1
|
Su Y, Zeng X, Zhang L, Bian Y, Wang Y, Ma B. ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides. Interdiscip Sci 2024:10.1007/s12539-024-00664-5. [PMID: 39466358 DOI: 10.1007/s12539-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.
Collapse
Affiliation(s)
- Yuhong Su
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingfeng Zhang
- School of Electrical Engineering and Computer Science, University of Ottawa, 75 Laurier Ave, Ottawa, K1N 6N5, Canada
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Digiwiser Biological, Inc, Shanghai, 200240, China.
| |
Collapse
|
2
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
3
|
Esquer A, Blanc F, Collongues N. Immunotherapies Targeting Amyloid and Tau Protein in Alzheimer's Disease: Should We Move Away from Diseases and Focus on Biological Targets? A Systematic Review and Expert Opinion. Neurol Ther 2023; 12:1883-1907. [PMID: 37812325 PMCID: PMC10630258 DOI: 10.1007/s40120-023-00541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common cause of dementia worldwide, making it a major public health issue. Anti-amyloid and anti-tau antibodies are the most advanced therapeutic approach at present. Three drugs (lecanemab, donanemab and aducanumab) are on track to be marketed in the coming months. In this systematic review, we review all Phase 2 and Phase 3 clinical trials conducted in this indication and the particularities of the molecules tested. METHODS The PubMed and ClinicalTrials.gov databases were searched through February 2023 for Phase 2 and 3 clinical trials involving passive anti-amyloid or anti-tau immunotherapies with published results. This review has been compiled in compliance with the PRISMA checklists. RESULTS Of the 165 studies found and after eliminating duplicates, 40 studies had their results published on PubMed and/or ClinicalTrials.gov. Eight anti-amyloid molecules and four anti-tau molecules were the subject of Phase 2 studies, seven anti-amyloids were the subject of Phase 3 trials, and two molecules were granted early marketing approval by the US Food and Drug Administration (FDA). The results were compiled in summary tables showing the primary endpoints used, results, age of the study population and specific adverse events for these molecules. DISCUSSION Passive immunotherapy in AD is largely dominated by anti-amyloid antibodies, which are more numerous and more advanced in the pipeline. Lecanemab, donanemab and aducanumab are distinguished by their relative efficacy in terms of cognitive and functional evaluation but also by a decrease in amyloid and tau proteins in the brain. These three molecules have in common that they bind to N-terminal ends of amyloid fibrils and plaques. The findings of their studies raise the question of which criteria to apply when choosing which patient will receive them when marketed, such as the apoliprotein E gene's fourth allele (APOE4) genetic status of patients. The large number of negative studies may also raise the question of the criteria for defining the disease and the possible interest in redefining it on biological grounds to offer a more personalized medicine to patients suffering from neurodegenerative diseases.
Collapse
Affiliation(s)
- Arthur Esquer
- Center for Clinical Investigation, INSERM U1434, Strasbourg, France
- Geriatrics Day Hospital and Cognitive-Behavioral Unit, Geriatrics Department, Centre Mémoire de Ressources et de Recherche (CM2R), University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- Geriatrics Day Hospital and Cognitive-Behavioral Unit, Geriatrics Department, Centre Mémoire de Ressources et de Recherche (CM2R), University Hospital of Strasbourg, Strasbourg, France
- Strasbourg University and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team, Strasbourg, France
| | - Nicolas Collongues
- Center for Clinical Investigation, INSERM U1434, Strasbourg, France.
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France.
- Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France.
| |
Collapse
|
4
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
5
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
6
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
7
|
Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer's disease. Front Neurol 2023; 14:1147757. [PMID: 37006475 PMCID: PMC10050585 DOI: 10.3389/fneur.2023.1147757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Backgrounds and objectives Currently, no consensus has been reached on the therapeutic implications of monoclonal antibodies against amyloid-beta (Aβ) in Alzheimer's disease (AD). This study aimed to examine the effectiveness and safety of monoclonal antibodies against Aβ as a whole and also to determine the superiority of individual antibodies vis-à-vis placebo in mild or moderate AD. Methods Literature retrieval, article selection, and data abstraction were performed independently and in duplicate. Cognition and function were appraised by the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Disability Assessment for Dementia (DAD), and Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB). Effect sizes are expressed as standardized mean difference (SMD) with a 95% confidence interval (CI). Results Twenty-nine articles involving 108 drug-specific trials and 21,383 participants were eligible for synthesis. Of the four assessment scales, only CDR-SB was significantly reduced after using monoclonal antibodies against Aβ relative to placebo (SMD: -0.12; 95% CI: -0.2 to -0.03; p = 0.008). Egger's tests indicated a low likelihood of publication bias. At individual levels, bapineuzumab was associated with a significant increase in MMSE (SMD: 0.588; 95% CI: 0.226-0.95) and DAD (SMD: 0.919; 95% CI: 0.105-1.943), and a significant decrease in CDR-SB (SMD: -0.15; 95% CI: -0.282-0.018). Bapineuzumab can increase the significant risk of serious adverse events (OR: 1.281; 95% CI: 1.075-1.525). Conclusion Our findings indicate that monoclonal antibodies against Aβ can effectively improve instrumental activities of daily life in mild or moderate AD. In particular, bapineuzumab can improve cognition and function, as well as activities of daily life, and meanwhile, it triggers serious adverse events.
