1
|
Nevid M, Boguniewicz M. Current and Emerging Biologics for Atopic Dermatitis. Immunol Allergy Clin North Am 2024; 44:577-594. [PMID: 39389711 DOI: 10.1016/j.iac.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Atopic dermatitis (AD) is a common chronic pruritic inflammatory skin disease that affects all ages and is recognized as a global health problem. Pathophysiology is complex with skin barrier abnormalities, immune dysregulation, and microbial dysbiosis all implicated. Markers of immune and inflammatory activation in the circulation provide a rationale for systemic therapy. Type 2 immune polarization is central, though other cytokine pathways including Th22 and Th17/IL-23 have been described, suggesting additional therapeutic targets in a subset of patients. Dupilumab and tralokinumab are monoclonal antibodies currently approved for moderate-to-severe AD with lebrikizumab and nemolizumab in late stages of development.
Collapse
Affiliation(s)
- Michael Nevid
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, 1400 Jackson Street, J312, Denver, CO 80206, USA
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, 1400 Jackson Street, J310, Denver, CO 80206, USA.
| |
Collapse
|
2
|
Brooks SG, Lopez LM, Mashoudy KD, Yosipovitch G, Czarnowicki T. Addressing Unmet Needs in Atopic Dermatitis: Evaluating Disease-Modifying Capabilities of Current and Emerging Therapies. Dermatitis 2024. [PMID: 39465269 DOI: 10.1089/derm.2024.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Atopic dermatitis (AD) is a highly burdensome inflammatory skin condition affecting nearly one-quarter of the pediatric population and often continuing into adulthood. Despite recent advancements in systemic therapies providing temporary symptom relief over the past decade, AD frequently remains difficult to control, necessitating increased dosages or alternative treatments due to recurrent disease. This review synthesizes current literature to identify unmet needs of treating AD beyond medication-related limitations and evaluates existing therapies for their efficacy in modifying underlying disease mechanisms. Key findings include variability in AD pathophysiology and phenotypes across different age groups and ethnicities, indicating a need for research into endotype-specific treatments. The literature also comprises evidence suggesting that select current drugs, such as targeted biologics and Janus Kinase (JAK) inhibitors, may offer long-term disease-modifying benefits. Future management strategies should explore novel approaches, including manipulation of the microbiome, immune response, and neural function, as these may lead to additional improvements in AD treatment and long-term symptom relief.
Collapse
Affiliation(s)
- Sarah G Brooks
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Lourdes M Lopez
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Kayla D Mashoudy
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Gil Yosipovitch
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Tali Czarnowicki
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024. [PMID: 39158477 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Waligóra-Dziwak K, Dańczak-Pazdrowska A, Jenerowicz D. A Comprehensive Review of Biologics in Phase III and IV Clinical Trials for Atopic Dermatitis. J Clin Med 2024; 13:4001. [PMID: 39064040 PMCID: PMC11277805 DOI: 10.3390/jcm13144001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Atopic dermatitis (AD) is a skin condition characterized by significant challenges and a substantial deterioration in the life quality for affected patients. The therapeutic landscape for AD has witnessed a transformative shift with the emergence of biologic therapies. Our focus centers on biologics currently undergoing phase III and IV clinical trials, deeming them to hold the highest potential for significant clinical relevance. To identify biologic drugs under development in phase III and IV clinical trials, we searched ClinicalTrials.gov. Additional relevant trials were identified through JapicCTI/ Japan Registry of Clinical Trials (jRCT) with a citation search. A search in MEDLINE and EMBASE was performed. There have been 76 clinical trials identified concerning biologic drugs: dupilumab (34 trials), lebrikizumab (14 trials), tralokinumab (10 trials), rocatinlimab (7 trials), amlitelimab (2 trials), nemolizumab (6 trials), MG-K10 (1 trial), CM310 (1 trial), 611 (1 trial). A search in MEDLINE revealed 132 articles concerning phase III and IV clinical trials for AD treatment. A total of 39 articles concerned biologic drugs covering 23 clinical trials. A search in EMBASE revealed 268 relevant articles, allowing us to identify results of an additional six clinical trials. The safety and efficacy of these biologics are comprehensively addressed in this review. This comprehensive review aims to explore the current landscape of biologic therapies for AD, delving into the latest research findings, clinical trial outcomes, and the diverse mechanisms of action employed by these novel interventions.
Collapse
Affiliation(s)
- Katarzyna Waligóra-Dziwak
- Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (A.D.-P.); (D.J.)
| | | | | |
Collapse
|
5
|
David E, Hawkins K, Shokrian N, Del Duca E, Guttman-Yassky E. Monoclonal antibodies for moderate-to-severe atopic dermatitis: a look at phase III and beyond. Expert Opin Biol Ther 2024; 24:471-489. [PMID: 38888099 DOI: 10.1080/14712598.2024.2368192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The understanding of atopic dermatitis (AD) pathogenesis has rapidly expanded in recent years, catalyzing the development of new targeted monoclonal antibody treatments for AD. AREAS COVERED This review aims to summarize the latest clinical and molecular data about monoclonal antibodies that are in later stages of development for AD, either in Phase 3 trials or in the pharmacopoeia for up to 5 years, highlighting the biologic underpinning of each drug's mechanism of action and the potential modulation of the AD immune profile. EXPERT OPINION The therapeutic pipeline of AD treatments is speedily progressing, introducing the potential for a personalized medical approach in the near future. Understanding how targeting pathogenic players in AD modifies disease progression and symptomatology is key in improving therapeutic choices for patients and identifying ideal patient candidates.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Hawkins
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Neda Shokrian
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Li D, Pucci F, Rooman M. Prediction of Paratope-Epitope Pairs Using Convolutional Neural Networks. Int J Mol Sci 2024; 25:5434. [PMID: 38791470 PMCID: PMC11121317 DOI: 10.3390/ijms25105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antibodies play a central role in the adaptive immune response of vertebrates through the specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a wide range of biotechnological and medical applications, such as in disease diagnosis and treatment. However, there are currently no reliable methods for predicting the antibodies that recognize a specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool for predicting the binding probability of paratope-epitope pairs, where the epitope and paratope patches were simplified into interacting two-dimensional patches, which were colored according to the values of selected features, and pixelated. The specific recognition of an epitope image by a paratope image was achieved by using a convolutional neural network-based model, which was trained on a set of two-dimensional paratope-epitope images derived from experimental structures of antibody-antigen complexes. Our method achieves good performances in terms of cross-validation with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including extensive screening of large libraries to identify paratope candidates that bind to a selected epitope, and rescoring and refining antibody-antigen docking poses.
Collapse
Affiliation(s)
- Dong Li
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Corren J, Szefler SJ, Sher E, Korenblat P, Soong W, Hanania NA, Berman G, Brusselle G, Zitnik R, Natalie CR, Sun L, Siu K, Wu WS, Lio P, Armstrong AW. Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1215-1224.e3. [PMID: 38360213 DOI: 10.1016/j.jaip.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND LAVOLTA (L)I, LII, and ACOUSTICS were randomized, placebo-controlled, Phase 3 trials of lebrikizumab, a monoclonal antibody targeting IL-13 in patients with uncontrolled asthma. Failure to demonstrate efficacy may have been related to patient selection in those trials. OBJECTIVE To assess the efficacy in a well-defined subpopulation of patients with elevated blood eosinophil counts and a minimum number of prior asthma exacerbations. We performed an additional analysis in a subpopulation of patients with elevated FeNO and prior exacerbations. METHODS Adult (LI and LII) and adolescent patients (aged 12-17 years weighing ≥40 kg, ACOUSTICS) with uncontrolled asthma received lebrikizumab (125 mg, n = 832; or 37.5 mg, n = 829) or placebo (n = 833) subcutaneously every 4 weeks. Post hoc analysis of the annualized adjusted exacerbation rate (AER) was performed in a subpopulation of patients with baseline blood eosinophils of 300 cells/μL or greater and history of one or more exacerbations. In this subpopulation, there were 227 patients in the placebo group, 222 in the lebrikizumab 37.5-mg group, and 217 in the lebrikizumab 125-mg group. We summarized safety in patients who received at least one dose of lebrikizumab using adverse events. RESULTS Lebrikizumab significantly reduced AER compared with placebo in adults (AER reduction: 125 mg [38%]; and 37.5 mg [41%]) and adolescents (AER reduction:125 mg [59%]; 37.5 mg [64%]) with baseline blood eosinophils of 300 cells/μL or greater and one or more exacerbations. Most adverse events were mild or moderate in severity and did not lead to treatment discontinuation. CONCLUSION Lebrikizumab significantly reduced asthma exacerbations in a subpopulation of patients with elevated blood eosinophils, elevated FeNO, and a history of asthma exacerbation.
