinated action of a range of complex cellular repair machinery. Our understanding of these DNA repair processes has advanced to the extent that they can be leveraged to improve the efficacy and precision of Cas9-assisted genome editing tools. Here, we review how the fusion of CRISPR-Cas9 to functional domains of proteins that directly or indirectly impact the DNA repair process can enhance genome editing. Such studies have allowed the development of diverse technologies that promote efficient gene knock-in for safer genome engineering practices.
Collapse
Affiliation(s)
- Tahmina Tabassum
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| | - Michael Healy
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| |
Collapse
|
9
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
10
|
Kanu GA, Parambath JBM, Abu Odeh RO, Mohamed AA. Gold Nanoparticle-Mediated Gene Therapy. Cancers (Basel) 2022; 14:5366. [PMID: 36358785 PMCID: PMC9653658 DOI: 10.3390/cancers14215366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Gold nanoparticles (AuNPs) have gained increasing attention as novel drug-delivery nanostructures for the treatment of cancers, infections, inflammations, and other diseases and disorders. They are versatile in design, synthesis, modification, and functionalization. This has many advantages in terms of gene editing and gene silencing, and their application in genetic illnesses. The development of several techniques such as CRISPR/Cas9, TALEN, and ZFNs has raised hopes for the treatment of genetic abnormalities, although more focused experimentation is still needed. AuNPs, however, have been much more effective in trending research on this subject. In this review, we highlight recently well-developed advancements that are relevant to cutting-edge gene therapies, namely gene editing and gene silencing in diseases caused by a single gene in humans by taking an edge of the unique properties of the AuNPs, which will be an important outlook for future research.
Collapse
Affiliation(s)
- Gayathri A. Kanu
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javad B. M. Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raed O. Abu Odeh
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A. Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Wei J, Brophy B, Cole SA, Moormann J, Boch J, Laible G. Cytoplasmic Injection of Zygotes to Genome Edit Naturally Occurring Sequence Variants Into Bovine Embryos. Front Genet 2022; 13:925913. [PMID: 35899192 PMCID: PMC9310181 DOI: 10.3389/fgene.2022.925913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Genome editing provides opportunities to improve current cattle breeding strategies through targeted introduction of natural sequence variants, accelerating genetic gain. This can be achieved by harnessing homology-directed repair mechanisms following editor-induced cleavage of the genome in the presence of a repair template. Introducing the genome editors into zygotes and editing in embryos has the advantage of uncompromised development into live animals and alignment with contemporary embryo-based improvement practices. In our study, we investigated the potential to introduce sequence variants, known from the pre-melanosomal protein 17 (PMEL) and prolactin receptor (PRLR) genes, and produce non-mosaic, edited embryos, completely converted into the precision genotype. Injection of gRNA/Cas9 editors into bovine zygotes to introduce a 3 bp deletion variant into the PMEL gene produced up to 11% fully converted embryos. The conversion rate was increased to up to 48% with the use of TALEN but only when delivered by plasmid. Testing three gRNA/Cas9 editors in the context of several known PRLR sequence variants, different repair template designs and delivery as DNA, RNA or ribonucleoprotein achieved full conversion rates up to 8%. Furthermore, we developed a biopsy-based screening strategy for non-mosaic embryos which has the potential for exclusively producing non-mosaic animals with intended precision edits.
Collapse
Affiliation(s)
- Jingwei Wei
- Animal Biotechnology, Ruakura Research Centre, AgResearch Ltd, Hamilton, New Zealand
| | - Brigid Brophy
- Animal Biotechnology, Ruakura Research Centre, AgResearch Ltd, Hamilton, New Zealand
| | - Sally-Ann Cole
- Animal Biotechnology, Ruakura Research Centre, AgResearch Ltd, Hamilton, New Zealand
| | - Jannis Moormann
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Gӧtz Laible
- Animal Biotechnology, Ruakura Research Centre, AgResearch Ltd, Hamilton, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Gӧtz Laible,
| |
Collapse
|
12
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. The Role of Recombinant AAV in Precise Genome Editing. Front Genome Ed 2022; 3:799722. [PMID: 35098210 PMCID: PMC8793687 DOI: 10.3389/fgeed.2021.799722] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The replication-defective, non-pathogenic, nearly ubiquitous single-stranded adeno-associated viruses (AAVs) have gained importance since their discovery about 50 years ago. Their unique life cycle and virus-cell interactions have led to the development of recombinant AAVs as ideal genetic medicine tools that have evolved into effective commercialized gene therapies. A distinctive property of AAVs is their ability to edit the genome precisely. In contrast to all current genome editing platforms, AAV exclusively utilizes the high-fidelity homologous recombination (HR) pathway and does not require exogenous nucleases for prior cleavage of genomic DNA. Together, this leads to a highly precise editing outcome that preserves genomic integrity without incorporation of indel mutations or viral sequences at the target site while also obviating the possibility of off-target genotoxicity. The stem cell-derived AAV (AAVHSCs) were found to mediate precise and efficient HR with high on-target accuracy and at high efficiencies. AAVHSC editing occurs efficiently in post-mitotic cells and tissues in vivo. Additionally, AAV also has the advantage of an intrinsic delivery mechanism. Thus, this distinctive genome editing platform holds tremendous promise for the correction of disease-associated mutations without adding to the mutational burden. This review will focus on the unique properties of direct AAV-mediated genome editing and their potential mechanisms of action.