Collapse
Affiliation(s)
- Ying Hao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Mingrui Dong
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingtong Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer's disease. Cell Signal 2023; 102:110539. [PMID: 36455831 DOI: 10.1016/j.cellsig.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the world. Although the basic pathology of the disease is elucidated, it is difficult to restore or prevent the worsening of neurodegeneration and its symptoms. Antibody and small molecule-based approaches have been studied and are in study individually, but a combined approach like conjugation has not been performed to date. The conjugation between antibodies and drugs which are already used for Alzheimer's treatment or developed specifically for this purpose may have better efficacy and dual action in mitigating Alzheimer's disease. A probable mechanism for antibody-drug conjugates in Alzheimer's disease is discussed in the present review.
Collapse
|
9
|
Lu D, Dou F, Gao J. Development of amyloid beta-directed antibodies against Alzheimer's disease: Twists and turns. Drug Discov Ther 2023; 17:440-444. [PMID: 38220210 DOI: 10.5582/ddt.2023.01215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Alzheimer's disease (AD) is a severe and progressive neurodegenerative disease, and the treatment options that are currently available are limited. The amyloid cascade hypothesis has had a significant influence in explaining the pathology underlying AD. Inhibiting the production and aggregation of amyloid-beta (Aβ) and promoting its clearance have been important strategies in the development of anti-AD drugs over the past two decades. Specifically, Aβ directed antibodies have been highly anticipated, but drug development has been fraught with obstacles and challenges. Antibodies targeting the C-terminal or central region of Aβ, such as ponezumab, solanezumab, and crenezumab, primarily bind to Aβ monomers, yet no significant clearance of brain plaques or slowing of disease progression has been observed in clinical trials. Antibodies targeting the N-terminal region of Aβ, including aducanumab, lecanemab, and donanemab, primarily bind to aggregated forms of Aβ, and have shown efficacy in clearing brain plaques and slowing early-stage AD progression in clinical trials. However, clinical trials of gantenerumab, which targets conformational epitopes in the N-terminal and central sequences of Aβ and which selectively binds to aggregated forms, have failed, raising some new questions about the Aβ hypothesis. Advances in research on the pathological mechanisms of AD and advances in early diagnostic techniques may shift the time window for drug intervention and offer a potential pathway for developing effective drugs to delay the onset and progression of AD in the future.
Collapse
Affiliation(s)
- Daoran Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Fangzhou Dou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Xu X, Xu H, Zhang Z. Cerebral amyloid angiopathy-related cardiac injury: Focus on cardiac cell death. Front Cell Dev Biol 2023; 11:1156970. [PMID: 36910141 PMCID: PMC9998697 DOI: 10.3389/fcell.2023.1156970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a kind of disease in which amyloid β (Aβ) and other amyloid protein deposits in the cerebral cortex and the small blood vessels of the brain, causing cerebrovascular and brain parenchymal damage. CAA patients are often accompanied by cardiac injury, involving Aβ, tau and transthyroxine amyloid (ATTR). Aβ is the main injury factor of CAA, which can accelerate the formation of coronary artery atherosclerosis, aortic valve osteogenesis calcification and cardiomyocytes basophilic degeneration. In the early stage of CAA (pre-stroke), the accompanying locus coeruleus (LC) amyloidosis, vasculitis and circulating Aβ will induce first hit to the heart. When the CAA progresses to an advanced stage and causes a cerebral hemorrhage, the hemorrhage leads to autonomic nervous function disturbance, catecholamine surges, and systemic inflammation reaction, which can deal the second hit to the heart. Based on the brain-heart axis, CAA and its associated cardiac injury can create a vicious cycle that accelerates the progression of each other.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical care medicine, Hangzhou, China
| |
Collapse
|
11
|
Song C, Zhang T, Zhang Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196751. [PMID: 36235284 PMCID: PMC9570743 DOI: 10.3390/molecules27196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Soluble aggregation of amyloid β-peptide 1-42 (Aβ42) and deposition of Aβ42 aggregates are the initial pathological hallmarks of Alzheimer's disease (AD). The bipolar nature of Aβ42 molecule results in its ability to assemble into distinct oligomers and higher aggregates, which may drive some of the phenotypic heterogeneity observed in AD. Agents targeting Aβ42 or its aggregates, such as anti-Aβ42 antibodies, can inhibit the aggregation of Aβ42 and toxicity of Aβ42 aggregates to neural cells to a certain extent. However, the epitope specificity of an antibody affects its binding affinity for different Aβ42 species. Different antibodies target different sites on Aβ42 and thus elicit different neuroprotective or cytoprotective effects. In the present review, we summarize significant information reflected by anti-Aβ42 antibodies in different immunotherapies and propose an overview of the structure (conformation)-toxicity relationship of Aβ42 aggregates. This review aimed to provide a reference for the directional design of antibodies against the most pathogenic conformation of Aβ42 aggregates.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
12
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
13