Collapse
Affiliation(s)
- Jonathan Corren
- David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| | - Stanley J Szefler
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | - Weily Soong
- Allervie Clinical Research-Alabama Allergy & Asthma Center, Birmingham, Ala
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary Berman
- Clinical Research Institute and Allergy & Asthma Specialists, Minneapolis, Minn
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Luna Sun
- Eli Lilly and Company, Indianapolis, Ind
| | | | | | - Peter Lio
- Northwestern University Feinberg School of Medicine, Medical Dermatology Associates of Chicago, Chicago, Ill
| | - April W Armstrong
- Keck School of Medicine at University of Southern California and Clinical Research for the Southern California Clinical and Translational Research Institute (SC CTSI), Los Angeles, Calif
| |
Collapse
|
8
|
Keam SJ. Lebrikizumab: First Approval. Drugs 2024; 84:347-353. [PMID: 38388870 DOI: 10.1007/s40265-024-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Lebrikizumab (Ebglyss®) is a subcutaneous recombinant humanized IgG4 anti-IL-13 monoclonal antibody developed by Almirall S.A. and Eli Lilly and Company for the treatment of atopic dermatitis (AD). In November 2023, lebrikizumab was approved in the EU for the treatment of moderate-to-severe AD in adults and adolescents 12 years and older with a body weight of at least 40 kg who are candidates for systemic therapy. Lebrikizumab was approved for the same indication in the UK in December 2023 and in Japan in January 2024. Lebrikizumab is under regulatory review for the treatment of AD in the USA, Switzerland and Australia. This article summarizes the milestones in the development of lebrikizumab leading to this first approval for AD.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
9
|
Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, Chuturgoon S, Chuturgoon A. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells 2024; 13:425. [PMID: 38474389 PMCID: PMC10931328 DOI: 10.3390/cells13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Lipika Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Simran Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Sanam Chuturgoon
- Northdale Hospital, Department of Health, Pietermaritzburg 3200, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
10
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Simpson EL, Guttman-Yassky E, Eichenfield LF, Boguniewicz M, Bieber T, Schneider S, Guana A, Silverberg JI. Tralokinumab therapy for moderate-to-severe atopic dermatitis: Clinical outcomes with targeted IL-13 inhibition. Allergy 2023; 78:2875-2891. [PMID: 37455359 DOI: 10.1111/all.15811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory, intensely pruritic skin disorder associated with significant patient burden. Interleukin (IL)-13 is a cytokine that acts as a driver of immune dysregulation, skin-barrier dysfunction, and microbiome dysbiosis that characterizes AD, and is consistently overexpressed in AD skin. Tralokinumab is a fully human immunoglobulin (Ig) G4 monoclonal antibody that binds specifically to IL-13 with high affinity, thereby inhibiting subsequent downstream IL-13 signaling. Three pivotal phase 3 clinical trials demonstrated that tralokinumab 300 mg every other week, as monotherapy or in combination with topical corticosteroids as needed, provides significant improvements in signs and symptoms of moderate-to-severe AD, as measured by Investigator's Global Assessment 0/1 (clear/almost clear) and Eczema Area and Severity Index-75 at Week 16. Improvements were observed soon after tralokinumab initiation and were maintained over 52 weeks of therapy. Tralokinumab significantly improved patient-reported outcomes such as itch and sleep, and demonstrated a safety profile comparable with placebo; conjunctivitis during tralokinumab therapy was generally mild. Similar results were observed in a phase 3 adolescent trial. The role of IL-13 in the pathophysiology of AD justifies a targeted approach and a wealth of clinical data supports tralokinumab as a new therapeutic option for people with moderate-to-severe AD.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego and Rady Children's Hospital San Diego, San Diego, California, USA
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, USA
| | - Thomas Bieber
- Department of Dermatology and Allergy, Christine Kühne-Center for Allergy Research and Education (CK-CARE), University Hospital Bonn, Bonn, Germany
| | | | | | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
12
|
Zhao A, Pan C, Li M. Biologics and oral small-molecule inhibitors for treatment of pediatric atopic dermatitis: Opportunities and challenges. Pediatr Investig 2023; 7:177-190. [PMID: 37736359 PMCID: PMC10509388 DOI: 10.1002/ped4.12400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Atopic dermatitis (AD) is a complex disease characterized by recurrent eczematous lesions and refractory pruritus that drastically impairs quality of life. Due to the chronic and relapsing course, patients are easily trapped in the debilitating condition. Classical therapies show limitations, especially for patients with moderate-to-severe phenotypes. Advanced new insights in targeted therapies exhibit great application prospects which were reinforced by the more profound understanding of the disease pathogenesis. However, the sustained efficiency, biosafety, and long-term benefits still remain in further exploration. This review summarizes recent clinical studies on oral small-molecule inhibitors and biological agents for pediatric AD patients, which provides the latest frontiers to clinicians.
Collapse
Affiliation(s)
- Anqi Zhao
- Department of DermatologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of DermatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of DermatologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Chaolan Pan
- Department of DermatologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of DermatologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Li
- Department of DermatologyChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Tollenaere MA, Mølck C, Henderson I, Pollack S, Addis P, Petersen HH, Norsgaard H. Tralokinumab Effectively Disrupts the IL-13/IL-13Rα1/IL-4Rα Signaling Complex but Not the IL-13/IL-13Rα2 Complex. JID INNOVATIONS 2023; 3:100214. [PMID: 37554517 PMCID: PMC10405097 DOI: 10.1016/j.xjidi.2023.100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Tralokinumab, a fully human mAb specifically targeting the IL-13 cytokine, has demonstrated clinical efficacy and safety in patients with moderate-to-severe atopic dermatitis. Tralokinumab binds IL-13 with high affinity, which prevents the interaction of IL-13 with IL-13Rα1 and subsequent signaling. Similarly, tralokinumab-bound IL-13 cannot bind to IL-13Rα2, a proposed decoy receptor that is reported to bind IL-13 with extraordinarily high affinity. It has however not been fully elucidated to what extent tralokinumab interferes with the endogenous regulation of IL-13 through IL-13Rα2. In this mechanistic study, we used biophysical, biochemical, and cellular assays to investigate the effect of tralokinumab on the interaction between IL-13 and IL-13Rα1 and IL-13Rα2, respectively, as well as the effects on IL-13Rα2-mediated IL-13 internalization. We demonstrate that IL-13Rα2 binds IL-13 with exceptionally high affinity and that tralokinumab is unable to displace IL-13 from IL-13Rα2. In contrast to this, tralokinumab is able to disrupt the IL-13/IL-13Rα1 and IL-13Rα1/IL-13/IL-4Rα complex. Furthermore, we demonstrate that whereas the IL-13/tralokinumab complex is unable to bind IL-13Rα2, any IL-13 that is not bound by tralokinumab (i.e., free IL-13) can be bound by IL-13Rα2 and subsequently internalized, regardless of the presence of tralokinumab. In summary, our study indicates that tralokinumab does not interfere with endogenous IL-13Rα2-mediated regulation of free IL-13.
Collapse
|
14
|
Bernardo D, Bieber T, Torres T. Lebrikizumab for the Treatment of Moderate-to-Severe Atopic Dermatitis. Am J Clin Dermatol 2023; 24:753-764. [PMID: 37266844 PMCID: PMC10460333 DOI: 10.1007/s40257-023-00793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Atopic dermatitis (AD) is a common, heterogeneous, inflammatory skin disorder characterized by chronic or relapsing eczematous lesions with intense pruritus and discomfort. Affected patients often experience significant impairment in their quality of life, and the treatment of moderate-to-severe AD forms remains challenging. In the past few decades, increasing knowledge on the AD pathogenesis has driven the development of novel targeted therapies. Interleukin (IL)-13 plays a central and pleiotropic role in AD pathogenesis, contributing directly or indirectly to epidermal barrier disfunction, type-2 inflammation, dysbiosis, fibrosis, and itch response. For this reason, agents selectively targeting IL-13, such as lebrikizumab, emerged as a potential therapy for AD. This article reviews the current evidence about lebrikizumab in the management of AD. The phase II and phase III trials seem to corroborate efficacy of lebrikizumab in the treatment of moderate-to-severe AD, as shown by significant improvement of Eczema Area and Severity Index, body surface area, and pruritus scores. Also, lebrikizumab demonstrated favorable safety and tolerability profiles, with the majority of patients experiencing no significant adverse events. Lebrikizumab seems to be a promising emerging targeted biological agent for patients with moderate-to-severe AD. More data on the long-term efficacy and safety, head-to-head comparisons with other agents, and real-world evidence will help to clarify its place in therapy in AD.