Collapse
|
14
|
Atkins A, Chung CH, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B. Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy. Front Genome Ed 2021; 3:673022. [PMID: 34713260 PMCID: PMC8525399 DOI: 10.3389/fgeed.2021.673022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
As genome-editing nucleases move toward broader clinical applications, the need to define the limits of their specificity and efficiency increases. A variety of approaches for nuclease cleavage detection have been developed, allowing a full-genome survey of the targeting landscape and the detection of a variety of repair outcomes for nuclease-induced double-strand breaks. Each approach has advantages and disadvantages relating to the means of target-site capture, target enrichment mechanism, cellular environment, false discovery, and validation of bona fide off-target cleavage sites in cells. This review examines the strengths, limitations, and origins of the different classes of off-target cleavage detection systems including anchored primer enrichment (GUIDE-seq), in situ detection (BLISS), in vitro selection libraries (CIRCLE-seq), chromatin immunoprecipitation (ChIP) (DISCOVER-Seq), translocation sequencing (LAM PCR HTGTS), and in vitro genomic DNA digestion (Digenome-seq and SITE-Seq). Emphasis is placed on the specific modifications that give rise to the enhanced performance of contemporary techniques over their predecessors and the comparative performance of techniques for different applications. The clinical relevance of these techniques is discussed in the context of assessing the safety of novel CRISPR/Cas9 HIV-1 curative strategies. With the recent success of HIV-1 and SIV-1 viral suppression in humanized mice and non-human primates, respectively, using CRISPR/Cas9, rigorous exploration of potential off-target effects is of critical importance. Such analyses would benefit from the application of the techniques discussed in this review.
Collapse
Affiliation(s)
- Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States,*Correspondence: Brian Wigdahl
| |
Collapse
|
15
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
16
|
Genome Editing Technology and Its Application Potentials in the Industrial Filamentous Fungus Aspergillus oryzae. J Fungi (Basel) 2021; 7:jof7080638. [PMID: 34436177 PMCID: PMC8399504 DOI: 10.3390/jof7080638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/25/2023] Open
Abstract
Aspergillus oryzae is a filamentous fungus that has been used in traditional Japanese brewing industries, such as the sake, soy sauce, and miso production. In addition, A. oryzae has been used in heterologous protein production, and the fungus has been recently used in biosynthetic research due to its ability to produce a large amount of heterologous natural products by introducing foreign biosynthetic genes. Genetic manipulation, which is important in the functional development of A. oryzae, has mostly been limited to the wild strain RIB40, a genome reference suitable for laboratory analysis. However, there are numerous industrial brewing strains of A. oryzae with various specialized characteristics, and they are used selectively according to the properties required for various purposes such as sake, soy sauce, and miso production. Since the early 2000s, genome editing technologies have been developed; among these technologies, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) have been applied to gene modification in A. oryzae. Notably, the CRISPR/Cas9 system has dramatically improved the efficiency of gene modification in industrial strains of A. oryzae. In this review, the development of genome editing technology and its application potentials in A. oryzae are summarized.
Collapse
|
17
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Smith T, Singh P, Chmielewski KO, Bloom K, Cathomen T, Arbuthnot P, Ely A. Improved Specificity and Safety of Anti-Hepatitis B Virus TALENs Using Obligate Heterodimeric FokI Nuclease Domains. Viruses 2021; 13:v13071344. [PMID: 34372550 PMCID: PMC8310341 DOI: 10.3390/v13071344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection remains a serious medical problem worldwide, with an estimated global burden of 257 million carriers. Prophylactic and therapeutic interventions, in the form of a vaccine, immunomodulators, and nucleotide and nucleoside analogs, are available. Vaccination, however, offers no therapeutic benefit to chronic sufferers and has had a limited impact on infection rates. Although immunomodulators and nucleotide and nucleoside analogs have been licensed for treatment of chronic HBV, cure rates remain low. Transcription activator-like effector nucleases (TALENs) designed to bind and cleave viral DNA offer a novel therapeutic approach. Importantly, TALENs can target covalently closed circular DNA (cccDNA) directly with the potential of permanently disabling this important viral replicative intermediate. Potential off-target cleavage by engineered nucleases leading to toxicity presents a limitation of this technology. To address this, in the context of HBV gene therapy, existing TALENs targeting the viral core and surface open reading frames were modified with second- and third-generation FokI nuclease domains. As obligate heterodimers these TALENs prevent target cleavage as a result of FokI homodimerization. Second-generation obligate heterodimeric TALENs were as effective at silencing viral gene expression as first-generation counterparts and demonstrated an improved specificity in a mouse model of HBV replication.