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
14
|
Santoro A, Grimaldi M, Buonocore M, Stillitano I, Gloria A, Santin M, Bobba F, Sublimi Saponetti M, Ciaglia E, D'Ursi AM. New Aβ(1-42) ligands from anti-amyloid antibodies: Design, synthesis, and structural interaction. Eur J Med Chem 2022; 237:114400. [PMID: 35489223 DOI: 10.1016/j.ejmech.2022.114400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aβ peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aβ(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aβ-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aβ(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aβ(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aβ(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aβ antibody mimicking peptides.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20, Mostra d'Oltremare, 80125, Naples, Italy
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Fabrizio Bobba
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Matilde Sublimi Saponetti
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
15
|
Durai P, Beeraka NM, Ramachandrappa HVP, Krishnan P, Gudur P, Raghavendra NM, Ravanappa PKB. Advances in PPARs Molecular Dynamics and Glitazones as a Repurposing Therapeutic Strategy through Mitochondrial Redox Dynamics against Neurodegeneration. Curr Neuropharmacol 2022; 20:893-915. [PMID: 34751120 PMCID: PMC9881103 DOI: 10.2174/1570159x19666211109141330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) activity has significant implications for the development of novel therapeutic modalities against neurodegenerative diseases. Although PPAR-α, PPAR-β/δ, and PPAR-γ nuclear receptor expressions are significantly reported in the brain, their implications in brain physiology and other neurodegenerative diseases still require extensive studies. PPAR signaling can modulate various cell signaling mechanisms involved in the cells contributing to on- and off-target actions selectively to promote therapeutic effects as well as the adverse effects of PPAR ligands. Both natural and synthetic ligands for the PPARα, PPARγ, and PPARβ/δ have been reported. PPARα (WY 14.643) and PPARγ agonists can confer neuroprotection by modulating mitochondrial dynamics through the redox system. The pharmacological effect of these agonists may deliver effective clinical responses by protecting vulnerable neurons from Aβ toxicity in Alzheimer's disease (AD) patients. Therefore, the current review delineated the ligands' interaction with 3D-PPARs to modulate neuroprotection, and also deciphered the efficacy of numerous drugs, viz. Aβ aggregation inhibitors, vaccines, and γ-secretase inhibitors against AD; this review elucidated the role of PPAR and their receptor isoforms in neural systems, and neurodegeneration in human beings. Further, we have substantially discussed the efficacy of PPREs as potent transcription factors in the brain, and the role of PPAR agonists in neurotransmission, PPAR gamma coactivator-1α (PGC-1α) and mitochondrial dynamics in neuroprotection during AD conditions. This review concludes with the statement that the development of novel PPARs agonists may benefit patients with neurodegeneration, mainly AD patients, which may help mitigate the pathophysiology of dementia, subsequently improving overall the patient's quality of life.
Collapse
Affiliation(s)
- Priya Durai
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Narasimha M. Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India;,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Hemanth Vikram Poola Ramachandrappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Pranesh Gudur
- Swamy Vivekananda Yoga Anusandhana Samsthana Deemed University, Bengaluru 560 105, India
| | | | - Prashantha Kumar Bommenahally Ravanappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India;,Address correspondence to this author at the Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India; E-mail:
| |
Collapse
|
16
|
Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer's disease. Neural Regen Res 2022; 17:1666-1674. [PMID: 35017413 PMCID: PMC8820696 DOI: 10.4103/1673-5374.332127] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disease that accounts for most of the 50-million dementia cases worldwide in 2018. A large amount of evidence supports the amyloid cascade hypothesis, which states that amyloid-beta accumulation triggers tau hyperphosphorylation and aggregation in form of neurofibrillary tangles, and these aggregates lead to inflammation, synaptic impairment, neuronal loss, and thus to cognitive decline and behavioral abnormalities. The poor correlation found between cognitive decline and amyloid plaques, have led the scientific community to question whether amyloid-beta accumulation is actually triggering neurodegeneration in Alzheimer’s disease. The occurrence of tau neurofibrillary tangles better correlates to neuronal loss and clinical symptoms and, although amyloid-beta may initiate the cascade of events, tau impairment is likely the effector molecule of neurodegeneration. Recently, it has been shown that amyloid-beta and tau cooperatively work to impair transcription of genes involved in synaptic function and, more importantly, that downregulation of tau partially reverses transcriptional perturbations. Despite mounting evidence points to an interplay between amyloid-beta and tau, some factors could independently affect both pathologies. Thus, the dual pathway hypothesis, which states that there are common upstream triggers causing both amyloid-beta and tau abnormalities has been proposed. Among others, the immune system seems to be strongly involved in amyloid-beta and tau pathologies. Other factors, as the apolipoprotein E ε4 isoform has been suggested to act as a link between amyloid-beta and tau hyperphosphorylation. Interestingly, amyloid-beta-immunotherapy reduces not only amyloid-beta but also tau levels in animal models and in clinical trials. Likewise, it has been shown that tau-immunotherapy also reduces amyloid-beta levels. Thus, even though amyloid-beta immunotherapy is more advanced than tau-immunotherapy, combined amyloid-beta and tau-directed therapies at early stages of the disease have recently been proposed as a strategy to stop the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lidia Tiessler