Collapse
Affiliation(s)
- Diana Bernardo
- Department of Dermatology, Centro Hospitalar Universitário de Sto António, Porto, Portugal
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn Germany and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Tiago Torres
- Department of Dermatology, Centro Hospitalar Universitário de Sto António, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Walker K, Baravalle R, Holyfield R, Kalms J, Wright H, Seewooruthun C, Muskett FW, Scott-Tucker A, Merritt A, Henry A, Lawson ADG, Hall G, Prosser C, Carr MD. Identification and characterisation of anti-IL-13 inhibitory single domain antibodies provides new insights into receptor selectivity and attractive opportunities for drug discovery. Front Immunol 2023; 14:1216967. [PMID: 37483614 PMCID: PMC10359924 DOI: 10.3389/fimmu.2023.1216967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Interleukin-13 (IL-13) is a cytokine involved in T-cell immune responses and is a well validated therapeutic target for the treatment of asthma, along with other allergic and inflammatory diseases. IL-13 signals through a ternary signalling complex formed with the receptors IL-13Rα1 and IL-4Rα. This complex is assembled by IL-13 initially binding IL-13Rα1, followed by association of the binary IL-13:IL-13Rα1 complex with IL-4Rα. The receptors are shared with IL-4, but IL-4 initially binds IL-4Rα. Here we report the identification and characterisation of a diverse panel of single-domain antibodies (VHHs) that bind to IL-13 (KD 40 nM-5.5 μM) and inhibit downstream IL-13 signalling (IC50 0.2-53.8 μM). NMR mapping showed that the VHHs recognise a number of epitopes on IL-13, including previously unknown allosteric sites. Further NMR investigation of VHH204 bound to IL-13 revealed a novel allosteric mechanism of inhibition, with the antibody stabilising IL-13 in a conformation incompatible with receptor binding. This also led to the identification of a conformational equilibrium for free IL-13, providing insights into differing receptor signalling complex assembly seen for IL-13 compared to IL-4, with formation of the IL-13:IL-13Rα1 complex required to stabilise IL-13 in a conformation with high affinity for IL-4Rα. These findings highlight new opportunities for therapeutic targeting of IL-13 and we report a successful 19F fragment screen of the IL-13:VHH204 complex, including binding sites identified for several hits. To our knowledge, these 19F containing fragments represent the first small-molecules shown to bind to IL-13 and could provide starting points for a small-molecule drug discovery programme.
Collapse
Affiliation(s)
- Kayleigh Walker
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Roberta Baravalle
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Rachel Holyfield
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Jacqueline Kalms
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- UCB Biopharma, UCB Pharma, Slough, United Kingdom
| | - Helena Wright
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Frederick W. Muskett
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | | | - Andy Merritt
- LifeArc, Centre for Therapeutics Discovery, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | | | | | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Christine Prosser
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- UCB Biopharma, UCB Pharma, Slough, United Kingdom
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Picone V, Vallone Y, Patruno C, Napolitano M. An overview of new and emerging antibody therapies for moderate-severe atopic dermatitis in adults. Expert Rev Clin Pharmacol 2023; 16:1239-1248. [PMID: 38054328 DOI: 10.1080/17512433.2023.2292615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION A comprehensive review of the English-language medical literature was performed searching for ongoing and closed clinical trials concerning new and emerging monoclonal antibody therapies for moderate-to-severe atopic dermatitis in adults. AREAS COVERED Atopic dermatitis is a chronic inflammatory cutaneous disease with a complex pathogenesis. In the last years, numerous advances in understanding the atopic dermatitis pathogenesis allowed to obtain several therapeutic options, such as numerous monoclonal antibodies. Some monoclonal antibodies, such as dupilumab (anti-IL-4 Rα) and tralokinumab (anti-IL13) are already approved for the treatment of moderate-to-severe atopic dermatitis, and numerous articles in the literature have demonstrated their efficacy and safety. As there are numerous drugs under investigation, this review focuses on emerging monoclonal antibody therapies. EXPERT OPINION There are numerous monoclonal antibodies under investigation that may be approved in the near future for the treatment of atopic dermatitis. Data from phase 2b and phase III clinical trials in moderate-to-severe atopic dermatitis in adults indicate that these drugs have a promising efficacy and safety profile. Monoclonal antibodies currently under investigation will be available in the coming years to enrich the therapeutic choice of new alternatives that are valid both in terms of efficacy and safety.
Collapse
Affiliation(s)
- Vincenzo Picone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ylenia Vallone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Grӕcia of Catanzaro, Catanzaro, Italy
| | - Maddelena Napolitano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Okragly AJ, Ryuzoji A, Wulur I, Daniels M, Van Horn RD, Patel CN, Benschop RJ. Binding, Neutralization and Internalization of the Interleukin-13 Antibody, Lebrikizumab. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00947-7. [PMID: 37310643 DOI: 10.1007/s13555-023-00947-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION IL-13 is the primary upregulated cytokine in atopic dermatitis (AD) skin and is the pathogenic mediator driving AD pathophysiology. Lebrikizumab, tralokinumab and cendakimab are therapeutic monoclonal antibodies (mAb) that target IL-13. METHODS We undertook studies to compare in vitro binding affinities and cell-based functional activities of lebrikizumab, tralokinumab and cendakimab. RESULTS Lebrikizumab bound IL-13 with higher affinity (as determined using surface plasma resonance) and slower off-rate. It was more potent in neutralizing IL-13-induced effects in STAT6 reporter and primary dermal fibroblast periostin secretion assays than either tralokinumab or cendakimab. Live imaging confocal microscopy was employed to determine the mAb effects on IL-13 internalization into cells via the decoy receptor IL-13Rα2, using A375 and HaCaT cells. The results showed that only the IL-13/lebrikizumab complex was internalized and co-localized with lysosomes, whereas IL-13/tralokinumab or IL-13/cendakimab complexes did not internalize. CONCLUSION Lebrikizumab is a potent, neutralizing high-affinity antibody with a slow disassociation rate from IL-13. Additionally, lebrikizumab does not interfere with IL-13 clearance. Lebrikizumab has a different mode of action to both tralokinumab and cendakimab, possibly contributing to the clinical efficacy observed by lebrikizumab in Ph2b/3 AD studies.
Collapse
Affiliation(s)
- Angela J Okragly
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Aya Ryuzoji
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Isabella Wulur
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Montanea Daniels
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert D Van Horn
- Flow Cytometry-Imaging Core Lab, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Chetan N Patel
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Benschop
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
19
|
Butala S, Castelo-Soccio L, Seshadri R, Simpson EL, O'Shea JJ, Bieber T, Paller AS. Biologic Versus Small Molecule Therapy for Treating Moderate to Severe Atopic Dermatitis: Clinical Considerations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1361-1373. [PMID: 36948491 PMCID: PMC10164714 DOI: 10.1016/j.jaip.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
The U.S. Food and Drug Administration approval of dupilumab for moderate-to-severe atopic dermatitis shifted the paradigm from use of broad, systemic immunosuppressants to a safer, targeted treatment and led to the emergence of newer interleukin (IL)-4/IL-13 directed biologics and small molecule therapies, namely Janus kinase (JAK) inhibitors (JAKi). Tralokinumab and emerging (not yet approved) lebrikizumab, which both target IL-13, are alternative biologics to dupilumab. The emerging anti-IL-31 receptor nemolizumab is likely to be used second-line to other biologics, primarily for pruritus. Three JAKi are currently in use for treating atopic dermatitis, 2 of which, abrocitinib and upadacitinib, are U.S. Food and Drug Administration-approved. This review provides an in-depth, practical discussion on use of these biologics and JAKi that are approved or have completed phase 3 clinical trials in pediatric patients and adults, comparing the groups of medications based on available efficacy and safety data.
