1
|
Li M, Falk BT, Lu X, Schroder R, Mccoy M, Xu W, Yin DH, Gindy ME, D'Addio SM, Su Y. Molecular Mechanism of Antimicrobial Excipient-Induced Aggregation in Parenteral Formulations of Peptide Therapeutics. Mol Pharm 2022; 19:3267-3278. [PMID: 35917158 DOI: 10.1021/acs.molpharmaceut.2c00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization. In this work, we utilize solution nuclear magnetic resonance (NMR) as an advanced biophysical tool to study an acylated 31-residue peptide, acyl-peptide A, and its interaction with commonly used antimicrobial agents, benzyl alcohol and m-cresol. Our results suggest that acyl-peptide A forms soluble octamers in the aqueous solution, which tumble slowly due to an increased molecular weight as measured by diffusion ordered spectroscopy and 1H relaxation measurement. The addition of benzyl alcohol does not induce aggregation of acyl-peptide A and has no chemical shift perturbation in 1H-1H NOESY spectra, suggesting no detectable interaction with the peptide. In contrast, the addition of 1% (w/v) m-cresol results in insoluble aggregates composed of 25% (w/w) peptides after a 24-hour incubation at room temperature as quantified by 1H NMR. Interestingly, 1H-13C heteronuclear single-quantum coherence and 1H-1H total correlation experiment spectroscopy have identified m-cresol and peptide interactions at specific residues, including Met, Lys, Glu, and Gln, suggesting that there may be a combination of hydrophobic, hydrogen bonding, and electrostatic interactions with m-cresol driving this phenomenon. These site-specific interactions have promoted the formation of higher-order oligomerization such as dimers and trimers of octamers, eventually resulting in insoluble aggregates. Our study has elucidated a structural basis of m-cresol-induced self-association that can inform the optimized design of drug substances and products. Moreover, it has demonstrated solution NMR as a high-resolution tool to investigate the structure and dynamics of biological drug products and provide an understanding of excipient-induced peptide and protein aggregation.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bradley T Falk
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan Schroder
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark Mccoy
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel H Yin
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Marian E Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Lomize AL, Schnitzer KA, Todd SC, Pogozheva ID. Thermodynamics-Based Molecular Modeling of α-Helices in Membranes and Micelles. J Chem Inf Model 2021; 61:2884-2896. [PMID: 34029472 DOI: 10.1021/acs.jcim.1c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Folding of Membrane-Associated Peptides (FMAP) method was developed for modeling α-helix formation by linear peptides in micelles and lipid bilayers. FMAP 2.0 identifies locations of α-helices in the amino acid sequence, generates their three-dimensional models in planar bilayers or spherical micelles, and estimates their thermodynamic stabilities and tilt angles, depending on temperature and pH. The method was tested for 723 peptides (926 data points) experimentally studied in different environments and for 170 single-pass transmembrane (TM) proteins with available crystal structures. FMAP 2.0 detected more than 95% of experimentally observed α-helices with an average error in helix end determination of around 2, 3, 4, and 5 residues per helix for peptides in water, micelles, bilayers, and TM proteins, respectively. Helical and nonhelical residue states were predicted with an accuracy from 0.86 to 0.96, and the Matthews correlation coefficient was from 0.64 to 0.88 depending on the environment. Experimental micelle- and membrane-binding energies and tilt angles of peptides were reproduced with a root-mean-square deviation of around 2 kcal/mol and 7°, respectively. The TM and non-TM states of hydrophobic and pH-triggered α-helical peptides in various lipid bilayers were reproduced in more than 95% of cases. The FMAP 2.0 web server (https://membranome.org/fmap) is publicly available to explore the structural polymorphism of antimicrobial, cell-penetrating, fusion, and other membrane-binding peptides, which is important for understanding the mechanisms of their biological activities.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Kevin A Schnitzer
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109-2102, United States
| | - Spencer C Todd
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109-2102, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
3
|
Lipinski K, McKay MJ, Afrose F, Martfeld AN, Koeppe RE, Greathouse DV. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Chembiochem 2019; 20:2784-2792. [PMID: 31150136 DOI: 10.1002/cbic.201900282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Membrane proteins are essential for many cell processes yet are more difficult to investigate than soluble proteins. Charged residues often contribute significantly to membrane protein function. Model peptides such as GWALP23 (acetyl-GGALW5 LAL8 LALALAL16 ALW19 LAGA-amide) can be used to characterize the influence of specific residues on transmembrane protein domains. We have substituted R8 and R16 in GWALP23 in place of L8 and L16, equidistant from the peptide center, and incorporated specific 2 H-labeled alanine residues within the central sequence for detection by solid-state 2 H NMR spectroscopy. The resulting pattern of [2 H]Ala quadrupolar splitting (Δνq ) magnitudes indicates the core helix for R8,16 GWALP23 is significantly tilted