1
|
Chakraborty A, Hussain A, Sabnam N. Uncovering the structural stability of Magnaporthe oryzae effectors: a secretome-wide in silico analysis. J Biomol Struct Dyn 2025; 43:1701-1722. [PMID: 38109060 DOI: 10.1080/07391102.2023.2292795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Rice blast, caused by the ascomycete fungus Magnaporthe oryzae, is a deadly disease and a major threat to global food security. The pathogen secretes small proteinaceous effectors, virulence factors, inside the host to manipulate and perturb the host immune system, allowing the pathogen to colonize and establish a successful infection. While the molecular functions of several effectors are characterized, very little is known about the structural stability of these effectors. We analyzed a total of 554 small secretory proteins (SSPs) from the M. oryzae secretome to decipher key features of intrinsic disorder (ID) and the structural dynamics of the selected putative effectors through thorough and systematic in silico studies. Our results suggest that out of the total SSPs, 66% were predicted as effector proteins, released either into the apoplast or cytoplasm of the host cell. Of these, 68% were found to be intrinsically disordered effector proteins (IDEPs). Among the six distinct classes of disordered effectors, we observed peculiar relationships between the localization of several effectors in the apoplast or cytoplasm and the degree of disorder. We determined the degree of structural disorder and its impact on protein foldability across all the putative small secretory effector proteins from the blast pathogen, further validated by molecular dynamics simulation studies. This study provides definite clues toward unraveling the mystery behind the importance of structural distortions in effectors and their impact on plant-pathogen interactions. The study of these dynamical segments may help identify new effectors as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
2
|
Yang W, Du Q, Zhou X, Wu C, Bao J. PDFll: Predictors of Disorder and Function of Proteins from the Language of Life. J Comput Biol 2024. [PMID: 39246251 DOI: 10.1089/cmb.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The identification of intrinsically disordered proteins and their functional roles is largely dependent on the performance of computational predictors, necessitating a high standard of accuracy in these tools. In this context, we introduce a novel series of computational predictors, termed PDFll (Predictors of Disorder and Function of proteins from the Language of Life), which are designed to offer precise predictions of protein disorder and associated functional roles based on protein sequences. PDFll is developed through a two-step process. Initially, it leverages large-scale protein language models (pLMs), trained on an extensive dataset comprising billions of protein sequences. Subsequently, the embeddings derived from pLMs are integrated into streamlined, yet sophisticated, deep-learning models to generate predictions. These predictions notably surpass the performance of existing state-of-the-art predictors, particularly those that forecast disorder and function without utilizing evolutionary information.
Collapse
Affiliation(s)
- Wanyi Yang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingsong Du
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xunyu Zhou
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuanfang Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinku Bao
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cubuk J, Alston J, Incicco JJ, Holehouse A, Hall K, Stuchell-Brereton M, Soranno A. The disordered N-terminal tail of SARS-CoV-2 Nucleocapsid protein forms a dynamic complex with RNA. Nucleic Acids Res 2024; 52:2609-2624. [PMID: 38153183 PMCID: PMC10954482 DOI: 10.1093/nar/gkad1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
The SARS-CoV-2 Nucleocapsid (N) protein is responsible for condensation of the viral genome. Characterizing the mechanisms controlling nucleic acid binding is a key step in understanding how condensation is realized. Here, we focus on the role of the RNA binding domain (RBD) and its flanking disordered N-terminal domain (NTD) tail, using single-molecule Förster Resonance Energy Transfer and coarse-grained simulations. We quantified contact site size and binding affinity for nucleic acids and concomitant conformational changes occurring in the disordered region. We found that the disordered NTD increases the affinity of the RBD for RNA by about 50-fold. Binding of both nonspecific and specific RNA results in a modulation of the tail configurations, which respond in an RNA length-dependent manner. Not only does the disordered NTD increase affinity for RNA, but mutations that occur in the Omicron variant modulate the interactions, indicating a functional role of the disordered tail. Finally, we found that the NTD-RBD preferentially interacts with single-stranded RNA and that the resulting protein:RNA complexes are flexible and dynamic. We speculate that this mechanism of interaction enables the Nucleocapsid protein to search the viral genome for and bind to high-affinity motifs.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| |
Collapse
|
4
|