Collapse
Affiliation(s)
- Sneha Butala
- Departments of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Rishi Seshadri
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas Bieber
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
20
|
Facheris P, Jeffery J, Del Duca E, Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol 2023; 20:448-474. [PMID: 36928371 DOI: 10.1038/s41423-023-00992-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease, and it is considered a complex and heterogeneous condition. Different phenotypes of AD, defined according to the patient age at onset, race, and ethnic background; disease duration; and other disease characteristics, have been recently described, underlying the need for a personalized treatment approach. Recent advancements in understanding AD pathogenesis resulted in a real translational revolution and led to the exponential expansion of the therapeutic pipeline. The study of biomarkers in clinical studies of emerging treatments is helping clarify the role of each cytokine and immune pathway in AD and will allow addressing the unique immune fingerprints of each AD subset. Personalized medicine will be the ultimate goal of this targeted translational research. In this review, we discuss the changes in the concepts of both the pathogenesis of and treatment approach to AD, highlight the scientific rationale behind each targeted treatment and report the most recent clinical efficacy data.
Collapse
Affiliation(s)
- Paola Facheris
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Humanitas Clinical and Research Center, Department of Dermatology, Rozzano, Milano, Italy
| | - Jane Jeffery
- Duke University School of Medicine, Durham, NC, USA
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
David E, Ungar B, Renert-Yuval Y, Facheris P, Del Duca E, Guttman-Yassky E. The evolving landscape of biologic therapies for atopic dermatitis: Present and future perspective. Clin Exp Allergy 2023; 53:156-172. [PMID: 36653940 DOI: 10.1111/cea.14263] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023]
Abstract
Atopic dermatitis (AD) is one of the most common, chronic inflammatory skin diseases with a significant physical, emotional and socioeconomic burden. In recent years the understanding of AD pathogenesis has expanded from the Th2-centred perspective, with the recognition of the involvement of other immune axes. In different AD endotypes, influenced by environment, genetics and race, transcriptomic profiles have identified differing contributions of multiple immune axes such as, Th17, Th22 and Th1. The enriched pathogenic model of AD has catalysed the development of numerous biologic therapies targeting a range of key molecules implicated in disease progression. Currently, dupilumab and tralokinumab, which both target the Th2 pathway, are the only approved biologic therapies for AD in the United States and Europe. New biologic therapies in development, however, target different Th2-pathway molecules along with cytokines in other immune axes, including Th17 and Th22, offering promise for varied treatments for this heterogeneous disease. As the biologic pipeline advances, the integration into clinical practice and approval of these experimental biologics may provide more effective, tailored therapeutic solutions and illuminate on the pathologic processes of AD across a broader, more diverse patient population.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
Targeting cytokines and signaling molecules related to immune pathways in atopic dermatitis: therapeutic implications and challenges. Arch Pharm Res 2022; 45:894-908. [DOI: 10.1007/s12272-022-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
|
23
|
Ma Q, Tong H, Jing J. High throughput virtual screening strategy to develop a potential treatment for bronchial asthma by targeting interleukin 13 cytokine signaling. Allergol Immunopathol (Madr) 2022; 50:22-31. [PMID: 36335442 DOI: 10.15586/aei.v50i6.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Chronic inflammation in the airway passage leads to the clinical syndrome of pediatric asthma. Allergic reactions caused by bacterial, viral, and fungal infection lead to the immune dis-balance which primes T helper cells (Th2), a specific cluster of differentiation 4 (CD4) T cell differentiation. This favors the Th2-specific response by activating the inter-leukin 4/interleukin 13 (IL-4/IL-13) cytokine signaling and further activates the secretion of immunoglobulin E (IgE). IL-13 develops bronchial asthma by elevating bronchial hyperresponsiveness and enables production of immunoglobulin M (IgM) and IgE. The present study aims to target IL-13 signaling using molecular docking and understanding molecular dynamic simulation (MDS) to propose a compelling candidate to treat asthma. We developed a library of available allergic drugs (n=20) and checked the binding affinity against IL-13 protein (3BPN.pdb) through molecular docking and confirmed the best pose binding energy of -3.84 and -3.71 for epinephrine and guaifenesin, respectively. Studying the interaction of hydrogen bonds and Van der Walls, it is estimated that electrostatic energy is sufficient to interact with the active site of the IL-13 and has shown to inhibit inflammatory signaling. These computational results confirm epinephrine and guaifenesin as potential ligands showing potential inhibitory activity for IL-13 signaling. This study also suggests the designing of a new ligand and screening of a large cohort of drugs, in the future, to predict the exact mechanism to control the critical feature of asthma.
Collapse
Affiliation(s)
- Qin Ma
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China
| | - Huimin Tong
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China
| | - Junhu Jing
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China;
| |
Collapse
|
24
|
Fukuda K, Kishimoto T, Sumi T, Yamashiro K, Ebihara N. Biologics for allergy: therapeutic potential for ocular allergic diseases and adverse effects on the eye. Allergol Int 2022; 72:234-244. [PMID: 36333219 DOI: 10.1016/j.alit.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Biologics applying antibodies against IgE, IL-5, IL-5 receptor α, IL-4 receptor α, and IL-13 have dramatically improved recent treatment outcomes in allergic diseases including asthma, rhinitis, and atopic dermatitis. However, these drugs have not been approved for ocular allergic diseases such as allergic conjunctivitis, vernal keratoconjunctivitis, and atopic keratoconjunctivitis. Although the putative mechanisms suggest that these drugs should have beneficial effects in patients with ocular allergies and some studies have reported such beneficial effects, various adverse ocular symptoms have also been observed in clinical trials and off-label use studies. Since ocular allergic diseases have distinct pathogeneses, each biologic drug must be examined regarding specific effects on each ocular allergy. For example, IgE-mediated type 1 hypersensitivity plays a critical role in allergic conjunctivitis. By contrast, T cells and eosinophilic and non-IgE-mediated type 2 inflammation play important roles in vernal keratoconjunctivitis. Allergists must fully understand the effects of each drug on the eye. This review outlines both potential therapeutic and adverse effects of various biologics on allergic diseases of the eye.
Collapse
Affiliation(s)
- Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tamaki Sumi
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology and Visual Science, Juntendo University Urayasu Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Li W, Man XY. Immunotherapy in atopic dermatitis. Immunotherapy 2022; 14:1149-1164. [PMID: 36046941 DOI: 10.2217/imt-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the past decade, the emergence of biologics targeting human cytokine networks has advanced a new era in atopic dermatitis therapy. Dupilumab, in particular, the most widely studied and used IL-4/IL-13 inhibitor, has been considered a milestone in the treatment of patients with moderate-to-severe atopic dermatitis. In addition to the IL-4 and IL-13 pathways, many other cytokines and receptors have been newly targeted as therapeutic options. In this review, the authors provide an overview of the approved and tested biologics and JAK inhibitors for the treatment of atopic dermatitis, including their advantages and limitations.
Collapse
Affiliation(s)
- Wei Li
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Szefler SJ, Roberts G, Rubin AS, Zielen S, Kuna P, Alpan O, Anzures‐Cabrera J, Chen Q, Holweg CTJ, Kaminski J, Putnam WS, Matthews JG, Kamath N. Efficacy, safety, and tolerability of lebrikizumab in adolescent patients with uncontrolled asthma (ACOUSTICS). Clin Transl Allergy 2022; 12:e12176. [PMID: 35846226 PMCID: PMC9281483 DOI: 10.1002/clt2.12176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lebrikizumab is a monoclonal antibody that modulates activity of interleukin-13. The Phase 3 ACOUSTICS study assessed lebrikizumab efficacy and safety in adolescents with uncontrolled asthma despite standard-of-care treatment. Methods Adolescents (aged 12-17 years) with uncontrolled asthma, prebronchodilator forced expiratory volume in 1 s 40%-90% predicted, and stable background therapy were randomised 1:1:1 to receive lebrikizumab 125 or 37.5 mg or placebo subcutaneously once every 4 weeks. Primary efficacy endpoint was asthma exacerbation rate over 52 weeks. Results Between August 2013 and July 2016, 579 patients were screened and 346 were randomised; 224 (65%) completed the study with 52 weeks of treatment. Lebrikizumab 125 mg (n = 116) reduced the exacerbation rate at 52 weeks versus placebo (n = 117; adjusted rate ratio [RR] 0.49 [95% CI 0.28-0.83]; 51% rate reduction). Lebrikizumab 37.5 mg (n = 113) was less effective at reducing exacerbations (RR 0.60 [95% CI 0.35-1.03]; 40% rate reduction). In patients with blood eosinophil counts ≥300 cells/μl, both lebrikizumab doses reduced exacerbations (125 mg: RR 0.44 [95% CI 0.21-0.89]; 37.5 mg: 0.42 [95% CI 0.19-0.93]). Treatment-emergent adverse events, serious adverse events, and adverse events leading to study discontinuation occurred in 155 (68%), 7 (3%), and 5 (2%) of 229 patients who received lebrikizumab (both 125 and 37.5 mg doses) and in 72 (62%), 4 (3%), and 1 (1%) of 117 who received placebo, respectively. No deaths occurred. Conclusion Lebrikizumab 125 mg reduced asthma exacerbation rates in adolescents with uncontrolled asthma. However, the study was prematurely terminated (sponsor's decision) potentially limiting interpretation of results. Clinical trial registration NCT01875003 (www.ClinicalTrials.gov).