Collapse
Affiliation(s)
- Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg & Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; (K.O.C.); (T.C.)
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg & Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; (K.O.C.); (T.C.)
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
- Correspondence: ; Tel.: +27-(0)11-717-2561
| |
Collapse
|
19
|
Eksi YE, Sanlioglu AD, Akkaya B, Ozturk BE, Sanlioglu S. Genome engineering and disease modeling via programmable nucleases for insulin gene therapy: Promises of CRISPR/Cas9 technology. World J Stem Cells 2021; 13:485-502. [PMID: 34249224 PMCID: PMC8246254 DOI: 10.4252/wjsc.v13.i6.485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change, insert, or remove a genomic sequence of interest. These advanced molecular tools include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and RNA-guided engineered nucleases (RGENs), which create double-strand breaks at specific target sites in the genome, and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism. A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype, without the need for the reengineering of the specific enzyme when targeting different sequences. CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function. RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes, as summarized and exemplified in this manuscript.
Collapse
Affiliation(s)
- Yunus E Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bahar Akkaya
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
20
|
Harnessing the power of directed evolution to improve genome editing systems. Curr Opin Chem Biol 2021; 64:10-19. [PMID: 33725650 DOI: 10.1016/j.cbpa.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022]
Abstract
The recent development of genome editing systems, such as zinc-finger nucleases, transcription activator-like effectors, CRISPR-Cas nucleases, and base editors has enabled the unprecedented capability to engineer the genomes of living cells. The ever-increasing demand for genome editors with improved accuracy, activity, and functionality has stimulated significant efforts to further engineer the genome editing systems. Directed evolution represents a promising strategy to improve the existing genome editing systems and enable new editing functions. Here, we review recent representative strategies to harness the power of directed evolution to improve genome editing systems, which have led to state-of-the-art genome editors that have significant implications for diverse applications in both laboratories and clinics.
Collapse
|
21
|
Ferreira D, Fontinha D, Martins C, Pires D, Fernandes AR, Baptista PV. Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules 2020; 25:E3489. [PMID: 32751935 PMCID: PMC7435825 DOI: 10.3390/molecules25153489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
Cancer remains a complex medical challenge and one of the leading causes of death worldwide. Nanomedicines have been proposed as innovative platforms to tackle these complex diseases, where the combination of several treatment strategies might enhance therapy success. Among these nanomedicines, nanoparticle mediated delivery of nucleic acids has been put forward as key instrument to modulate gene expression, be it targeted gene silencing, interference RNA mechanisms and/or gene edition. These novel delivery systems have strongly relied on nanoparticles and, in particular, gold nanoparticles (AuNPs) have paved the way for efficient delivery systems due to the possibility to fine-tune their size, shape and surface properties, coupled to the ease of functionalization with different biomolecules. Herein, we shall address the different molecular tools for modulation of expression of oncogenes and tumor suppressor genes and discuss the state-of-the-art of AuNP functionalization for nucleic acid delivery both in vitro and in vivo models. Furthermore, we shall highlight the clinical applications of these spherical AuNP based conjugates for gene delivery, current challenges, and future perspectives in nanomedicine.
Collapse
Affiliation(s)
- Daniela Ferreira
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - David Fontinha
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina Martins
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - David Pires
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Dept. of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Löber J, Hitzing C, Münchhalfen M, Engels N. Vav family proteins constitute disparate branching points for distinct BCR signaling pathways. Eur J Immunol 2020; 50:1912-1928. [PMID: 32671844 DOI: 10.1002/eji.202048621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 07/10/2020] [Indexed: 01/16/2023]
Abstract
Antigen recognition by B-cell antigen receptors (BCRs) activates distinct intracellular signaling pathways that control the differentiation fate of activated B lymphocytes. BCR-proximal signaling enzymes comprise protein tyrosine kinases, phosphatases, and plasma membrane lipid-modifying enzymes, whose function is furthermore coordinated by catalytically inert adaptor proteins. Here, we show that an additional class of enzymatic activity provided by guanine-nucleotide exchange factors (GEFs) of the Vav family controls BCR-proximal Ca2+ mobilization, cytoskeletal actin reorganization, and activation of the PI3 kinase/Akt pathway. Whereas Vav1 and Vav3 supported all of those signaling processes to different extents in a human B-cell model system, Vav2 facilitated Actin remodeling, and activation of Akt but did not promote Ca2+ signaling. On BCR activation, Vav1 was directly recruited to the phosphorylated BCR and to the central adaptor protein SLP65 via its Src homology 2 domain. Pharmacological inhibition or genetic inactivation of the substrates of Vav GEFs, small G proteins of the Rho/Rac family, impaired BCR-induced Ca2+ mobilization, probably because phospholipase Cγ2 requires activated Rac proteins for optimal activity. Our findings show that Vav family members are key relays of the BCR signalosome that differentially control distinct signaling pathways both in a catalysis-dependent and -independent manner.