Nepal S, Holmstrom ED. Single-molecule-binding studies of antivirals targeting the hepatitis C virus core protein. J Virol 2023; 97:e0089223. [PMID: 37772835 PMCID: PMC10617558 DOI: 10.1128/jvi.00892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Dyson HJ. Vital for Viruses: Intrinsically Disordered Proteins. J Mol Biol 2023; 435:167860. [PMID: 37330280 PMCID: PMC10656058 DOI: 10.1016/j.jmb.2022.167860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/19/2023]
Abstract
Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Wu X, Liu J, Zhang H, Zhou H, Wang W, Ma Y, Shen S, Cai X, Huang A, Wang D. Immunomolecular assay based on selective virion capture by spike antibody and viral nucleic acid amplification for detecting intact SARS-CoV-2 particles. J Nanobiotechnology 2022; 20:399. [PMID: 36064407 PMCID: PMC9444083 DOI: 10.1186/s12951-022-01558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Effective therapeutics and vaccines for coronavirus disease 2019 (COVID-19) are currently lacking because of the mutation and immune escape of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on the propagation characteristics of SARS-CoV-2, rapid and accurate detection of complete virions from clinical samples and the environment is critical for assessing infection risk and containing further COVID-19 outbreaks. However, currently applicable methods cannot achieve large-scale clinical application due to factors such as the high viral load, cumbersome virus isolation steps, demanding environmental conditions, and long experimental periods. In this study, we developed an immuno molecular detection method combining capture of the viral spike glycoprotein with monoclonal antibodies and nucleic acid amplification via quantitative reverse transcription PCR to rapidly and accurately detect complete virions. Results After constructing a novel pseudovirus, screening for specific antibodies, and optimizing the detection parameters, the assay achieved a limit of detection of 9 × 102 transduction units/mL of viral titer with high confidence (~ 95%) and excellent stability against human serum and common virus/pseudovirus. The coefficients of variation were 1.0 ~ 2.0% for intra-assay and inter-assay analyses, respectively. Compared with reverse transcription-PCR, the immunomolecular method more accurately quantified complete virions. SARS-CoV-2/pseudovirus was more stable on plastic and paper compared with aluminum and copper in the detection of SARS-CoV-2 pseudovirus under different conditions. Complete virions were detected up to 96 h after they were applied to these surfaces (except for copper), although the titer of the virions was greatly reduced. Conclusion Convenient, inexpensive, and accurate complete virus detection can be applied to many fields, including monitoring the infectivity of convalescent and post-discharge patients and assessing high-risk environments (isolation rooms, operating rooms, patient living environments, and cold chain logistics). This method can also be used to detect intact virions, including Hepatitis B and C viruses, human immunodeficiency virus, influenza, and the partial pulmonary virus, which may further improve the accuracy of diagnoses and facilitate individualized and precise treatments. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01558-8.
Collapse
Affiliation(s)
- Xiaoli Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China.,College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, Yuzhong, China
| | - Junye Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Hongpeng Zhang
- Department of Blood Transfusion, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.,Department of Blood Transfusion, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, Yuzhong, China
| | - Wen Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Yuanyan Ma
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Shimei Shen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China
| | - Deqiang Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Chongqing Medical University, Yuzhong, 400016, Chongqing, China. .,College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, Yuzhong, China.
| |
Collapse
|
7
|
Affinity of disordered protein complexes is modulated by entropy-energy reinforcement. Proc Natl Acad Sci U S A 2022; 119:e2120456119. [PMID: 35727975 PMCID: PMC9245678 DOI: 10.1073/pnas.2120456119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered proteins (IDPs), which are very common and essential to many biological activities, sometimes function via interaction with another IDP and form a fuzzy complex, which can be highly stable. It is unclear what the biophysical forces are that govern their thermodynamics and specificity, which are essential for de novo fuzzy complex design. Here, we explored the fuzzy complex formed between ProTα and H1, which are oppositely charged IDPs, by swapping the charges between them, generating variants that have either greater polyampholytic or polyelectrolytic nature as well as different charge patterns. Charge swapping and shuffling dramatically change the affinity of the fuzzy complex, which is contributed to by both enthalpy and entropy, where the latter is dominated by counterion release. The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1–ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.