to give a similar transmembrane orientation in thinner bilayers with either saturated C12:0 or C14:0 acyl chains (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) or unsaturated C16:1 Δ9 cis acyl chains. In bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; C18:1 Δ9 cis) multiple orientations are indicated, whereas in longer, unsaturated 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (DEiPC; C20:1 Δ11 cis) bilayers, the R8,16 GWALP23 helix adopts primarily a surface orientation. The inclusion of 10-20 mol % cholesterol in DOPC bilayers drives more of the R8,16 GWALP23 helix population to the membrane surface, thereby allowing both charged arginines access to the interfacial lipid head groups. The results suggest that hydrophobic thickness and cholesterol content are more important than lipid saturation for the arginine peptide dynamics and helix orientation in lipid membranes.
Collapse
Affiliation(s)
- Karli Lipinski
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Ashley N Martfeld
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA.,Present address: Department Department of Neurobiology, Duke University Medical Center, 311 Research Drive, Durham, NC, 27710, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
4
|
McKay MJ, Fu R, Greathouse DV, Koeppe RE. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide. J Phys Chem B 2019; 123:8034-8047. [PMID: 31483653 DOI: 10.1021/acs.jpcb.9b06034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane domains of membrane proteins sometimes contain conserved charged or ionizable residues which may be essential for protein function and regulation. This work examines the molecular interactions of single Arg residues within a highly dynamic transmembrane peptide helix. To this end, we have modified the GW4,20ALP23 (acetyl-GGAW4(AL)7AW20AGA-amide) model peptide framework to incorporate Arg residues near the center of the peptide. Peptide helix formation, orientation and dynamics were analyzed by means of solid-state NMR spectroscopy to monitor specific 2H- or 15N-labeled residues. GW4,20ALP23 itself adopts a tilted orientation within lipid bilayer membranes. Nevertheless, the GW4,20ALP23 helix exhibits moderate to high dynamic averaging of NMR observables, such as 2H quadrupolar splittings or 15N-1H dipolar couplings, due to competition between the interfacial Trp residues on opposing helix faces. Here we examine how the helix dynamics are impacted by the introduction of a single Arg residue at position 12 or 14. Residue R14 restricts the helix to low dynamic averaging and a well-defined tilt that varies inversely with the lipid bilayer thickness. To compensate for the dominance of R14, the competing Trp residues cause partial unwinding of the helix at the C-terminal. By contrast, R12GW4,20ALP23 exits the DOPC bilayer to an interfacial surface-bound location. Interestingly, multiple orientations are exhibited by a single residue, Ala-9. Quadrupolar splittings generated by 2H-labeled residues A3, A5, A7, and A9 do not fit to the α-helical quadrupolar wave plot defined by residues A11, A13, A15, A17, A19, and A21. The discontinuity at residue A9 implicates a helical swivel distortion and an apparent 310-helix involving the N-terminal residues preceding A11. These molecular features suggest that, while arginine residues are prominent factors controlling transmembrane helix dynamics, the influence of interfacial tryptophan residues cannot be ignored.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University , Tallahassee , Florida 32310 , United States
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
5
|
Dixit G, Sahu ID, Reynolds WD, Wadsworth TM, Harding BD, Jaycox CK, Dabney-Smith C, Sanders CR, Lorigan GA. Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2019; 58:965-973. [PMID: 30620191 DOI: 10.1021/acs.biochem.8b01042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
KCNQ1 (Kv7.1 or KvLQT1) is a potassium ion channel protein found in the heart, ear, and other tissues. In complex with the KCNE1 accessory protein, it plays a role during the repolarization phase of the cardiac action potential. Mutations in the channel have been associated with several diseases, including congenital deafness and long QT syndrome. Nuclear magnetic resonance (NMR) structural studies in detergent micelles and a cryo-electron microscopy structure of KCNQ1 from Xenopus laevis have shown that the voltage sensor domain (Q1-VSD) of the channel has four transmembrane helices, S1-S4, being overall structurally similar with other VSDs. In this study, we describe a reliable method for the reconstitution of Q1-VSD into (POPC/POPG) lipid bilayer vesicles. Site-directed spin labeling electron paramagnetic resonance spectroscopy was used to probe the structural dynamics and topology of several residues of Q1-VSD in POPC/POPG lipid bilayer vesicles. Several mutants were probed to determine their location and corresponding immersion depth (in angstroms) with respect to the membrane. The dynamics of the bilayer vesicles upon incorporation of Q1-VSD were studied using 31P solid-state NMR spectroscopy by varying the protein:lipid molar ratios confirming the interaction of the protein with the bilayer vesicles. Circular dichroism spectroscopic data showed that the α-helical content of Q1-VSD is higher for the protein reconstituted in vesicles than in previous studies using DPC detergent micelles. This study provides insight into the structural topology and dynamics of Q1-VSD reconstituted in a lipid bilayer environment, forming the basis for more advanced structural and functional studies.