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
17
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
18
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
19
|
Mahdiabadi S, Momtazmanesh S, Perry G, Rezaei N. Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Rev Neurosci 2021; 33:365-381. [PMID: 34506700 DOI: 10.1515/revneuro-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
20
|
Madhu P, Mukhopadhyay S. Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer's disease. J Cell Biochem 2021; 122:1594-1608. [PMID: 34494298 DOI: 10.1002/jcb.30141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Soluble oligomers of amyloid-β (Aβ) are recognized as key pernicious species in Alzheimer's disease (AD) that cause synaptic dysfunction and memory impairments. Numerous studies have identified various types of Aβ oligomers having heterogeneous peptide length, size distribution, structure, appearance, and toxicity. Here, we review the characteristics of soluble Aβ oligomers based on their morphology, size, and structural reactivity toward the conformation-specific antibodies and then describe their formation, localization, and cellular effects in AD brains, in vivo and in vitro. We also summarize the mechanistic pathways by which these soluble Aβ oligomers cause proteasomal impairment, calcium dyshomeostasis, inhibition of long-term potentiation, apoptosis, mitochondrial damage, and cognitive decline. These cellular events include three distinct molecular mechanisms: (i) high-affinity binding with the receptors for Aβ oligomers such as N-methyl- d-aspartate receptors, cellular prion protein, nerve growth factor, insulin receptors, and frizzled receptors; (ii) the interaction of Aβ oligomers with the lipid membranes; (iii) intraneuronal accumulation of Aβ by α7-nicotinic acetylcholine receptors, apolipoprotein E, and receptor for advanced glycation end products. These studies indicate that there is a pressing need to carefully examine the role of size, appearance, and the conformation of oligomers in identifying the specific mechanism of neurotoxicity that may uncover potential targets for designing AD therapeutics.
Collapse
Affiliation(s)
- Priyanka Madhu
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| |
Collapse
|
21
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
24
|
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM. Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21165858. [PMID: 32824102 PMCID: PMC7461598 DOI: 10.3390/ijms21165858] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: ; Tel.: +880-171-022-0110
| | - Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
25
|
Koseoglu E. New treatment modalities in Alzheimer's disease. World J Clin Cases 2019; 7:1764-1774. [PMID: 31417922 PMCID: PMC6692264 DOI: 10.12998/wjcc.v7.i14.1764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
26
|
Agrawal N, Skelton AA. Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein J 2019; 38:425-434. [DOI: 10.1007/s10930-019-09854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Zhang T, Nagel‐Steger L, Willbold D. Solution-Based Determination of Dissociation Constants for the Binding of Aβ42 to Antibodies. ChemistryOpen 2019; 8:989-994. [PMID: 31367507 PMCID: PMC6643301 DOI: 10.1002/open.201900167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid β-peptides (Aβ) play a major role in the pathogenesis of Alzheimer's disease. Therefore, numerous monoclonal antibodies against Aβ have been developed for basic and clinical research. The present study applied fluorescence based analytical ultracentrifugation and microscale thermophoresis to characterize the interaction between Aβ42 monomers and three popular, commercially available antibodies, namely 6E10, 4G8 and 12F4. Both methods allowed us to analyze the interactions at low nanomolar concentrations of analytes close to their dissociation constants (K D) as required for the study of high affinity interactions. Furthermore, the low concentrations minimized the unwanted self-aggregation of Aβ. Our study demonstrates that all three antibodies bind to Aβ42 monomers with comparable affinities in the low nanomolar range. K D values for Aβ42 binding to 6E10 and 4G8 are in good agreement with formerly reported values from SPR studies, while the K D for 12F4 binding to Aβ42 monomer is reported for the first time.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Luitgard Nagel‐Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
28
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
29
|
|
30
|
Kozin SA, Barykin EP, Mitkevich VA, Makarov AA. Anti-amyloid Therapy of Alzheimer's Disease: Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2018; 83:1057-1067. [PMID: 30472944 DOI: 10.1134/s0006297918090079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug development for the treatment of Alzheimer's disease (AD) has been for a long time focused on agents that were expected to support endogenous β-amyloid (Aβ) in a monomeric state and destroy soluble Aβ oligomers and insoluble Aβ aggregates. However, this strategy has failed over the last 20 years and was eventually abandoned. In this review, we propose a new approach to the anti-amyloid AD therapy based on the latest achievements in understanding molecular causes of cerebral amyloidosis in AD animal models.