Collapse
|
8
|
Torres-Vázquez B, María de Lucas A, García-Crespo C, Antonio García-Martín J, Fragoso A, Fernández-Algar M, Perales C, Domingo E, Moreno M, Briones C. In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J Mol Biol 2022; 434:167501. [PMID: 35183559 DOI: 10.1016/j.jmb.2022.167501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
9
|
Naudi-Fabra S, Tengo M, Jensen MR, Blackledge M, Milles S. Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS. J Am Chem Soc 2021; 143:20109-20121. [PMID: 34817999 PMCID: PMC8662727 DOI: 10.1021/jacs.1c06264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range contacts, conformational ensembles describing intrinsically disordered proteins (IDPs) accurately should ideally respect all of these properties. Here we develop an integrated approach using a large set of FRET efficiencies and fluorescence lifetimes, NMR chemical shifts, and paramagnetic relaxation enhancements (PREs), as well as small-angle X-ray scattering (SAXS) to derive quantitative conformational ensembles in agreement with all parameters. Our approach is tested using simulated data (five sets of PREs and 15 FRET efficiencies) and validated experimentally on the example of the disordered domain of measles virus phosphoprotein, providing new insights into the conformational landscape of this viral protein that comprises transient structural elements and is more compact than an unfolded chain throughout its length. Rigorous cross-validation using FRET efficiencies, fluorescence lifetimes, and SAXS demonstrates the predictive nature of the calculated conformational ensembles and underlines the potential of this strategy in integrative dynamic structural biology.
Collapse
Affiliation(s)
- Samuel Naudi-Fabra
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Maud Tengo
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Sigrid Milles
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| |
Collapse
|
10
|
Buzón P, Maity S, Christodoulis P, Wiertsema MJ, Dunkelbarger S, Kim C, Wuite GJ, Zlotnick A, Roos WH. Virus self-assembly proceeds through contact-rich energy minima. SCIENCE ADVANCES 2021; 7:eabg0811. [PMID: 34730996 PMCID: PMC8565845 DOI: 10.1126/sciadv.abg0811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly of supramolecular complexes such as viral capsids occurs prominently in nature. Nonetheless, the mechanisms underlying these processes remain poorly understood. Here, we uncover the assembly pathway of hepatitis B virus (HBV), applying fluorescence optical tweezers and high-speed atomic force microscopy. This allows tracking the assembly process in real time with single-molecule resolution. Our results identify a specific, contact-rich pentameric arrangement of HBV capsid proteins as a key on-path assembly intermediate and reveal the energy balance of the self-assembly process. Real-time nucleic acid packaging experiments show that a free energy change of ~1.4 kBT per condensed nucleotide is used to drive protein oligomerization. The finding that HBV assembly occurs via contact-rich energy minima has implications for our understanding of the assembly of HBV and other viruses and also for the development of new antiviral strategies and the rational design of self-assembling nanomaterials.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Monique J. Wiertsema
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Steven Dunkelbarger
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Gijs J.L. Wuite
- Physics of Living Systems, Vrije Universiteit, Amsterdam, Netherlands
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
- Corresponding author.
| |
Collapse
|
11
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 2021; 12:1936. [PMID: 33782395 PMCID: PMC8007728 DOI: 10.1038/s41467-021-21953-3] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Michael D Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jason A Wagoner
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
12
|
Abstract
Intrinsically disordered proteins, defying the traditional protein structure-function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Collapse
|
13
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.158121. [PMID: 32587966 PMCID: PMC7310622 DOI: 10.1101/2020.06.17.158121] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
|
14
|
Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion. Biochem Biophys Res Commun 2020; 533:175-180. [PMID: 32951838 DOI: 10.1016/j.bbrc.2020.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA. This observation would be difficult to make with many other single-molecule techniques, which generally require the DNA ends to be anchored to a substrate. We also demonstrate that this protein-induced compaction is reversible and can be dynamically modulated by exposing the confined DNA molecules to solutions containing either HCVcp (to promote compaction) or Proteinase K (to disassemble the compact nucleo-protein complex). Although the natural binding partner for HCVcp is genomic viral RNA, the general biophysical principles governing protein-induced compaction of DNA are likely relevant for a broad range of nucleic acid-binding proteins and their targets.