Collapse
Affiliation(s)
- Gunjan Dixit
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Warren D Reynolds
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Tessa M Wadsworth
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| |
Collapse
|
6
|
Transmembrane helices containing a charged arginine are thermodynamically stable. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:627-637. [PMID: 28409218 DOI: 10.1007/s00249-017-1206-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.
Collapse
|
7
|
Bärenwald R, Achilles A, Lange F, Ferreira TM, Saalwächter K. Applications of Solid-State NMR Spectroscopy for the Study of Lipid Membranes with Polyphilic Guest (Macro)Molecules. Polymers (Basel) 2016; 8:E439. [PMID: 30974716 PMCID: PMC6432237 DOI: 10.3390/polym8120439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022] Open
Abstract
The incorporation of polymers or smaller complex molecules into lipid membranes allows for property modifications or the introduction of new functional elements. The corresponding molecular-scale details, such as changes in dynamics or features of potential supramolecular structures, can be studied by a variety of solid-state NMR techniques. Here, we review various approaches to characterizing the structure and dynamics of the guest molecules as well as the lipid phase structure and dynamics by different high-resolution magic-angle spinning proton and 13C NMR experiments as well as static 31P NMR experiments. Special emphasis is placed upon the incorporation of novel synthetic polyphilic molecules such as shape-persistent T- and X-shaped molecules as well as di- and tri-block copolymers. Most of the systems studied feature dynamic heterogeneities, for instance those arising from the coexistence of different phases; possibilities for a quantitative assessment are of particular concern.
Collapse
Affiliation(s)
- Ruth Bärenwald
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Anja Achilles
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Frank Lange
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Tiago Mendes Ferreira
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany.
| |
Collapse
|
8
|
Dynamic regulation of lipid-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1849-59. [PMID: 25666872 DOI: 10.1016/j.bbamem.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
9
|
Kwon B, Waring AJ, Hong M. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophys J 2014; 105:2333-42. [PMID: 24268145 DOI: 10.1016/j.bpj.2013.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/25/2022] Open
Abstract
Domain formation in bacteria-mimetic membranes due to cationic peptide binding was recently proposed based on calorimetric data. We now use (2)H solid-state NMR to critically examine the presence and absence of domains in bacterial membranes containing zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) lipids. Chain-perdeuterated POPE and POPG are used in single-component membranes, binary POPE/POPG (3:1) membranes, and membranes containing one of four cationic peptides: two antimicrobial peptides (AMPs) of the β-hairpin family of protegrin-1 (PG-1), and two cell-penetrating peptides (CPPs), HIV TAT and penetratin. (2)H quadrupolar couplings were measured to determine the motional amplitudes of POPE and POPG acyl chains as a function of temperature. Homogeneously mixed POPE/POPG membranes should give the same quadrupolar couplings for the two lipids, whereas the presence of membrane domains enriched in one of the two lipids should cause distinct (2)H quadrupolar couplings that reflect different chain disorder. At physiological temperature (308 K), we observed no or only small coupling differences between POPE and POPG in the presence of any of the cationic peptides. However, around ambient temperature (293 K), at which gel- and liquid-crystalline phases coexist in the peptide-free POPE/POPG membrane, the peptides caused distinct quadrupolar couplings for the two lipids, indicating domain formation. The broad-spectrum antimicrobial peptide PG-1 ordered ∼40% of the POPE lipids while disordering POPG. The Gram-negative selective PG-1 mutant, IB549, caused even larger differences in the POPE and POPG disorder: ∼80% of POPE partitioned into the ordered phase, whereas all of the POPG remained in the disordered phase. In comparison, TAT rigidified POPE and POPG similarly in the binary membrane at ambient temperature, indicating that TAT does not cause dynamic heterogeneity but interacts with the membrane with a different mechanism. Penetratin maintained the POPE order but disordered POPG, suggesting moderate domain separation. These results provide insight into the extent of domain formation in bacterial membranes and the possible peptide structural requirements for this phenomenon.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