Collapse
Affiliation(s)
- S A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
31
|
Alzheimer's Aβ
1‐40
peptide degradation by thermolysin: evidence of inhibition by a C‐terminal Aβ product. FEBS Lett 2018; 593:128-137. [DOI: 10.1002/1873-3468.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023]
|
32
|
Zhang M, Zheng J, Nussinov R, Ma B. Molecular Recognition between Aβ-Specific Single-Domain Antibody and Aβ Misfolded Aggregates. Antibodies (Basel) 2018; 7:E25. [PMID: 31544877 PMCID: PMC6640678 DOI: 10.3390/antib7030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aβ is the toxic amyloid polypeptide responsible for Alzheimer's disease (AD). Prevention and elimination of the Aβ misfolded aggregates are the promising therapeutic strategies for the AD treatments. Gammabody, the Aβ-Specific Single-domain (VH) antibody, recognizes Aβ aggregates with high affinity and specificity and reduces their toxicities. Employing the molecular dynamics simulations, we studied diverse gammabody-Aβ recognition complexes to get insights into their structural and dynamic properties and gammabody-Aβ recognitions. Among many heterogeneous binding modes, we focused on two gammabody-Aβ recognition scenarios: recognition through Aβ β-sheet backbone and on sidechain surface. We found that the gammabody primarily uses the complementarity-determining region 3 (CDR3) loop with the grafted Aβ sequence to interact with the Aβ fibril, while CDR1/CDR2 loops have very little contact. The gammabody-Aβ complexes with backbone binding mode are more stable, explaining the gammabody's specificity towards the C-terminal Aβ sequence.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, OH 44325, USA.
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, OH 44325, USA.
| | - Ruth Nussinov
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Buyong Ma
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Weber SA, Patel RK, Lutsep HL. Cerebral amyloid angiopathy: diagnosis and potential therapies. Expert Rev Neurother 2018; 18:503-513. [DOI: 10.1080/14737175.2018.1480938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stewart A. Weber
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ranish K. Patel
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Helmi L. Lutsep
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
34
|
Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep 2018; 8:6412. [PMID: 29686315 PMCID: PMC5913127 DOI: 10.1038/s41598-018-24501-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Aducanumab, a human-derived antibody targeting amyloid-β (Aβ), is in Phase 3 clinical trials for the treatment of Alzheimer’s disease. Biochemical and structural analyses show that aducanumab binds a linear epitope formed by amino acids 3–7 of the Aβ peptide. Aducanumab discriminates between monomers and oligomeric or fibrillar aggregates based on weak monovalent affinity, fast binding kinetics and strong avidity for epitope-rich aggregates. Direct comparative studies with analogs of gantenerumab, bapineuzumab and solanezumab demonstrate clear differentiation in the binding properties of these antibodies. The crystal structure of the Fab fragment of aducanumab bound to its epitope peptide reveals that aducanumab binds to the N terminus of Aβ in an extended conformation, distinct from those seen in structures with other antibodies that target this immunodominant epitope. Aducanumab recognizes a compact epitope that sits in a shallow pocket on the antibody surface. In silico analyses suggest that aducanumab interacts weakly with the Aβ monomer and may accommodate a variety of peptide conformations, further supporting its selectivity for Aβ aggregates. Our studies provide a structural rationale for the low affinity of aducanumab for non-pathogenic monomers and its greater selectivity for aggregated forms than is seen for other Aβ-targeting antibodies.
Collapse
|
35
|
van Dyck CH. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer's Disease: Pitfalls and Promise. Biol Psychiatry 2018; 83:311-319. [PMID: 28967385 PMCID: PMC5767539 DOI: 10.1016/j.biopsych.2017.08.010] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
The majority of putative disease-modifying treatments in development for Alzheimer's disease are directed against the amyloid-β (Aβ) peptide. Among the anti-Aβ therapeutic approaches, the most extensively developed is immunotherapy-specifically, passive immunization through administration of exogenous monoclonal antibodies (mAbs). Although testing of mAbs has been fraught with failure and confusing results, the experience gained from these trials has provided important clues for better treatments. This review summarizes the experience to date with anti-Aβ mAbs to enter clinical trials for Alzheimer's disease and examines the evidence for clinical efficacy and the major problems with safety-i.e., amyloid-related imaging abnormalities. As mAbs differ considerably with regard to their epitopes and the conformations of Aβ that they recognize (monomers, oligomers, protofibrils, fibrils), the consequences of targeting different species are also considered. An often-cited explanation for the failure of anti-Aβ mAb trials is that they are set too late in the disease process. New trials are indeed evaluating treatments at prodromal and preclinical stages. We should expect to see additional studies of presymptomatic Alzheimer's disease to join the ongoing prevention trials, for which mAbs continue to serve as the mainstay.