Collapse
Affiliation(s)
- Jens Löber
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 943] [Impact Index Per Article: 235.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
24
|
Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. RICE (NEW YORK, N.Y.) 2019; 12:95. [PMID: 31858277 PMCID: PMC6923311 DOI: 10.1186/s12284-019-0355-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Continuing crop domestication/redomestication and modification is a key determinant of the adaptation and fulfillment of the food requirements of an exploding global population under increasingly challenging conditions such as climate change and the reduction in arable lands. Monocotyledonous crops are not only responsible for approximately 70% of total global crop production, indicating their important roles in human life, but also the first crops to be challenged with the abovementioned hurdles; hence, monocot crops should be the first to be engineered and/or de novo domesticated/redomesticated. A long time has passed since the first green revolution; the world is again facing the challenge of feeding a predicted 9.7 billion people in 2050, since the decline in world hunger was reversed in 2015. One of the major lessons learned from the first green revolution is the importance of novel and advanced trait-carrying crop varieties that are ideally adapted to new agricultural practices. New plant breeding techniques (NPBTs), such as genome editing, could help us succeed in this mission to create novel and advanced crops. Considering the importance of NPBTs in crop genetic improvement, we attempt to summarize and discuss the latest progress with major approaches, such as site-directed mutagenesis using molecular scissors, base editors and especially homology-directed gene targeting (HGT), a very challenging but potentially highly precise genome modification approach in plants. We therefore suggest potential approaches for the improvement of practical HGT, focusing on monocots, and discuss a potential approach for the regulation of genome-edited products.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
25
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
26
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Bukhari H, Müller T. Endogenous Fluorescence Tagging by CRISPR. Trends Cell Biol 2019; 29:912-928. [PMID: 31522960 DOI: 10.1016/j.tcb.2019.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Fluorescent proteins have revolutionized biomedical research as they are easy to use for protein tagging, cope without fixation or permeabilization, and thus, enable live cell imaging in various models. Current methods allow easy and quick integration of fluorescent markers to endogenous genes of interest. In this review, we introduce the three central methods, zinc finger nucleases (ZFNs), transcription activator-like effectors (TALENs), and CRISPR, that have been widely used to manipulate cells or organisms. Focusing on CRISPR technology, we give an overview on homology-directed repair (HDR)-, microhomology-mediated end joining (MMEJ)-, and nonhomologous end joining (NHEJ)-based strategies for the knock-in of markers, figure out recent developments of the technique for highly efficient knock-in, and demonstrate pros and cons. We highlight the unique aspects of fluorescent protein knock-ins and pinpoint specific improvements and perspectives, like the combination of editing with stem cell derived organoid development.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Molecular Biochemistry, Cell Signalling, Ruhr-University Bochum, Bochum, Germany
| | - Thorsten Müller
- Department of Molecular Biochemistry, Cell Signalling, Ruhr-University Bochum, Bochum, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany.
| |
Collapse
|
28
|
Paschon DE, Lussier S, Wangzor T, Xia DF, Li PW, Hinkley SJ, Scarlott NA, Lam SC, Waite AJ, Truong LN, Gandhi N, Kadam BN, Patil DP, Shivak DA, Lee GK, Holmes MC, Zhang L, Miller JC, Rebar EJ. Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 2019; 10:1133. [PMID: 30850604 PMCID: PMC6408524 DOI: 10.1038/s41467-019-08867-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Genome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array. Using our new architectures, we demonstrate targeting of an arbitrarily chosen 28 bp genomic locus at a density that approaches 1.0 (i.e., efficient ZFNs available for targeting almost every base step). We show that these new architectures may be used for targeting three loci of therapeutic significance with a high degree of precision, efficiency, and specificity.
Collapse
Affiliation(s)
- David E Paschon
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Stephanie Lussier
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Tenzin Wangzor
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Danny F Xia
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Patrick W Li
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Sarah J Hinkley
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Nicholas A Scarlott
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Stephen C Lam
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Adam J Waite
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Lynn N Truong
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Nimisha Gandhi
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Bhakti N Kadam
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Deepak P Patil
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - David A Shivak
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Gary K Lee
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Michael C Holmes
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Lei Zhang
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Edward J Rebar
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA.