10
|
Hall BA, Halim KA, Buyan A, Emmanouil B, Sansom MSP. Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices. J Chem Theory Comput 2014; 10:2165-75. [PMID: 26580541 PMCID: PMC4871227 DOI: 10.1021/ct500003g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analyzed via coarse grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations, we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of a family of helix sequences. We illustrate this software via analyses of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analyses of these ensembles of simulations, we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application, we use CGMD simulations to examine the self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase and analyze the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers a proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins.
Collapse
Affiliation(s)
- Benjamin A Hall
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU
- current address: Microsoft Research Cambridge, 21 Station Road, Cambridge, CB1 2FB
| | - Khairul Abd Halim
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU
| | - Amanda Buyan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU
| | - Beatrice Emmanouil
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU
| |
Collapse
|
11
|
Peng D, Kim JH, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR. Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry 2014; 53:2032-42. [PMID: 24606221 PMCID: PMC3977583 DOI: 10.1021/bi500102w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
KCNQ1 (also known as KV7.1 or KVLQT1) is a voltage-gated potassium channel modulated by members of the KCNE protein family. Among multiple functions, KCNQ1 plays a critical role in the cardiac action potential. This channel is also subject to inherited mutations that cause certain cardiac arrhythmias and deafness. In this study, we report the overexpression, purification, and preliminary structural characterization of the voltage-sensor domain (VSD) of human KCNQ1 (Q1-VSD). Q1-VSD was expressed in Escherichia coli and purified into lyso-palmitoylphosphatidylglycerol micelles, conditions under which this tetraspan membrane protein yields excellent nuclear magnetic resonance (NMR) spectra. NMR studies reveal that Q1-VSD shares a common overall topology with other channel VSDs, with an S0 helix followed by transmembrane helices S1-S4. The exact sequential locations of the helical spans do, however, show significant variations from those of the homologous segments of previously characterized VSDs. The S4 segment of Q1-VSD was seen to be α-helical (with no 310 component) and underwent rapid backbone amide H-D exchange over most of its length. These results lay the foundation for more advanced structural studies and can be used to generate testable hypotheses for future structure-function experiments.
Collapse
Affiliation(s)
- Dungeng Peng
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
13
|
Lazaridis T, Leveritt JM, PeBenito L. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2149-59. [PMID: 24525075 DOI: 10.1016/j.bbamem.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/10/2014] [Indexed: 01/06/2023]
Abstract
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - John M Leveritt
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Leo PeBenito
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
14
|
Bayro MJ, Chen B, Yau WM, Tycko R. Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. J Mol Biol 2013; 426:1109-27. [PMID: 24370930 DOI: 10.1016/j.jmb.2013.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent (15)N and (13)C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide (1)H nuclei, and quantitative measurements of site-specific (15)N-(15)N dipole-dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD-CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD-CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD-CTD dimerization interfaces are less significant.