Collapse
Affiliation(s)
- Christopher H. van Dyck
- Alzheimer’s Disease Research Unit and Departments of Psychiatry, Neuroscience, and Neurology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
36
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
37
|
Head E, Phelan MJ, Doran E, Kim RC, Poon WW, Schmitt FA, Lott IT. Cerebrovascular pathology in Down syndrome and Alzheimer disease. Acta Neuropathol Commun 2017; 5:93. [PMID: 29195510 PMCID: PMC5709935 DOI: 10.1186/s40478-017-0499-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/21/2017] [Indexed: 01/02/2023] Open
Abstract
People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD) with age. Typically, by age 40 years, most people with DS have sufficient neuropathology for an AD diagnosis. Interestingly, atherosclerosis and hypertension are atypical in DS with age, suggesting the lack of these vascular risk factors may be associated with reduced cerebrovascular pathology. However, because the extra copy of APP leads to increased beta-amyloid peptide (Aβ) accumulation in DS, we hypothesized that there would be more extensive and widespread cerebral amyloid angiopathy (CAA) with age in DS relative to sporadic AD. To test this hypothesis CAA, atherosclerosis and arteriolosclerosis were used as measures of cerebrovascular pathology and compared in post mortem tissue from individuals with DS (n = 32), sporadic AD (n = 80) and controls (n = 37). CAA was observed with significantly higher frequencies in brains of individuals with DS compared to sporadic AD and controls. Atherosclerosis and arteriolosclerosis were rare in the cases with DS. CAA in DS may be a target for future interventional clinical trials.
Collapse
|
38
|
Zhao J, Nussinov R, Ma B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017; 292:18325-18343. [PMID: 28924036 PMCID: PMC5672054 DOI: 10.1074/jbc.m117.801514] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapy is a promising approach, but amyloid antibody structural information is limited. Here we simulate the recognition of monomeric, oligomeric, and fibril amyloid-β (Aβ) by three homologous antibodies (solanezumab, crenezumab, and their chimera, CreneFab). Solanezumab only binds the monomer, whereas crenezumab and CreneFab can recognize different oligomerization states; however, the structural basis for this observation is not understood. We successfully identified stable complexes of crenezumab with Aβ pentamer (oligomer model) and 16-mer (fibril model). It is noteworthy that solanezumab targets Aβ residues 16-26 preferentially in the monomeric state; conversely, crenezumab consistently targets residues 13-16 in different oligomeric states. Unlike the buried monomeric peptide in solanezumab's complementarity-determining region, crenezumab binds the oligomer's lateral and edge residues. Surprisingly, crenezumab's complementarity-determining region loops can effectively bind the Aβ fibril lateral surface around the same 13-16 region. The constant domain influences antigen recognition through entropy redistribution. Different constant domain residues in solanezumab/crenezumab/chimera influence the binding of Aβ aggregates. Collectively, we provide molecular insight into the recognition mechanisms facilitating antibody design.
Collapse
MESH Headings
- Amyloid/antagonists & inhibitors
- Amyloid/chemistry
- Amyloid/metabolism
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/metabolism
- Animals
- Antibodies/chemistry
- Antibodies/genetics
- Antibodies/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Drug Design
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Weight
- Nootropic Agents/chemistry
- Nootropic Agents/metabolism
- Protein Aggregates
- Protein Aggregation, Pathological/metabolism
- Protein Conformation
- Protein Engineering
- Protein Multimerization
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jun Zhao
- From the Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702
| | - Ruth Nussinov
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
- the Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
| |
Collapse
|
39
|
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, Buchem MV, Grond JVD, Verbeek MM, Werring DJ. The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 2017; 88:982-994. [PMID: 28844070 PMCID: PMC5740546 DOI: 10.1136/jnnp-2016-314697] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) has never been more relevant. The last 5 years have seen a rapid increase in publications and research in the field, with the development of new biomarkers for the disease, thanks to advances in MRI, amyloid positron emission tomography and cerebrospinal fluid biomarker analysis. The inadvertent development of CAA-like pathology in patients treated with amyloid-beta immunotherapy for Alzheimer's disease has highlighted the importance of establishing how and why CAA develops; without this information, the use of these treatments may be unnecessarily restricted. Our understanding of the clinical and radiological spectrum of CAA has continued to evolve, and there are new insights into the independent impact that CAA has on cognition in the context of ageing and intracerebral haemorrhage, as well as in Alzheimer's and other dementias. While the association between CAA and lobar intracerebral haemorrhage (with its high recurrence risk) is now well recognised, a number of management dilemmas remain, particularly when considering the use of antithrombotics, anticoagulants and statins. The Boston criteria for CAA, in use in one form or another for the last 20 years, are now being reviewed to reflect these new wide-ranging clinical and radiological findings. This review aims to provide a 5-year update on these recent advances, as well as a look towards future directions for CAA research and clinical practice.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana Carare
- Division of Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Charlotte Cordonnier
- Department of Neurology, Université de Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Steven M Greenberg
- J P Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric E Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
40
|
Braczynski AK, Schulz JB, Bach JP. Vaccination strategies in tauopathies and synucleinopathies. J Neurochem 2017; 143:467-488. [PMID: 28869766 DOI: 10.1111/jnc.14207] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
Vaccination therapies constitute potential treatment options in neurodegenerative disorders such as Alzheimer disease or Parkinson disease. While a lot of research has been performed on vaccination against extracellular amyloid β, the focus recently shifted toward vaccination against the intracellular proteins tau and α-synuclein, with promising results in terms of protein accumulation reduction. In this review, we briefly summarize lessons to be learned from clinical vaccination trials in Alzheimer disease that target amyloid β. We then focus on tau and α-synuclein. For both proteins, we provide important data on protein immunogenicity, and put them into context with data available from both animals and human vaccination trials targeted at tau and α-synuclein. Together, we give a comprehensive overview about current clinical data, and discuss associated problems.