Collapse
Affiliation(s)
- Stanley J. Szefler
- Department of PediatricsChildren's Hospital Colorado and the University of Colorado School of MedicineAnschutz Medical CampusAuroraColoradoUSA
| | - Graham Roberts
- University of Southampton School of Medicine and Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
- David Hide Asthma and Allergy Research CentreIsle of WightUK
| | - Adalberto S. Rubin
- Federal University of Health Sciences of Porto Alegre and Santa Casa de Misericórdia HospitalPorto AlegreBrazil
| | - Stefan Zielen
- Goethe‐UniversitätKlinik für Kinder‐ und JugendmedizinFrankfurtGermany
| | | | | | | | | | - Cécile T. J. Holweg
- Genentech, Inc.South San FranciscoCaliforniaUSA
- Present address:
Abbvie, ILUSA
| | - Janusz Kaminski
- Roche Products LtdWelwyn Garden CityUK
- Present address:
MSDLondonUK
| | - Wendy S. Putnam
- Genentech, Inc.South San FranciscoCaliforniaUSA
- Present address:
Ultragenyx Pharmaceutical, NovatoCAUSA
| | - John G. Matthews
- Genentech, Inc.South San FranciscoCaliforniaUSA
- Present address:
23andMe, South San FranciscoCAUSA
| | | |
Collapse
|
27
|
Labib A, Ju T, Yosipovitch G. Managing Atopic Dermatitis with Lebrikizumab - The Evidence to Date. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:1065-1072. [PMID: 35702658 PMCID: PMC9188775 DOI: 10.2147/ccid.s295672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis is a prevalent, inflammatory skin disease that presents with an eczematous, itchy rash. As of late, there have been many emerging monoclonal antibody inhibitor and small molecule therapies that have changed the course of eczema treatment. One of the treatments in the pipeline for atopic dermatitis is interleukin 13 monoclonal antibody inhibitor, lebrikizumab. As interleukin 13 has been identified as a pro-inflammatory cytokine in the immunological cascade of eczema, it is thought that lebrikizumab can be a great treatment choice for patients with atopic dermatitis. Lebrikizumab is currently being investigated in several studies. Thus far, lebrikizumab for the treatment of eczema has been found to be efficacious; in particular, a rapid response of pruritus improvement has been demonstrated in as early as 2 days. Additionally, it is well tolerated and has an acceptable safety profile, with reports suggesting that are decreased risks of infection when compared to dupilumab. In this review, we aim to summarize the current understanding of lebrikizumab in terms of the mechanism of action, preclinical pharmacology, pharmacokinetics and metabolism, efficacy and safety, and drug indications.
Collapse
Affiliation(s)
- Angelina Labib
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Teresa Ju
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
29
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
30
|
Kołkowski K, Trzeciak M, Sokołowska-Wojdyło M. Safety and Danger Considerations of Novel Treatments for Atopic Dermatitis in Context of Primary Cutaneous Lymphomas. Int J Mol Sci 2021; 22:13388. [PMID: 34948183 PMCID: PMC8703592 DOI: 10.3390/ijms222413388] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The impact of new and emerging therapies on the microenvironment of primary cutaneous lymphomas (PCLs) has been recently raised in the literature. Concomitantly, novel treatments are already used or registered (dupilumab, upadacitinib) and others seem to be added to the armamentarium against atopic dermatitis. Our aim was to review the literature on interleukins 4, 13, 22, and 31, and JAK/STAT pathways in PCLs to elucidate the safety of using biologics (dupilumab, tralokinumab, fezakinumab, nemolizumab) and small molecule inhibitors (upadacitinib, baricitinib, abrocitinib, ruxolitinib, tofacitinib) in the treatment of atopic dermatitis. We summarized the current state of knowledge on this topic based on the search of the PubMed database and related references published before 21 October 2021. Our analysis suggests that some of the mentioned agents (dupilumab, ruxolitinib) and others may have a direct impact on the progression of cutaneous lymphomas. This issue requires further study and meticulous monitoring of patients receiving these drugs to ensure their safety, especially in light of the FDA warning on tofacitinib. In conclusion, in the case of the rapid progression of atopic dermatitis/eczema, especially in patients older than 40 years old, there is a necessity to perform a biopsy followed by a very careful pathological examination.
Collapse
Affiliation(s)
- Karol Kołkowski
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| |
Collapse
|
31
|
Gevenois PJLY, De Pauw P, Schoonooghe S, Delporte C, Sebti T, Amighi K, Muyldermans S, Wauthoz N. Development of Neutralizing Multimeric Nanobody Constructs Directed against IL-13: From Immunization to Lead Optimization. THE JOURNAL OF IMMUNOLOGY 2021; 207:2608-2620. [PMID: 34645688 DOI: 10.4049/jimmunol.2100250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
IL-13 is a pleiotropic cytokine mainly secreted by Th2 cells. It reacts with many different types of cells involved in allergy, inflammation, and fibrosis, e.g., mastocytes, B cells, and fibroblasts. The role of IL-13 in conditions involving one or several of these phenotypes has therefore been extensively investigated. The inhibition of this cytokine in animal models for various pathologies yielded highly promising results. However, most human trials relying on anti-IL-13 conventional mAbs have failed to achieve a significant improvement of the envisaged disorders. Where some studies might have suffered from several weaknesses, the strategies themselves, such as targeting only IL-13 using conventional mAbs or employing a systemic administration, could be questioned. Nanobodies are recombinant Ag-binding fragments derived from the variable part of H chain-only Abs occurring in Camelidae. Thanks to their single-domain structure, small size (≈15 kDa), good stability, and solubility, they can be engineered into multispecific constructs for combined therapies or for use in new strategies such as formulations for local administration, e.g., pulmonary administration. In this study, we describe the generation of 38 nanobodies that can be subdivided into five CDR3 families. Nine nanobodies were found to have a good affinity profile (KD = 1-200 nM), but none were able to strongly inhibit IL-13 biological activity in vitro (IC50 > 50 µM: HEK-Blue IL-13/IL-4 cells). Multimeric constructs were therefore designed from these inhibitors and resulted in an up to 36-fold improvement in affinity and up to 300-fold enhancement of the biological activity while conserving a high specificity toward IL-13.
Collapse
Affiliation(s)
- Philippe J-L Y Gevenois
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium;
| | - Pieter De Pauw
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Steve Schoonooghe
- Flemish Institute for Biotechnology Nanobody Core, Free University of Brussels, Brussels, Belgium
| | - Cédric Delporte
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, RD3 and Analytical Platform of the Faculty of Pharmacy, Free University of Brussels, Brussels, Belgium; and
| | | | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
32
|
Depetris RS, Lu D, Polonskaya Z, Zhang Z, Luna X, Tankard A, Kolahi P, Drummond M, Williams C, Ebert MCCJC, Patel JP, Poyurovsky MV. Functional antibody characterization via direct structural analysis and information-driven protein-protein docking. Proteins 2021; 90:919-935. [PMID: 34773424 PMCID: PMC9544432 DOI: 10.1002/prot.26280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/28/2021] [Accepted: 11/07/2021] [Indexed: 12/02/2022]
Abstract
Detailed description of the mechanism of action of the therapeutic antibodies is essential for the functional characterization and future optimization of potential clinical agents. We recently developed KD035, a fully human antibody targeting vascular endothelial growth factor receptor 2 (VEGFR2). KD035 blocked VEGF‐A, and VEGF‐C‐mediated VEGFR2 activation, as demonstrated by the in vitro binding and competition assays and functional cellular assays. Here, we report a computational model of the complex between the variable fragment of KD035 (KD035(Fv)) and the domains 2 and 3 of the extracellular portion of VEGFR2 (VEGFR2(D2‐3)). Our modeling was guided by a priori experimental information including the X‐ray structures of KD035 and related antibodies, binding assays, target domain mapping and comparison of KD035 affinity for VEGFR2 from different species. The accuracy of the model was assessed by molecular dynamics simulations, and subsequently validated by mutagenesis and binding analysis. Importantly, the steps followed during the generation of this model can set a precedent for future in silico efforts aimed at the accurate description of the antibody–antigen and more broadly protein–protein complexes.