Collapse
Affiliation(s)
- Marvin J Bayro
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Bo Chen
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
15
|
Hong M, Schmidt-Rohr K. Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res 2013; 46:2154-63. [PMID: 23387532 PMCID: PMC3714308 DOI: 10.1021/ar300294x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole-dipole couplings. However, most dipole-coupling techniques compete with the transverse (T2) relaxation of the nuclear spins, whose time constants are at most several tens of milliseconds, which limits the ability to measure weak dipolar couplings or long distances. In the last 10 years, we have developed a number of magic-angle-spinning (MAS) solid-state NMR techniques to measure distances of 15-20 Å. These methods take advantage of the high gyromagnetic ratios of (1)H and (19)F spins, multispin effects that speed up dipolar dephasing, and (1)H and (19)F spin diffusion that probes distances in the nanometer range. Third-spin heteronuclear detection provides a method for determining (1)H dipolar couplings to heteronuclear spins. We have used this technique to measure hydrogen-bond lengths, torsion angles, the distribution of protein conformations, and the oligomeric assembly of proteins. We developed a new pulse sequence, HARDSHIP, to determine weak long-range (1)H-heteronuclear dipolar couplings in the presence of strong short-range couplings. This experiment allows us to determine crystallite thicknesses in biological nanocomposites such as bone. The rotational-echo double-resonance (REDOR) technique allows us to detect multispin (13)C-(31)P and (13)C-(2)H dipolar couplings. Quantitative analysis of these couplings provides information about the structure of peptides bound to phospholipid bilayers and the geometry of ligand-binding sites in proteins. Finally, we also use relayed magnetization transfer, or spin diffusion, to measure long distances. z-Magnetization can diffuse over several nanometers because its long T1 relaxation times allow it to survive for hundreds of milliseconds. We developed (1)H spin diffusion to probe the depths of protein insertion into the lipid bilayer and protein-water interactions. On the other hand, (19)F spin diffusion of site-specifically fluorinated molecules allowed us to elucidate the oligomeric structures of membrane peptides.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, 50011, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, 50011, United States
| |
Collapse
|
16
|
Marbella LE, Cho HS, Spence MM. Observing the translocation of a mitochondria-penetrating peptide with solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1674-82. [PMID: 23567916 DOI: 10.1016/j.bbamem.2013.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 12/18/2022]
Abstract
A new class of penetrating peptides that can target the mitochondria with high specificity was recently discovered. In this work, we developed a model inner mitochondrial membrane, equipped with a transmembrane gradient, suitable for solid-state NMR experiments. Using solid-state NMR, we observed a mitochondria-penetrating peptide interacting with the model inner mitochondrial membrane to gain insight into the mechanism of translocation. The paramagnetic relaxation effect due to Mn(2+) ions on (13)C magic angle spinning NMR was used to measure the insertion depth of the peptide and its distribution in each monolayer of the membrane. We found that at low peptide concentration the peptide binds to the outer leaflet and at high concentration, it crosses the hydrophobic bilayer core and is distributed in both leaflets. In both concentration regimes, the peptide binds at the C2 position on the lipid acyl chain. The mitochondria-penetrating peptide crossed to the inner leaflet of the model membranes without disrupting the lamellarity. These results provide evidence that supports the electroporation model of translocation. We estimated the energy associated with crossing the inner mitochondrial membrane. We found that the transmembrane potential provides sufficient energy for the peptide to cross the hydrophobic core, which is the most unfavorable step in translocation.
Collapse
Affiliation(s)
- Lauren E Marbella
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
17
|
Su Y, Li S, Hong M. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR. Amino Acids 2013; 44:821-33. [PMID: 23108593 PMCID: PMC3570695 DOI: 10.1007/s00726-012-1421-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/24/2022]
Abstract
Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure-activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
18
|
Krepkiy D, Gawrisch K, Swartz KJ. Structural interactions between lipids, water and S1-S4 voltage-sensing domains. J Mol Biol 2012; 423:632-47. [PMID: 22858867 PMCID: PMC3616881 DOI: 10.1016/j.jmb.2012.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.