| |
Collapse
|
29
|
Li P, Marino MP, Zou J, Argaw T, Morreale MT, Iaffaldano BJ, Reiser J. Efficiency and Specificity of Targeted Integration Mediated by the Adeno-Associated Virus Serotype 2 Rep 78 Protein. Hum Gene Ther Methods 2019; 29:135-145. [PMID: 29860898 DOI: 10.1089/hgtb.2018.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The adeno-associated virus serotype 2 (AAV2) Rep 78 protein, a strand-specific endonuclease (nickase) promotes site-specific integration of transgene sequences bearing homology arms corresponding to the AAVS1 safe harbor locus. To investigate the efficiency and specificity of this approach, plasmid-based donor vectors were tested in concert with nuclease encoding vectors, including an engineered version of the AAV2 Rep 78 protein, an AAVS1-specific zinc finger nuclease (ZFN), and the CRISPR-Cas9 components in HEK 293 cells. The Rep 78 and ZFN-based approaches were also compared in HEK 293 cells and in human induced pluripotent stem cells using integrase deficient lentiviral vectors. The targeting efficiencies involving the Rep 78 protein were similar to those involving the AAVS1-specific ZFN, while the targeting specificity for the Rep 78 protein was lower compared to that of the ZFN. It is anticipated that the Rep 78 nickase-based targeting approach may ultimately contribute to the reduction of risks associated with other genome editing approaches involving DNA double-strand breaks.
Collapse
Affiliation(s)
- Pingjuan Li
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland.,2 Gemini Therapeutics, Inc. , Cambridge, Massachusetts
| | - Michael P Marino
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| | - Jizhong Zou
- 3 National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Takele Argaw
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| | - Michael T Morreale
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| | - Brian J Iaffaldano
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| | - Jakob Reiser
- 1 Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
30
|
Simone BW, Martínez-Gálvez G, WareJoncas Z, Ekker SC. Fishing for understanding: Unlocking the zebrafish gene editor's toolbox. Methods 2018; 150:3-10. [PMID: 30076892 PMCID: PMC6590056 DOI: 10.1016/j.ymeth.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The rapid growth of the field of gene editing can largely be attributed to the discovery and optimization of designer endonucleases. These include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regular interspersed short palindromic repeat (CRISPR) systems including Cas9, Cas12a, and structure-guided nucleases. Zebrafish (Danio rerio) have proven to be a powerful model system for genome engineering testing and applications due to their external development, high fecundity, and ease of housing. As the zebrafish gene editing toolkit continues to grow, it is becoming increasingly important to understand when and how to utilize which of these technologies for maximum efficacy in a particular project. While CRISPR-Cas9 has brought broad attention to the field of genome engineering in recent years, designer endonucleases have been utilized in genome engineering for more than two decades. This chapter provides a brief overview of designer endonuclease and other gene editing technologies in zebrafish as well as some of their known functional benefits and limitations depending on specific project goals. Finally, selected prospects for additional gene editing tools are presented, promising additional options for directed genomic programming of this versatile animal model system.
Collapse
Affiliation(s)
- Brandon W Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
31
|
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 2018; 14:663-677. [PMID: 30089813 PMCID: PMC6591726 DOI: 10.1038/s41581-018-0047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.
Collapse
Affiliation(s)
- Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - William A C Gendron
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Caroline R Sussman
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Tang PZ, Ding B, Peng L, Mozhayskiy V, Potter J, Chesnut JD. TEG-seq: an ion torrent-adapted NGS workflow for in cellulo mapping of CRISPR specificity. Biotechniques 2018; 65:259-267. [PMID: 30114933 DOI: 10.2144/btn-2018-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
GUIDE-seq was developed to detect CRISPR/Cas9 off-target. However, as originally reported, it was associated with a high level of nonspecific amplification. In an attempt to improve it, we developed target-enriched GUIDE-seq (TEG-seq). The sensitivity level reached 0.1-10 reads-per-million depending on the NGS platform used, which was equivalent to 0.0002-1% measured by Targeted Amplicon-seq. Application of TEG-seq was demonstrated for the evaluation of various Cas9/gRNA configurations, which suggests delivery of Cas9/gRNA ribonucleoprotein results in significantly fewer off-targets than Cas9/gRNA plasmid. TEG-seq was also applied to 22 gRNAs with relatively high in silico ranking score that targeted the biological relevant SNPs. The result indicated the initial selection of gRNAs with high score is important, although it cannot exclude the possibility of off-target.