Collapse
Affiliation(s)
| | - Dan Lu
- Kadmon Corporation, LLC, New York, New York, USA
| | | | - Zhikai Zhang
- Kadmon Corporation, LLC, New York, New York, USA
| | - Xenia Luna
- Kadmon Corporation, LLC, New York, New York, USA
| | | | - Pegah Kolahi
- Kadmon Corporation, LLC, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fildan AP, Rajnoveanu RM, Cirjaliu R, Pohrib I, Tudorache E, Ilie AC, Oancea C, Tofolean D. Biological therapies targeting the type 2 inflammatory pathway in severe asthma (Review). Exp Ther Med 2021; 22:1263. [PMID: 34603531 PMCID: PMC8453334 DOI: 10.3892/etm.2021.10698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
Asthma is a variable chronic respiratory disease characterized by airway inflammation and hyperresponsiveness, bronchoconstriction, and mucus hypersecretion. While most patients with asthma achieve good control of the disease, 5-10% experience severe symptoms and recurrent exacerbation despite the maximal offered therapy with inhaled corticosteroids and long acting bronchodilators. In previous years, novel biological therapies have become available, and various asthma phenotypes that are characterized by specific biomarkers have been identified. Currently approved biological agents target inflammatory molecules of the type 2 inflammatory pathway, and are effective at decreasing the frequency of asthma attacks, controlling symptoms and decreasing use of systemic steroids. The present study reviewed the effectiveness and safety profile of the currently approved biological drugs and provided an overview of the assessment of patients with severe asthma who are potentially suitable for biological therapy, in order to help clinicians to select the most appropriate biological agent.
Collapse
Affiliation(s)
| | - Ruxandra-Mioara Rajnoveanu
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400371, Romania
| | - Roxana Cirjaliu
- Faculty of Medicine, Ovidius University, Constanța 900527, Romania
| | - Ionela Pohrib
- Faculty of Medicine, Ovidius University, Constanța 900527, Romania
| | - Emanuela Tudorache
- Department of Pneumology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Adrian Cosmin Ilie
- Department of Pneumology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristian Oancea
- Department of Pneumology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Doina Tofolean
- Faculty of Medicine, Ovidius University, Constanța 900527, Romania
| |
Collapse
|
34
|
Ramsey N, Berin MC. Pathogenesis of IgE-mediated food allergy and implications for future immunotherapeutics. Pediatr Allergy Immunol 2021; 32:1416-1425. [PMID: 33715245 PMCID: PMC9096874 DOI: 10.1111/pai.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the immune basis of food allergy has grown rapidly in parallel with the development of new immune-targeted interventions for the treatment of food allergy. Local tissue factors, including the composition of skin and gastrointestinal microbiota and production of Th2-inducing cytokines (TSLP, IL-33, and IL-25) from barrier sites, have been shown not only to contribute to the development of food allergy, but also to act as effective targets for treatment in mice. Ongoing clinical trials are testing the targeting of these factors in human disease. There is a growing understanding of the contribution of IL-13 to the induction of high-affinity IgE and the need for continual T-cell help in the maintenance of long-lived IgE. This provides a strong rationale to test biologics targeting both IL-4 and IL-13 in the treatment of established food allergy. Various forms of allergen immunotherapy for food allergy have clearly shown that low specific IgE and elevated specific IgG4 are predictive of sustained treatment effect. Treatments that mimic that immune response, for example, lowering IgE, with monoclonal antibodies such as omalizumab, or administering allergen-specific IgG, are in various stages of investigation. As we gain more opportunities to use immune-modifying treatments for the treatment of food allergy, studies of the immune and clinical response to those interventions will continue to rapidly advance our understanding of the immune basis of food allergy and tolerance.
Collapse
Affiliation(s)
- Nicole Ramsey
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Kapitanov GI, Chabot JR, Narula J, Roy M, Neubert H, Palandra J, Farrokhi V, Johnson JS, Webster R, Jones HM. A Mechanistic Site-Of-Action Model: A Tool for Informing Right Target, Right Compound, And Right Dose for Therapeutic Antagonistic Antibody Programs. FRONTIERS IN BIOINFORMATICS 2021; 1:731340. [DOI: 10.3389/fbinf.2021.731340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative modeling is increasingly utilized in the drug discovery and development process, from the initial stages of target selection, through clinical studies. The modeling can provide guidance on three major questions–is this the right target, what are the right compound properties, and what is the right dose for moving the best possible candidate forward. In this manuscript, we present a site-of-action modeling framework which we apply to monoclonal antibodies against soluble targets. We give a comprehensive overview of how we construct the model and how we parametrize it and include several examples of how to apply this framework for answering the questions postulated above. The utilities and limitations of this approach are discussed.
Collapse
|
36
|
Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov 2021; 21:21-40. [PMID: 34417579 PMCID: PMC8377708 DOI: 10.1038/s41573-021-00266-6] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti-IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Recent advances in understanding of the complex phenotype and mechanisms underlying atopic dermatitis (AD) have revealed multiple new potential targets for pharmacological intervention. Here, Bieber reviews therapeutic strategies and assesses the expanding pipeline for the therapy of AD, highlighting the potential for a precision medicine approach to the management of this complex disorder.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany. .,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland. .,Davos Biosciences, Davos, Switzerland.
| |
Collapse
|
37
|
Yang N, Chen Z, Zhang X, Shi Y. Novel Targeted Biological Agents for the Treatment of Atopic Dermatitis. BioDrugs 2021; 35:401-415. [PMID: 34213742 DOI: 10.1007/s40259-021-00490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatologic disease clinically characterized by intense itch, recurrent eczematous lesions, and a chronic or relapsing disease course. Mild-to-moderate AD can be controlled by using moisturizers and topical immunomodulators such as topical corticosteroids and calcineurin inhibitors. If topical therapies fail, phototherapy and systemic immunosuppressant therapies, such as ciclosporin, methotrexate, and azathioprine, can be considered. However, relapse and side effects could still occur. The pathogenesis of AD involves epidermal barrier dysfunction, skin microbiome abnormalities, and cutaneous inflammation. Inflammatory mediators, such as interleukin (IL)-4, IL-13, IL-31, IL-33, IL-17, IL-23, and thymic stromal lymphopoietin, are involved in AD development. Therefore, a series of biological agents targeting these cytokines are promising approaches for treating AD. Dupilumab is the first biological agent approved for the treatment of AD in patients aged 6 years and older in the United States. Tralokinumab, lebrikizumab, and nemolizumab have also been confirmed to have significant efficacy against AD in phase III or IIb clinical trials. Also, fezakinumab was effective in severe AD patients in a phase IIa trial. However, phase II trials of ustekinumab, tezepelumab, etokimab, secukinumab, and omalizumab have failed to meet their primary endpoints. Phase II trials of GBR 830 and KHK 4083 are ongoing. In general, further studies are needed to explore new therapeutic targets and improve the efficacy of biological agents.
Collapse
Affiliation(s)
- Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China. .,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
38
|
Chun PIF, Lehman H. Current and Future Monoclonal Antibodies in the Treatment of Atopic Dermatitis. Clin Rev Allergy Immunol 2021; 59:208-219. [PMID: 32617839 DOI: 10.1007/s12016-020-08802-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atopic dermatitis is a common immunologic skin disease. Mild atopic dermatitis can be managed with emollients and topical therapies such as low potency topical steroids, which have a favorable safety profile. Severe atopic dermatitis, in contrast, is a challenging disease to treat. Topical therapies are typically inadequate for control of severe atopic dermatitis. When topical therapies fail, the mainstay of therapy for severe atopic dermatitis has traditionally been phototherapy or off-label use of systemic immunosuppressant treatment, yet systemic immunosuppressants all have significant potential toxicities, drug interactions, and contraindications, requiring close monitoring. Targeted biologics are therefore attractive treatment options for topical therapy-refractory cases of atopic dermatitis, with the potential to offer effective, safer treatment of uncontrolled atopic dermatitis. Dupilumab, as the only biologic therapy currently FDA-approved for atopic dermatitis, is effective for many patients, but there is need for continuing study of additional biologic therapies to address the needs of diverse patients with uncontrolled atopic dermatitis.