Collapse
Affiliation(s)
- Dmitriy Krepkiy
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
19
|
Tiriveedhi V, Miller M, Butko P, Li M. Autonomous transmembrane segment S4 of the voltage sensor domain partitions into the lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1698-705. [PMID: 22465069 PMCID: PMC3412939 DOI: 10.1016/j.bbamem.2012.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/25/2012] [Accepted: 03/15/2012] [Indexed: 02/05/2023]
Abstract
The S4 transmembrane segment in voltage-gated ion channels, a highly basic alpha helix, responds to changes in membrane potential and induces channel opening. Earlier work by others indicates that the S4 segment interacts with lipids in plasma membrane, but its mechanism is unclear. Working with synthetic tryptophan-labeled S4 peptides, we characterized binding of autonomous S4 to lipid membranes. The binding free energy (5.2 +/- 0.2 kcal/mol) of the peptide-lipid interaction was estimated from the apparent dissociation constants, determined from the changes in anisotropy of tryptophan fluorescence induced by addition of lipid vesicles with 30 mol% phosphatidylglycerol. The results are in good agreement with the prediction based on the Wimley-White hydrophobicity scale for interfacial (IF) binding of an alpha-helical peptide to the lipid bilayer (6.98 kcal/mol). High salt inhibited the interaction, thus indicating that the peptide/membrane interaction has both electrostatic and non-electrostatic components. Furthermore, the synthetic S4 corresponding to the Shaker potassium channel was found to spontaneously penetrate into the negatively charged lipid membrane to a depth of about 9 A. Our results revealed important biophysical parameters that influence the interaction of S4 with the membrane: they include fluidity, surface charge, and surface pressure of the membrane, and the at helicity and regular spacing of basic amino-acid residues in the S4 sequence.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Neuroscience and High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, U.S.A
| | - Melissa Miller
- Department of Neuroscience and High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, U.S.A
| | - Peter Butko
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, U.S.A
| | - Min Li
- Department of Neuroscience and High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, U.S.A
| |
Collapse
|
20
|
Unnerståle S, Madani F, Gräslund A, Mäler L. Membrane-perturbing properties of two Arg-rich paddle domains from voltage-gated sensors in the KvAP and HsapBK K(+) channels. Biochemistry 2012; 51:3982-92. [PMID: 22533856 DOI: 10.1021/bi300188t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated K(+) channels are gated by displacement of basic residues located in the S4 helix that together with a part of the S3 helix, S3b, forms a "paddle" domain, whose position is altered by changes in the membrane potential modulating the open probability of the channel. Here, interactions between two paddle domains, KvAPp from the K(v) channel from Aeropyrum pernix and HsapBKp from the BK channel from Homo sapiens, and membrane models have been studied by spectroscopy. We show that both paddle domains induce calcein leakage in large unilamellar vesicles, and we suggest that this leakage represents a general thinning of the bilayer, making movement of the whole paddle domain plausible. The fact that HsapBKp induces more leakage than KvAPp may be explained by the presence of a Trp residue in HsapBKp. Trp residues generally promote localization to the hydrophilic-hydrophobic interface and disturb tight packing. In magnetically aligned bicelles, KvAPp increases the level of order along the whole acyl chain, while HsapBKp affects the morphology, also indicating that KvAPp adapts more to the lipid environment. Nuclear magnetic resonance (NMR) relaxation measurements for HsapBKp show that overall the sequence has anisotropic motions. The S4 helix is well-structured with restricted local motion, while the turn between S4 and S3b is more flexible and undergoes slow local motion. Our results indicate that the calcein leakage is related to the flexibility in this turn region. A possibility by which HsapBKp can undergo structural transitions is also shown by relaxation NMR, which may be important for the gating mechanism.