Collapse
Affiliation(s)
- Pei-Zhong Tang
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Bo Ding
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Lansha Peng
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Vadim Mozhayskiy
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jonathan D Chesnut
- Thermo Fisher Scientific Inc., R&D Synthetic Biology, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| |
Collapse
|
33
|
Chandrasekaran AP, Song M, Kim KS, Ramakrishna S. Different Methods of Delivering CRISPR/Cas9 Into Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:157-176. [PMID: 30340786 DOI: 10.1016/bs.pmbts.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) is comprised of repetitive bases followed by short fragments of DNA from a previously invading organism that provide immunity to the most prokaryotic organisms. An RNA-dependent spacer is required for CRISPR/Cas9 to recognize the target DNA. Delivery of the CRISPR/Cas9-guide RNA (gRNA) complex to any cell results in modification of the target sequence. The CRISPR/Cas9-mediated genome editing technique is currently in the spotlight and has several research interests, including molecular medicine and agriculture. There are several factors that hinder the delivery of this complex, such as the large size of the plasmid or high dosage of the chemical agent. There are several methods available to deliver CRISPR/Cas9 and its components to the target cells. It includes viral, non-viral and physical methods to deliver plasmid or ribonucleoprotein (RNP) of CRISPR components. But in vivo CRISPR/Cas9 delivery remains challenging to the researchers due to insertional mutagenesis, targeted delivery, immunogenicity, and off-targets. However, studies suggesting that the CRISPR/Cas9-RNP delivery can overcome these hurdles. Here, we review the various methods for delivery of CRISPR/Cas9 and gRNA to several cell lines, highlighting the limitations of each approach, and suggest possible alternative methods.
Collapse
Affiliation(s)
| | - Minjung Song
- Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
34
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
35
|
Woodard LE, Galvan DL, Wilson MH. Site-Directed Genome Modification with Engineered Zinc Finger Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lauren E. Woodard
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| | - Daniel L. Galvan
- University of Texas at MD Anderson Cancer Center; Section of Nephrology; Houston TX 77030 USA
| | - Matthew H. Wilson
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| |
Collapse
|
36
|
Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci Rep 2018; 8:4244. [PMID: 29523808 PMCID: PMC5844867 DOI: 10.1038/s41598-018-22544-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The B cell antigen receptor (BCR) employs enzymatically inactive adaptor proteins to facilitate activation of intracellular signaling pathways. In animal model systems, adaptor proteins of the growth factor receptor-bound 2 (Grb2) family have been shown to serve critical functions in lymphocytes. However, the roles of Grb2 and the Grb2-related adaptor protein (GRAP) in human B lymphocytes remain unclear. Using TALEN-mediated gene targeting, we show that in human B cells Grb2 and GRAP amplify signaling by the immunoglobulin tail tyrosine (ITT) motif of mIgE-containing BCRs and furthermore connect immunoreceptor tyrosine-based activation motif (ITAM) signaling to activation of the Ras-controlled Erk MAP kinase pathway. In contrast to mouse B cells, BCR-induced activation of Erk in human B cells is largely independent of phospholipase C-ɣ activity and diacylglycerol-responsive members of Ras guanine nucleotide releasing proteins. Together, our results demonstrate that Grb2 family adaptors are critical regulators of ITAM and ITT signaling in naïve and IgE-switched human B cells.
Collapse
Affiliation(s)
- Kanika Vanshylla
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Caren Bartsch
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Christoffer Hitzing
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Laura Krümpelmann
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Jürgen Wienands
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Niklas Engels
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany.
| |
Collapse
|
37
|
Fan HC, Chi CS, Lee YJ, Tsai JD, Lin SZ, Harn HJ. The Role of Gene Editing in Neurodegenerative Diseases. Cell Transplant 2018; 27:364-378. [PMID: 29766738 PMCID: PMC6038035 DOI: 10.1177/0963689717753378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Accepted: 02/19/2017] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases (NDs), at least including Alzheimer's, Huntington's, and Parkinson's diseases, have become the most dreaded maladies because there are no precise diagnostic tools or definite treatments for these debilitating diseases. The increased prevalence and a substantial impact on the social-economic and medical care of NDs propel governments to develop policies to counteract the impact. Although the etiologies of NDs are still unknown, growing evidence suggests that genetic, cellular, and circuit alternations may cause the generation of abnormal misfolded proteins, which uncontrolledly accumulate to damage and eventually overwhelm the protein-disposal mechanisms of these neurons, leading to a common pathological feature of NDs. If the functions and the connectivity can be restored, alterations and accumulated damages may improve. The gene-editing tools including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats-associated nucleases (CRISPR/CAS) have emerged as a novel tool not only for generating specific ND animal models for interrogating the mechanisms and screening potential drugs against NDs but also for the editing sequence-specific genes to help patients with NDs to regain function and connectivity. This review introduces the clinical manifestations of three distinct NDs and the applications of the gene-editing technology on these debilitating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Taichung, Taiwan
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Yih-Jing Lee
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
38
|
Sivalingam J, Kenanov D, Ng WH, Lee SS, Phan TT, Maurer-Stroh S, Kon OL. Integrated Multimodal Evaluation of Genotoxicity in ZFN-Modified Primary Human Cells. Methods Mol Biol 2018; 1867:141-164. [PMID: 30155821 DOI: 10.1007/978-1-4939-8799-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iatrogenic adverse events in clinical trials of retroviral vector-mediated gene-corrected cells have prioritized the urgent need for more comprehensive and stringent assessment of potentially genotoxic off-target alterations and the biosafety of cells intended for therapeutic applications. Genome editing tools such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 nuclease systems are being investigated as safer and efficient alternatives for site-directed genome modification. Using site-specific integration into the AAVS1 locus of primary human cells as an example, we present an integrated approach to multimodal investigation of off-target alterations and an evaluation of potential genotoxicity induced by ZFN-mediated integration of a therapeutic transgene.