Collapse
Affiliation(s)
- Peter Ip Fung Chun
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA. .,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, 1001 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
39
|
Dębińska A. New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression. J Clin Med 2021; 10:jcm10112506. [PMID: 34198894 PMCID: PMC8200961 DOI: 10.3390/jcm10112506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Anna Dębińska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
40
|
Qi HJ, Li LF. New Biologics for the Treatment of Atopic Dermatitis: Analysis of Efficacy, Safety, and Paradoxical Atopic Dermatitis Acceleration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5528372. [PMID: 34195265 PMCID: PMC8181104 DOI: 10.1155/2021/5528372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disease with an eczematous rash and itching. Due to undesired adverse effects of traditional systemic treatment, there is still an unmet need for safe and effective long-term therapy for refractory AD. As our understanding of the pathogenesis underlying AD grows, novel treatments targeting specific molecules have been developed. Here, we discuss the efficacy and safety profiles of these drugs in recent clinical trials. Among their adverse effects, of particular note is AD acceleration. Although there is still debate about whether certain adverse reactions can be said to be paradoxical adverse events (PAEs), a wide range of PAEs have been reported during biological treatment for chronic immune-mediated diseases. Close surveillance of novel biologics is crucial to detect new undescribed paradoxical reactions and to shed light on the convoluted pathogenesis of AD.
Collapse
Affiliation(s)
- Hong-jiao Qi
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin-Feng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Chiu CJ, Huang MT. Asthma in the Precision Medicine Era: Biologics and Probiotics. Int J Mol Sci 2021; 22:4528. [PMID: 33926084 PMCID: PMC8123613 DOI: 10.3390/ijms22094528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a major global health issue. Over 300 million people worldwide suffer from this chronic inflammatory airway disease. Typical clinical symptoms of asthma are characterized by a recurrent wheezy cough, chest tightness, and shortness of breath. The main goals of asthma management are to alleviate asthma symptoms, reduce the risk of asthma exacerbations, and minimize long-term medicinal adverse effects. However, currently available type 2 T helper cells (Th2)-directed treatments are often ineffective due to the heterogeneity of the asthma subgroups, which manifests clinically with variable and poor treatment responses. Personalized precision therapy of asthma according to individualized clinical characteristics (phenotype) and laboratory biomarkers (endotype) is the future prospect. This mini review discusses the molecular mechanisms underlying asthma pathogenesis, including the hot sought-after topic of microbiota, add-on therapies and the potential application of probiotics in the management of asthma.
Collapse
Affiliation(s)
- Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Miao-Tzu Huang
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Research, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
42
|
Gonçalves F, Freitas E, Torres T. Selective IL-13 inhibitors for the treatment of atopic dermatitis. Drugs Context 2021; 10:dic-2021-1-7. [PMID: 33889195 PMCID: PMC8015935 DOI: 10.7573/dic.2021-1-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases worldwide. AD pathogenesis is multifactorial, involving environmental and genetic factors. IL-13 stands out as one of the main cytokines in the pathophysiology of AD. Currently, dupilumab, which targets both IL-4 and IL-13 signalling, is the only biologic agent approved for the treatment of moderate-to-severe AD. New targeted biologic therapies are being developed, such as lebrikizumab and tralokinumab, two selective IL-13 inhibitors. This article reviews the role of IL-13 in AD and the most recent data on lebrikizumab and tralokinumab. Methods A narrative review of the literature was written after retrieving relevant articles in the PubMed database (up until December 2020) using the following keywords present in the title, abstract or body: atopic dermatitis; interleukin 13; IL-13; tralokinumab; lebrikizumab, biologic therapy. Discussion A phase IIb trial showed that all three dosing regimens evaluated (lebrikizumab 125 mg every 4 weeks (Q4W), 250 mg Q4W or 250 mg every 2 weeks) achieved rapid and dose-dependent efficacy concerning the signs and symptoms of AD, with a statistically significant improvement, at week 16. Tralokinumab was studied in three phase III clinical trials and reached its primary endpoints at week 16 (ECZTRA 1 and 2 in monotherapy and ECZTRA 3 with concomitant topical corticosteroids), with response maintained over time. Both lebrikizumab and tralokinumab exhibited good safety profiles in AD trials, with adverse effects usually being comparable between the control and treatment groups. Conclusion The evidence supports the hypothesis that selective antagonism of IL-13 is sufficient to control AD, providing an improvement in the patient’s quality of life. Therefore, the development of lebrikizumab and tralokinumab represents a new and exciting phase in the management of AD.
Collapse
Affiliation(s)
- Francisca Gonçalves
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Egídio Freitas
- Department of Dermatology, Centro Hospitalar do Porto, Porto, Portugal
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Department of Dermatology, Centro Hospitalar do Porto, Porto, Portugal.,Dermatology Research Unit, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
43
|
Zhou S, Qi F, Gong Y, Zhang J, Zhu B. Biological Therapies for Atopic Dermatitis: A Systematic Review. Dermatology 2021; 237:542-552. [PMID: 33735876 DOI: 10.1159/000514535] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a widely acquired, relapsing inflammatory skin disease. Biologics are now widely used in patients with moderate-to-severe AD. OBJECTIVE This work aims to summarize both label and off-label biologics on AD treatment in phase II and phase III stages, and compile evidence on the efficacy of the most-studied biologics. METHODS We conducted a comprehensive literature search through PubMed, EMBASE, and ClinicalTrials.gov to identify all documented biological therapies for AD. The criteria were further refined to focus on those treatments with the highest evidence level for AD with at least one randomized clinical trial supporting their use. Only studies or articles published in English were enrolled in this study. FINDINGS Primary searches identified 525 relevant articles and 27 trials. Duplicated articles and papers without a full text were excluded. Only completed trials were enrolled. We included 28 randomized controlled trials, 4 unpublished trials, 2 observational studies, and 1 meta-analysis. Eight kinds of biologics, including IL-4/IL-13 inhibitors, JAK inhibitors, anti-IL-13 antibodies, anti-IL-22 antibodies, anti-IL-33 antibodies, thymic stromal lymphopoietin inhibitor (TSLP), OX40 antibodies, and H4R-antagonists were included in this work. Dupliumab, as the most widely used and investigated biologic, was reported in 1 meta-analysis and 4 trials exploring its long-term use and application in both adults and pediatric patients. Besides dupilumab, four other IL-4/IL-13 inhibitors recruited were all randomized, clinical trials at phase 2-3 stage. Six different kinds of JAK inhibitors were summarized with strong evidence revealing their significant therapeutic effects on AD. There were 3 trials for nemolizumab, an anti-IL-13 antibody, all of which were in the phase 2 clinical trial stage. Results showed nemolizumab could be another alternative therapy for moderate-to-severe AD with long-term efficiency and safety. CONCLUSION The biological therapies with the most robust evidence on efficacy and long-term safety for AD treatment include dupilumab, barcitinib, abrocitinib, and delgocitinib. Most of the biologics mentioned in this review were still at the exploratory stage. This review will help practitioners advise patients seeking suitable biological therapies and offer experimental study directions for treatment.