Collapse
Affiliation(s)
- Sofia Unnerståle
- Department of Biochemistry and Biophysics, The Arrhenius laboratory, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
22
|
Vostrikov VV, Grant CV, Opella SJ, Koeppe RE. On the combined analysis of ²H and ¹⁵N/¹H solid-state NMR data for determination of transmembrane peptide orientation and dynamics. Biophys J 2011; 101:2939-47. [PMID: 22208192 DOI: 10.1016/j.bpj.2011.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/20/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023] Open
Abstract
The dynamics of membrane-spanning peptides have a strong affect on the solid-state NMR observables. We present a combined analysis of ²H-alanine quadrupolar splittings together with ¹⁵N/(1)H dipolar couplings and ¹⁵N chemical shifts, using two models to treat the dynamics, for the systematic evaluation of transmembrane peptides based on the GWALP23 sequence (acetyl-GGALW(LA)₆LWLAGA-amide). The results indicate that derivatives of GWALP23 incorporating diverse guest residues adopt a range of apparent tilt angles that span 5°-35° in lipid bilayer membranes. By comparing individual and combined analyses of specifically ²H- or ¹⁵N-labeled peptides incorporated in magnetically or mechanically aligned lipid bilayers, we examine the influence of data-set size/identity, and of explicitly modeled dynamics, on the deduced average orientations of the peptides. We conclude that peptides with small apparent tilt values (<∼10°) can be fitted by extensive families of solutions, which can be narrowed by incorporating additional ¹⁵N as well as ²H restraints. Conversely, peptides exhibiting larger tilt angles display more narrow distributions of tilt and rotation that can be fitted using smaller sets of experimental constraints or even with ²H or ¹⁵N data alone. Importantly, for peptides that tilt significantly more than 10° from the bilayer-normal, the contribution from rigid body dynamics can be approximated by a principal order parameter.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
24
|
Andersson M, Freites JA, Tobias DJ, White SH. Structural dynamics of the S4 voltage-sensor helix in lipid bilayers lacking phosphate groups. J Phys Chem B 2011; 115:8732-8. [PMID: 21692541 PMCID: PMC3140535 DOI: 10.1021/jp2001964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Voltage-dependent K(+) (Kv) channels require lipid phosphates for functioning. The S4 helix, which carries the gating charges in the voltage-sensing domain (VSD), inserts into membranes while being stabilized by a protein-lipid interface in which lipid phosphates play an essential role. To examine the physical basis of the protein-lipid interface in the absence of lipid phosphates, we performed molecular dynamics (MD) simulations of a KvAP S4 variant (S4mut) in bilayers with and without lipid phosphates. We find that, in dioleoyltrimethylammoniumpropane (DOTAP) bilayers lacking lipid phosphates, the gating charges are solvated by anionic counterions and, hence, lack the bilayer support provided by phosphate-containing palmitoyloleoylglycerophosphocholine (POPC) bilayers. The result is a water-permeable bilayer with significantly smaller deformations around the peptide. Together, these results provide an explanation for the nonfunctionality of VSDs in terms of a destabilizing protein-lipid interface.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California, Irvine, California, 92697
| | - J. Alfredo Freites
- Department of Chemistry and Institute for Surface and Interface Science, University of California, Irvine, California, 92697
| | - Douglas J. Tobias
- Department of Chemistry and Institute for Surface and Interface Science, University of California, Irvine, California, 92697
| | - Stephen H. White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California, Irvine, California, 92697
| |
Collapse
|
25
|
Verma R, Ghosh JK. Phospholipid membrane-interaction of a peptide from S4 segment of KvAP K+ channel and the influence of the positive charges and an identified heptad repeat in its interaction with a S3 peptide. Biochimie 2011; 93:1001-11. [DOI: 10.1016/j.biochi.2011.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 02/11/2011] [Indexed: 11/27/2022]
|
26
|
Su Y, Waring AJ, Ruchala P, Hong M. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry 2011; 50:2072-83. [PMID: 21302955 PMCID: PMC3062705 DOI: 10.1021/bi101975v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural basis for the gram selectivity of two disulfide-bonded β-hairpin antimicrobial peptides (AMPs) is investigated using solid-state nuclear magnetic resonance (NMR) spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both gram-positive and gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains gram-positive activity but is 30-fold less active against gram-negative bacteria. We determined the topological structure and lipid interactions of these two peptides in a lipopolysaccharide (LPS)-rich membrane that mimics the outer membrane of gram-negative bacteria and in the POPE/POPG membrane, which mimics the membrane of gram-positive bacteria. (31)P NMR line shapes indicate that both peptides cause less orientational disorder in the LPS-rich membrane than in the POPE/POPG membrane. (13)C chemical shifts and (13)C-(1)H dipolar couplings show that both peptides maintain their β-hairpin conformation in these membranes and are largely immobilized, but the mutant exhibits noticeable intermediate-time scale motion in the LPS membrane at physiological temperature, suggesting shallow insertion. Indeed, (1)H spin diffusion from lipid chains to the peptides shows that PG-1 fully inserts into the LPS-rich membrane whereas the mutant does not. The (13)C-(31)P distances between the most hydrophobically embedded Arg of PG-1 and the lipid (31)P are significantly longer in the LPS membrane than in the POPE/POPG membrane, indicating that PG-1 does not cause toroidal pore defects in the LPS membrane, in contrast to its behavior in the POPE/POPG membrane. Taken together, these data indicate that PG-1 causes transmembrane pores of the barrel-stave type in the LPS membrane, thus allowing further translocation of the peptide into the inner membrane of gram-negative bacteria to kill the cells. In comparison, the less cationic mutant cannot fully cross the LPS membrane because of weaker electrostatic attractions, thus causing weaker antimicrobial activities. Therefore, strong electrostatic attraction between the peptide and the membrane surface, ensured by having a sufficient number of Arg residues, is essential for potent antimicrobial activities against gram-negative bacteria. The data provide a rational basis for controlling gram selectivity of AMPs by adjusting the charge densities.