Collapse
Affiliation(s)
- Anne K Braczynski
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,Jülich Aachen Research Alliance (JARA) - JARA-Institute Molecular Neuroscience and Neuroimaging, FZ Jülich and RWTH University, Aachen, Germany
| | - Jan-Philipp Bach
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
41
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
42
|
Wang Y, Yan T, Lu H, Yin W, Lin B, Fan W, Zhang X, Fernandez-Funez P. Lessons from Anti-Amyloid-β Immunotherapies in Alzheimer Disease: Aiming at a Moving Target. NEURODEGENER DIS 2017; 17:242-250. [DOI: 10.1159/000478741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
|
43
|
Impact of aging immune system on neurodegeneration and potential immunotherapies. Prog Neurobiol 2017; 157:2-28. [PMID: 28782588 DOI: 10.1016/j.pneurobio.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging.
Collapse
|
44
|
Olsson B, Schott JM, Blennow K, Zetterberg H. The use of cerebrospinal fluid biomarkers to measure change in neurodegeneration in Alzheimer’s disease clinical trials. Expert Rev Neurother 2017; 17:767-775. [DOI: 10.1080/14737175.2017.1341311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bob Olsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan M. Schott
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, UK
| |
Collapse
|
45
|
Structure of Crenezumab Complex with Aβ Shows Loss of β-Hairpin. Sci Rep 2016; 6:39374. [PMID: 27996029 PMCID: PMC5171940 DOI: 10.1038/srep39374] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulation of amyloid-β (Aβ) peptides and amyloid plaque deposition in brain is postulated as a cause of Alzheimer's disease (AD). The precise pathological species of Aβ remains elusive although evidence suggests soluble oligomers may be primarily responsible for neurotoxicity. Crenezumab is a humanized anti-Aβ monoclonal IgG4 that binds multiple forms of Aβ, with higher affinity for aggregated forms, and that blocks Aβ aggregation, and promotes disaggregation. To understand the structural basis for this binding profile and activity, we determined the crystal structure of crenezumab in complex with Aβ. The structure reveals a sequential epitope and conformational requirements for epitope recognition, which include a subtle but critical element that is likely the basis for crenezumab's versatile binding profile. We find interactions consistent with high affinity for multiple forms of Aβ, particularly oligomers. Of note, crenezumab also sequesters the hydrophobic core of Aβ and breaks an essential salt-bridge characteristic of the β-hairpin conformation, eliminating features characteristic of the basic organization in Aβ oligomers and fibrils, and explains crenezumab's inhibition of aggregation and promotion of disaggregation. These insights highlight crenezumab's unique mechanism of action, particularly regarding Aβ oligomers, and provide a strong rationale for the evaluation of crenezumab as a potential AD therapy.