Collapse
Affiliation(s)
- Shuying Zhou
- Department of Dermatology, The 305 Hospital of PLA, Beijing, China
| | - Fei Qi
- Capital Medical University Affiliated with Beijing Chaoyang Hospital, Beijing, China,
| | - Yue Gong
- Department of Dermatology, The 305 Hospital of PLA, Beijing, China
| | - Jinping Zhang
- Department of Dermatology, The 305 Hospital of PLA, Beijing, China
| | - Binghua Zhu
- Department of Dermatology, The 305 Hospital of PLA, Beijing, China
| |
Collapse
|
44
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Maher TM, Costabel U, Glassberg MK, Kondoh Y, Ogura T, Scholand MB, Kardatzke D, Howard M, Olsson J, Neighbors M, Belloni P, Swigris JJ. Phase 2 trial to assess lebrikizumab in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02442-2019. [PMID: 33008934 PMCID: PMC7859504 DOI: 10.1183/13993003.02442-2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 12/26/2022]
Abstract
This phase 2, randomised, double-blind, placebo-controlled trial evaluated the efficacy and safety of lebrikizumab, an interleukin (IL)-13 monoclonal antibody, alone or with background pirfenidone therapy, in patients with idiopathic pulmonary fibrosis (IPF). Patients with IPF aged ≥40 years with forced vital capacity (FVC) of 40%–100% predicted and diffusing capacity for carbon monoxide of 25%–90% predicted and who were treatment-naïve (cohort A) or receiving pirfenidone (2403 mg·day−1; cohort B) were randomised 1:1 to receive lebrikizumab 250 mg or placebo subcutaneously every 4 weeks. The primary endpoint was annualised rate of FVC % predicted decline over 52 weeks. In cohort A, 154 patients were randomised to receive lebrikizumab (n=78) or placebo (n=76). In cohort B, 351 patients receiving pirfenidone were randomised to receive lebrikizumab (n=174) or placebo (n=177). Baseline demographics were balanced across treatment arms in both cohorts. The primary endpoint (annualised rate of FVC % predicted decline) was not met in cohort A (lebrikizumab versus placebo, −5.2% versus −6.2%; p=0.456) or cohort B (lebrikizumab versus placebo, −5.5% versus −6.0%; p=0.557). In cohort B, a non-statistically significant imbalance in mortality favouring combination therapy was observed (hazard ratio 0.42 (95% CI 0.17–1.04)). Pharmacodynamic biomarkers indicated lebrikizumab activity. The safety profile was consistent with that in previous studies of lebrikizumab and pirfenidone as monotherapies. Lebrikizumab alone or with pirfenidone was not associated with reduced FVC % predicted decline over 52 weeks despite evidence of pharmacodynamic activity. Lebrikizumab was well tolerated with a favourable safety profile. These findings suggest that blocking IL-13 may not be sufficient to achieve a lung function benefit in patients with IPF. This phase 2 RCT found no benefit in FVC decline over 52 weeks in IPF patients for lebrikizumab versus placebo as monotherapy (n=78 versus 76) or in combination with pirfenidone (n=174 versus 177); pirfenidone therapy was consistent with previous resultshttps://bit.ly/313NVR8
Collapse
Affiliation(s)
- Toby M Maher
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Ulrich Costabel
- Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | | | | | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disease. IL-13 contributes significantly to the pathogenesis of AD in several ways, and beneficial results have been demonstrated with anti-IL-13 therapies. Currently, the only monoclonal antibody (mAb) approved for AD treatment is dupilumab, an antagonist of the IL-4 receptor alpha (IL-4Rα) subunit common to IL-4 and IL-13 receptors, but clinical trials evaluating anti-IL-13 mAbs are providing promising results. The topics of this review will be mAbs targeting IL-13 for the treatment of AD such as dupilumab, tralokinumab and lebrikizumab, small molecules targeting the IL-13 pathway, and a brief explanation of therapies targeting IL-13 for the treatment of other skin diseases.
Collapse
Affiliation(s)
- Carla Tubau
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Mas Casanovas 90, Barcelona 08041, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Mas Casanovas 90, Barcelona 08041, Spain
| |
Collapse
|
47
|
Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs 2021; 12:1692764. [PMID: 31779513 PMCID: PMC6927759 DOI: 10.1080/19420862.2019.1692764] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some antibodies exhibit elevated viscosity at high concentrations, making them poorly suited for therapeutic applications requiring administration by injection such as subcutaneous or ocular delivery. Here we studied an anti-IL-13/IL-17 bispecific IgG4 antibody, which has anomalously high viscosity compared to its parent monospecific antibodies. The viscosity of the bispecific IgG4 in solution was decreased by only ~30% in the presence of NaCl, suggesting electrostatic interactions are insufficient to fully explain the drivers of viscosity. Intriguingly, addition of arginine-HCl reduced the viscosity of the bispecific IgG4 by ~50% to its parent IgG level. These data suggest that beyond electrostatics, additional types of interactions such as cation-π and/or π-π may contribute to high viscosity more significantly than previously understood. Molecular dynamics simulations of antibody fragments in the mixed solution of free arginine and explicit water were conducted to identify hotspots involved in self-interactions. Exposed surface aromatic amino acids displayed an increased number of contacts with arginine. Mutagenesis of the majority of aromatic residues pinpointed by molecular dynamics simulations effectively decreased the solution's viscosity when tested experimentally. This mutational method to reduce the viscosity of a bispecific antibody was extended to a monospecific anti-GCGR IgG1 antibody with elevated viscosity. In all cases, point mutants were readily identified that both reduced viscosity and retained antigen-binding affinity. These studies demonstrate a new approach to mitigate high viscosity of some antibodies by mutagenesis of surface-exposed aromatic residues on complementarity-determining regions that may facilitate some clinical applications.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Jianping Yin
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jiansheng Wu
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Diego Ellerman
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Sarah G Hymowitz
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin Walters
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Cleo Salisbury
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Paul J Carter
- Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
48
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
49
|
Gonzalez TR, Martin KP, Barnes JE, Patel JS, Ytreberg FM. Assessment of software methods for estimating protein-protein relative binding affinities. PLoS One 2020; 15:e0240573. [PMID: 33347442 PMCID: PMC7751979 DOI: 10.1371/journal.pone.0240573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
A growing number of computational tools have been developed to accurately and rapidly predict the impact of amino acid mutations on protein-protein relative binding affinities. Such tools have many applications, for example, designing new drugs and studying evolutionary mechanisms. In the search for accuracy, many of these methods employ expensive yet rigorous molecular dynamics simulations. By contrast, non-rigorous methods use less exhaustive statistical mechanics, allowing for more efficient calculations. However, it is unclear if such methods retain enough accuracy to replace rigorous methods in binding affinity calculations. This trade-off between accuracy and computational expense makes it difficult to determine the best method for a particular system or study. Here, eight non-rigorous computational methods were assessed using eight antibody-antigen and eight non-antibody-antigen complexes for their ability to accurately predict relative binding affinities (ΔΔG) for 654 single mutations. In addition to assessing accuracy, we analyzed the CPU cost and performance for each method using a variety of physico-chemical structural features. This allowed us to posit scenarios in which each method may be best utilized. Most methods performed worse when applied to antibody-antigen complexes compared to non-antibody-antigen complexes. Rosetta-based JayZ and EasyE methods classified mutations as destabilizing (ΔΔG < -0.5 kcal/mol) with high (83-98%) accuracy and a relatively low computational cost for non-antibody-antigen complexes. Some of the most accurate results for antibody-antigen systems came from combining molecular dynamics with FoldX with a correlation coefficient (r) of 0.46, but this was also the most computationally expensive method. Overall, our results suggest these methods can be used to quickly and accurately predict stabilizing versus destabilizing mutations but are less accurate at predicting actual binding affinities. This study highlights the need for continued development of reliable, accessible, and reproducible methods for predicting binding affinities in antibody-antigen proteins and provides a recipe for using current methods.
Collapse
Affiliation(s)
- Tawny R. Gonzalez
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Kyle P. Martin
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
50
|
Tubau C, Puig L. Therapeutic targeting of the IL-13 pathway in skin inflammation. Expert Rev Clin Immunol 2020; 17:15-25. [PMID: 33275064 DOI: 10.1080/1744666x.2020.1858802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Atopic dermatitis (AD) is a heterogeneous, chronic, inflammatory skin disease with a non-negligible prevalence at present. Its pathogenesis is complex, but mainly characterized by constitutive T helper type 2 (Th2)-cell activation. Systemic therapies for moderate-to-severe AD can be associated with adverse events that encumber their satisfactory long-term use. Several drugs targeting relevant molecules in the immunopathogenesis of AD have been approved or are under clinical development for the treatment of moderate to severe AD. To elaborate this review, literature searches were performed in PubMed on 29 August 2020.Areas covered: This narrative literature review is focused on the pivotal role of IL-13 in the immunopathogenesis of AD and other skin diseases.Expert opinion: Dupilumab has demonstrated the central role of IL-13 and IL-4 in the pathogenesis of AD, asthma, and other diseases in the atopic spectrum. In addition, phase III randomized clinical trials (RCTs) evaluating specific blockade of IL-13 with tralokinumab for treatment of AD also demonstrated favorable results, and phase III RCT evaluating lebrikizumab are ongoing. The role of IL-13 in other skin diseases should be further investigated.
Collapse
Affiliation(s)
- Carla Tubau
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|