Collapse
|
15
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Curr Opin Struct Biol 2019; 60:66-76. [PMID: 31874413 DOI: 10.1016/j.sbi.2019.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Recent evidence shows that oppositely charged intrinsically disordered proteins (IDPs) can form high-affinity complexes that involve neither the formation of secondary or tertiary structure nor site-specific interactions between individual residues. Similar electrostatically dominated interactions have also been identified for positively charged IDPs binding to nucleic acids. These highly disordered polyelectrolyte complexes constitute an extreme case within the spectrum of biomolecular interactions involving disorder. Such interactions are likely to be widespread, since sequence analysis predicts proteins with highly charged disordered regions to be surprisingly numerous. Here, we summarize the insights that have emerged from the highly disordered polyelectrolyte complexes identified so far, and we highlight recent developments and future challenges in (i) establishing models for the underlying highly dynamic structural ensembles, (ii) understanding the novel binding mechanisms associated with them, and (iii) identifying the functional consequences.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Switzerland; Department of Physics, University of Zurich, Switzerland.
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madeleine B Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA; Department of Chemistry, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Switzerland
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
17
|
Castillo-Martínez J, Ovejero T, Romero-López C, Sanmartín I, Berzal-Herranz B, Oltra E, Berzal-Herranz A, Gallego J. Structure and function analysis of the essential 3'X domain of hepatitis C virus. RNA 2019; 26:186-198. [PMID: 31694875 PMCID: PMC6961542 DOI: 10.1261/rna.073189.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
The 3′X domain of hepatitis C virus has been reported to control viral replication and translation by modulating the exposure of a nucleotide segment involved in a distal base-pairing interaction with an upstream 5BSL3.2 domain. To study the mechanism of this molecular switch, we have analyzed the structure of 3′X mutants that favor one of the two previously proposed conformations comprising either two or three stem–loops. Only the two-stem conformation was found to be stable and to allow the establishment of the distal contact with 5BSL3.2, and also the formation of 3′X domain homodimers by means of a universally conserved palindromic sequence. Nucleotide changes disturbing the two-stem conformation resulted in poorer replication and translation levels, explaining the high degree of conservation detected for this sequence. The switch function attributed to the 3′X domain does not occur as a result of a transition between two- and three-stem conformations, but likely through the sequestration of the 5BSL3.2-binding sequence by formation of 3′X homodimers.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain.,Escuela de Doctorado, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Tamara Ovejero
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Isaías Sanmartín
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| |
Collapse
|
18
|
Cantero-Camacho Á, Gallego J. An unexpected RNA distal interaction mode found in an essential region of the hepatitis C virus genome. Nucleic Acids Res 2019; 46:4200-4212. [PMID: 29409065 PMCID: PMC5934655 DOI: 10.1093/nar/gky074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
The 3’X tail is a functionally essential 98-nt sequence located at the 3′-end of the hepatitis C virus (HCV) RNA genome. The domain contains two absolutely conserved dimer linkage sequence (DLS) and k nucleotide segments involved in viral RNA dimerization and in a distal base-pairing interaction with stem-loop 5BSL3.2, respectively. We have previously shown that domain 3’X forms an elongated structure comprising two coaxially stacked SL1’ and SL2’ stem-loops. This conformation favors RNA dimerization by exposing a palindromic DLS segment in an apical loop, but buries in the upper stem of hairpin SL2’ the k nucleotides involved in the distal contact with 5BSL3.2. Using nuclear magnetic resonance spectroscopy and gel electrophoresis experiments, here we show that the establishment of the complex between domain 3’X and stem-loop 5BSL3.2 only requires a rearrangement of the nucleotides forming the upper region of subdomain SL2’. The results indicate that the interaction does not occur through a canonical kissing loop mechanism involving the unpaired nucleotides of two terminal loops, but rather involves a base-paired stem and an apical loop and may result in a kissing three-way junction. On the basis of this information we suggest how the 3’X tail switches between monomer, homodimer and heterodimer states to regulate the HCV viral cycle.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
19
|
sun H, Zhang C, Ma Y, Du M, Chen T. Controlling and online measurement of automatic dual-channel E-FRET microscope. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Commun 2019; 10:2453. [PMID: 31165735 PMCID: PMC6549165 DOI: 10.1038/s41467-019-10356-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte. RNA chaperones, such as the hepatitic C virus (HCV) core protein, are proteins that aid in the folding of nucleic acids. Here authors use single‐molecule spectroscopy and simulation to show that the HCV core protein acts as a flexible macromolecular counterion which facilitates nucleic acid folding.
Collapse
|
21
|
Chen J, Kriwacki RW. Intrinsically Disordered Proteins: Structure, Function and Therapeutics. J Mol Biol 2018; 430:2275-2277. [PMID: 29906412 DOI: 10.1016/j.jmb.2018.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38105, United States.
| |
Collapse
|