Collapse
|
46
|
Ma B, Zhao J, Nussinov R. Conformational selection in amyloid-based immunotherapy: Survey of crystal structures of antibody-amyloid complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2672-81. [PMID: 27266343 PMCID: PMC5610039 DOI: 10.1016/j.bbagen.2016.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The dominant feature in neurodegenerative diseases is protein aggregations that lead to neuronal loss. Immunotherapies using antibodies or antibody fragments to target the aggregations are a highly perused approach. The molecular mechanisms underlying the amyloid-based immunotherapy are complex. Deciphering the properties of amyloidogenic proteins responsible for these diseases is essential to obtain insights into antibody recognition of the amyloid antigens. SCOPE OF REVIEW We systematically explore all available crystal structures of antibody-amyloid complexes related to neurodegenerative diseases, including antibodies that recognize the Aβ peptide, tau protein, prion protein, alpha-synuclein, huntingtin protein (mHTT), and polyglutamine. MAJOR CONCLUSIONS We found that antibodies mostly use the conformational selection mechanism to recognize the highly flexible amyloid antigens. In particular, solanezumab bound to Aβ12-28 tripeptide motif conformation (F19F20A21), which is shared with the Aβ42 fibril. This motif, which is trapped by the antibody, may provide the missing link in amyloid formation. Water molecules often bridge between the antibody and amyloid, contributing to the recognition. GENERAL SIGNIFICANCE This paper provides the structural basis for antibody recognition of amyloidogenic proteins. The analysis and discussion of known structures are expected to help in the design and optimization of antibodies in neurodegenerative diseases. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States.
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
47
|
Zhao J, Ma B, Nussinov R. Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloid-β Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Buyong Ma
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Ruth Nussinov
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
48
|
Shinohara M, Murray ME, Frank RD, Shinohara M, DeTure M, Yamazaki Y, Tachibana M, Atagi Y, Davis MD, Liu CC, Zhao N, Painter MM, Petersen RC, Fryer JD, Crook JE, Dickson DW, Bu G, Kanekiyo T. Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol 2016; 132:225-234. [PMID: 27179972 DOI: 10.1007/s00401-016-1580-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Abstract
Cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease (AD). APOE4 is a strong genetic risk factor for both AD and CAA. Sex-dependent differences have been shown in AD as well as in cerebrovascular diseases. Therefore, we examined the effects of APOE4, sex, and pathological components on CAA in AD subjects. A total of 428 autopsied brain samples from pathologically confirmed AD cases were analyzed. CAA severity was histologically scored in inferior parietal, middle frontal, motor, superior temporal and visual cortexes. In addition, subgroups with severe CAA (n = 60) or without CAA (n = 39) were subjected to biochemical analysis of amyloid-β (Aβ) and apolipoprotein E (apoE) by ELISA in the temporal cortex. After adjusting for age, Braak neurofibrillary tangle stage and Thal amyloid phase, we found that overall CAA scores were higher in males than females. Furthermore, carrying one or more APOE4 alleles was associated with higher overall CAA scores. Biochemical analysis revealed that the levels of detergent-soluble and detergent-insoluble Aβ40, and insoluble apoE were significantly elevated in individuals with severe CAA or APOE4. The ratio of Aβ40/Aβ42 in insoluble fractions was also increased in the presence of CAA or APOE4, although it was negatively associated with male sex. Levels of insoluble Aβ40 were positively associated with those of insoluble apoE, which were strongly influenced by CAA status. Pertaining to insoluble Aβ42, the levels of apoE correlated regardless of CAA status. Our results indicate that sex and APOE genotypes differentially influence the presence and severity of CAA in AD, likely by affecting interaction and aggregation of Aβ40 and apoE.
Collapse
|
49
|
Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Rev Mol Med 2016; 18:e13. [PMID: 27357999 DOI: 10.1017/erm.2016.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current therapies to treat Alzheimer's disease (AD) are focused on ameliorating symptoms instead of treating the underlying causes of AD. The accumulation of amyloid β (Aβ) oligomers, whether by an increase in production or by a decrease in clearance, has been described as the seed that initiates the pathological cascade in AD. Developing therapies to target these species is a vital step in improving AD treatment. Aβ-immunotherapy, especially passive immunotherapy, is a promising approach to reduce the Aβ burden. Up to now, several monoclonal antibodies (mAbs) have been tested in clinical trials on humans, but none of them have passed Phase III. In all likelihood, these trials failed mainly because patients with mild-to-moderate AD were recruited, and thus treatment may have been too late to be effective. Therefore, many ongoing clinical trials are being conducted in patients at the prodromal stage. New structures based on antibody fragments have been engineered intending to improve efficacy and safety. This review presents the properties of this variety of developing treatments and provides a perspective on state-of-the-art of passive Aβ-immunotherapy in AD.
Collapse
|
50
|
Güell-Bosch J, Montoliu-Gaya L, Esquerda-Canals G, Villegas S. Aβ immunotherapy for Alzheimer's disease: where are we? Neurodegener Dis Manag 2016; 6:179-81. [DOI: 10.2217/nmt-2016-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jofre Güell-Bosch
- Protein Folding & Stability Group, Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Campus Bellaterra 08193, Cerdanyola del Vallès, Spain
| | - Laia Montoliu-Gaya
- Protein Folding & Stability Group, Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Campus Bellaterra 08193, Cerdanyola del Vallès, Spain
| | - Gisela Esquerda-Canals
- Protein Folding & Stability Group, Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Campus Bellaterra 08193, Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Protein Folding & Stability Group, Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Campus Bellaterra 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|