Collapse
Affiliation(s)
- Jaichandran Sivalingam
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore.
| | - Dimitar Kenanov
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore.
| | - Wai Har Ng
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Sze Sing Lee
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- CellResearch Corporation, Singapore, Republic of Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
39
|
Abstract
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Collapse
|
40
|
Gautron AS, Juillerat A, Guyot V, Filhol JM, Dessez E, Duclert A, Duchateau P, Poirot L. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:312-321. [PMID: 29246309 PMCID: PMC5684446 DOI: 10.1016/j.omtn.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Abstract
Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of “off-the-shelf” CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells’ functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.
Collapse
Affiliation(s)
| | | | - Valérie Guyot
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| | | | - Emilie Dessez
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| | | | | | - Laurent Poirot
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| |
Collapse
|
41
|
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. THE PLANT CELL 2017; 29:2498-2518. [PMID: 28978758 PMCID: PMC5774583 DOI: 10.1105/tpc.17.00659] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
The fast-growing biflagellated single-celled chlorophyte Chlamydomonas reinhardtii is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency. We optimized gene-editing protocols for several Chlamydomonas strains (including wild-type CC-125) using zinc-finger nucleases (ZFNs), genetically encoded CRISPR/associated protein 9 (Cas9) from Staphylococcus aureus and Streptococcus pyogenes, and recombinant Cas9 and developed protocols for rapidly isolating nonselectable gene mutants. Using this technique, we disrupted the photoreceptor genes COP1/2, COP3 (encoding channelrhodopsin 1 [ChR1]), COP4 (encoding ChR2), COP5, PHOT, UVR8, VGCC, MAT3, and aCRY and created the chr1 chr2 and uvr8 phot double mutants. Characterization of the chr1, chr2, and mat3 mutants confirmed the value of photoreceptor mutants for physiological studies. Genes of interest were disrupted in 5 to 15% of preselected clones (∼1 out of 4000 initial cells). Using ZFNs, genes were edited in a reliable, predictable manner via homologous recombination, whereas Cas9 primarily caused gene disruption via the insertion of cotransformed DNA. These methods should be widely applicable to research involving green algae.
Collapse
Affiliation(s)
- Andre Greiner
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Heide Evers
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| |
Collapse
|
42
|
Precise immune tolerance for hPSC derivatives in clinical application. Cell Immunol 2017; 326:15-23. [PMID: 28866278 DOI: 10.1016/j.cellimm.2017.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022]
Abstract
Human pluripotent stem cells (hPSCs) promise a foreseeing future for regeneration medicine and cell replacement therapy with their abilities to produce almost any types of somatic cells of the body. The complicated immunogenicity of hPSC derivatives and context dependent responses in variable transplantations greatly hurdle the practical application of hPSCs in clinic. Especially for applications of hPSCs, induction of immune tolerance at the same time increases the risks of tumorigenesis. Over the past few years, thanks to the progress in immunology and practices in organ transplantation, endeavors on exploring strategies to induce long term protection of allogeneic transplants have shed light on overcoming this barrier. Novel genetic engineering techniques also allow to precisely cradle the immune response of transplantation. Here we reviewed the current understanding on immunogenicity, and efforts have been attempted on inducing immune tolerance for hPSC derivatives, with extra focus on modifying the graft cells. We also glimpse on employing cutting-edge genome editing technologies for this purpose, which will potentially endow hPSC derivatives with the nature of wide spectrum drugs for therapy.
Collapse
|
43
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
44
|
Naert T, Van Nieuwenhuysen T, Vleminckx K. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis 2017; 55. [PMID: 28095622 DOI: 10.1002/dvg.23005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research.