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - Alan J. Waring
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4560
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, IA 50011
| |
Collapse
|
27
|
Lomize AL, Pogozheva ID, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model 2011; 51:930-46. [PMID: 21438606 DOI: 10.1021/ci200020k] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new computational approach to calculating binding energies and spatial positions of small molecules, peptides, and proteins in the lipid bilayer has been developed. The method combines an anisotropic solvent representation of the lipid bilayer and universal solvation model, which predicts transfer energies of molecules from water to an arbitrary medium with defined polarity properties. The universal solvation model accounts for hydrophobic, van der Waals, hydrogen-bonding, and electrostatic solute-solvent interactions. The lipid bilayer is represented as a fluid anisotropic environment described by profiles of dielectric constant (ε), solvatochromic dipolarity parameter (π*), and hydrogen bonding acidity and basicity parameters (α and β). The polarity profiles were calculated using published distributions of quasi-molecular segments of lipids determined by neutron and X-ray scattering for DOPC bilayer and spin-labeling data that define concentration of water in the lipid acyl chain region. The model also accounts for the preferential solvation of charges and polar groups by water and includes the effect of the hydrophobic mismatch for transmembrane proteins. The method was tested on calculations of binding energies and preferential positions in membranes for small-molecules, peptides and peripheral membrane proteins that have been experimentally studied. The new theoretical approach was implemented in a new version (2.0) of our PPM program and applied for the large-scale calculations of spatial positions in membranes of more than 1000 peripheral and integral proteins. The results of calculations are deposited in the updated OPM database ( http://opm.phar.umich.edu ).
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, USA.
| | | | | |
Collapse
|
28
|
Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 2011; 20:641-55. [PMID: 21344534 DOI: 10.1002/pro.600] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 12/11/2022]
Abstract
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein-lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
29
|
Schow EV, Freites JA, Myint PC, Bernsel A, von Heijne G, White SH, Tobias DJ. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 2010; 239:35-48. [PMID: 21127848 PMCID: PMC3030942 DOI: 10.1007/s00232-010-9330-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 01/09/2023]
Abstract
Several laboratories have carried out molecular dynamics (MD) simulations of arginine interactions with lipid bilayers and found that the energetic cost of placing arginine in lipid bilayers is an order of magnitude greater than observed in molecular biology experiments in which Arg-containing transmembrane helices are inserted across the endoplasmic reticulum membrane by the Sec61 translocon. We attempt here to reconcile the results of the two approaches. We first present MD simulations of guanidinium groups alone in lipid bilayers, and then, to mimic the molecular biology experiments, we present simulations of hydrophobic helices containing single Arg residues at different positions along the helix. We discuss the simulation results in the context of molecular biology results and show that the energetic discrepancy is reduced, but not eliminated, by considering free energy differences between Arg at the interface and at the center of the model helices. The reduction occurs because Arg snorkeling to the interface prevents Arg from residing in the bilayer center where the energetic cost of desolvation is highest. We then show that the problem with MD simulations is that they measure water-to-bilayer free energies, whereas the molecular biology experiments measure the energetics of partitioning from translocon to bilayer, which raises the fundamental question of the relationship between water-to-bilayer and water-to-translocon partitioning. We present two thermodynamic scenarios as a foundation for reconciliation of the simulation and molecular biology results. The simplest scenario is that translocon-to-bilayer partitioning is independent of water-to-bilayer partitioning; there is no thermodynamic cycle connecting the two paths.
Collapse
Affiliation(s)
- Eric V. Schow
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Department of Physics, University of California, Irvine, CA 92697 USA
| | - J. Alfredo Freites
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| | - Philip C. Myint
- Department of Bioengineering, University of California, Irvine, CA 92697 USA
| | - Andreas Bernsel
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Stephen H. White
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697 USA
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697 USA
| |
Collapse
|