Collapse
Affiliation(s)
- Thomas Naert
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Tom Van Nieuwenhuysen
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Kris Vleminckx
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium
| |
Collapse
|
45
|
Blanvillain‐Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:306-317. [PMID: 27539813 PMCID: PMC5316920 DOI: 10.1111/pbi.12613] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 05/04/2023]
Abstract
As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv. oryzae (Xoo) injects into the plant cell DNA-binding proteins called transcription activator-like effectors (TALEs) that bind to effector-binding elements (EBEs) in a sequence-specific manner, resulting in host gene induction. TALEs AvrXa7, PthXo3, TalC and Tal5, found in geographically distant Xoo strains, all target OsSWEET14, thus considered as a pivotal TALE target acting as major susceptibility factor during rice-Xoo interactions. Here, we report the generation of an allele library of the OsSWEET14 promoter through stable expression of TALE-nuclease (TALEN) constructs in rice. The susceptibility level of lines carrying mutations in AvrXa7, Tal5 or TalC EBEs was assessed. Plants edited in AvrXa7 or Tal5 EBEs were resistant to bacterial strains relying on the corresponding TALE. Surprisingly, although indels within TalC EBE prevented OsSWEET14 induction in response to BAI3 wild-type bacteria relying on TalC, loss of TalC responsiveness failed to confer resistance to this strain. The TalC EBE mutant line was, however, resistant to a strain expressing an artificial SWEET14-inducing TALE whose EBE was also edited in this line. This work offers the first set of alleles edited in TalC EBE and uncovers a distinct, broader range of activities for TalC compared to AvrXa7 or Tal5. We propose the existence of additional targets for TalC beyond SWEET14, suggesting that TALE-mediated plant susceptibility may result from induction of several, genetically redundant, host susceptibility genes by a single effector.
Collapse
Affiliation(s)
- Servane Blanvillain‐Baufumé
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
- Present address: LabEx CeMEBUniversité de MontpellierMontpellierFrance
| | - Maik Reschke
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Montserrat Solé
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Sustainable Agro Solutions S.A.Almacelles (Lleida)Spain
| | - Florence Auguy
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Hinda Doucoure
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Boris Szurek
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Donaldo Meynard
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Murielle Portefaix
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Sébastien Cunnac
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Emmanuel Guiderdoni
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Jens Boch
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Ralf Koebnik
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| |
Collapse
|
46
|
A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc Natl Acad Sci U S A 2017; 114:1317-1322. [PMID: 28115716 DOI: 10.1073/pnas.1616443114] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All natural organisms store genetic information in a four-letter, two-base-pair genetic alphabet. The expansion of the genetic alphabet with two synthetic unnatural nucleotides that selectively pair to form an unnatural base pair (UBP) would increase the information storage potential of DNA, and semisynthetic organisms (SSOs) that stably harbor this expanded alphabet would thereby have the potential to store and retrieve increased information. Toward this goal, we previously reported that Escherichia coli grown in the presence of the unnatural nucleoside triphosphates dNaMTP and d5SICSTP, and provided with the means to import them via expression of a plasmid-borne nucleoside triphosphate transporter, replicates DNA containing a single dNaM-d5SICS UBP. Although this represented an important proof-of-concept, the nascent SSO grew poorly and, more problematically, required growth under controlled conditions and even then was unable to indefinitely store the unnatural information, which is clearly a prerequisite for true semisynthetic life. Here, to fortify and vivify the nascent SSO, we engineered the transporter, used a more chemically optimized UBP, and harnessed the power of the bacterial immune response by using Cas9 to eliminate DNA that had lost the UBP. The optimized SSO grows robustly, constitutively imports the unnatural triphosphates, and is able to indefinitely retain multiple UBPs in virtually any sequence context. This SSO is thus a form of life that can stably store genetic information using a six-letter, three-base-pair alphabet.
Collapse
|
47
|
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol 2016; 8:a023754. [PMID: 27908936 PMCID: PMC5131771 DOI: 10.1101/cshperspect.a023754] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the engineering advances that facilitated their development and highlight several achievements in genome engineering that were made possible by these tools. We also consider artificial transcription factors, illustrating how this technology can complement targeted nucleases for synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Sai-Lan Shui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
48
|
Abstract
Transcription activator-like effector nucleases (TALENs) are one of several types of programmable, engineered nucleases that bind and cleave specific DNA sequences. Cellular machinery repairs the cleaved DNA by introducing indels. In this review, we emphasize the potential, explore progress, and identify challenges in using TALENs as a therapeutic tool to treat HIV infection. TALENs have less off-target editing and can be more effective at tolerating HIV escape mutations than CRISPR/Cas-9. Scientists have explored TALEN-mediated editing of host genes such as viral entry receptors (CCR5 and CXCR4) and a protein involved in proviral integration (LEDGF/p75). Viral targets include the proviral DNA, particularly focused on the long terminal repeats. Major challenges with translating gene therapy from bench to bedside are improving cleavage efficiency and delivery, while minimizing off-target editing, cytotoxicity, and immunogenicity. However, rapid improvements in TALEN technology are enhancing cleavage efficiency and specificity. Therapeutic testing in animal models of HIV infection will help determine whether TALENs are a viable HIV treatment therapy. TALENs or other engineered nucleases could shift the therapeutic paradigm from life-long antiretroviral therapy toward eradication of HIV infection.
Collapse
|
49
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
50
|
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Beyond the outer limits of nature by directed evolution. Biotechnol Adv 2016; 34:754-767. [PMID: 27064127 DOI: 10.1016/j.biotechadv.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Collapse
Affiliation(s)
- Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|