1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
LeJeune JT. Predicting and preventing the next viral disease transmitted through food. Food Microbiol 2025; 130:104782. [PMID: 40210399 DOI: 10.1016/j.fm.2025.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The ability of viruses to infect humans following oral exposure and disrupt normal physiological or anatomical functions is a hallmark of their potential to cause foodborne disease. While the etiology of the vast majority of foodborne diseases remains undetermined, viruses are often identified as the culprit when the cause is ascertained. Many undiagnosed causes of foodborne illnesses, especially sporadic cases, may go undetected or be caused by yet-to-be-identified viruses. The potential for food to become a transmission vehicle for viral diseases that are not typically acquired following ingestion may be described within the epidemiological paradigm. This model considers the characteristics and interactions of the host (the human), the agent (the virus), and the environment (the food, the food producing animal or the food production environment). Importantly, these factors are not static and evolution of viruses, transformations in agrifood systems, and changes in environmental conditions and human health and behaviour may contribute to increased pathogenicity, virulence, or exposure. In the context of determining the potential for additional viruses to emerge as important causes of foodborne disease, factors that contribute to hazard characterization (e.g., receptor affinity and distribution) and exposure assessment (e.g., prevalence in food animals and food hygiene) are reviewed. Although it is not possible to predict the type, the timing nor the location of the emergence of the next important cause of foodborne viral disease, the deployment and implementation of actions and behaviours related to personal and food hygiene, sanitation, and safe food handling practices can reduce the likelihood and impact of known and emergent viruses on the safety of the food supply and human health.
Collapse
Affiliation(s)
- Jeffrey T LeJeune
- Agrifood Systems and Food Safety Division (ESF), Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy.
| |
Collapse
|
3
|
Tawfeeq C, Wang J, Khaniya U, Madej T, Song J, Abrol R, Youkharibache P. IgStrand: A universal residue numbering scheme for the immunoglobulin-fold (Ig-fold) to study Ig-proteomes and Ig-interactomes. PLoS Comput Biol 2025; 21:e1012813. [PMID: 40228037 DOI: 10.1371/journal.pcbi.1012813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/20/2025] [Indexed: 04/16/2025] Open
Abstract
The Immunoglobulin fold (Ig-fold) is found in proteins from all domains of life and represents the most populous fold in the human genome, with current estimates ranging from 2 to 3% of protein coding regions. That proportion is much higher in the surfaceome where Ig and Ig-like domains orchestrate cell-cell recognition, adhesion and signaling. The ability of Ig-domains to reliably fold and self-assemble through highly specific interfaces represents a remarkable property of these domains, making them key elements of molecular interaction systems: the immune system, the nervous system, the vascular system and the muscular system. We define a universal residue numbering scheme, common to all domains sharing the Ig-fold in order to study the wide spectrum of Ig-domain variants constituting the Ig-proteome and Ig-Ig interactomes at the heart of these systems. The "IgStrand numbering scheme" enables the identification of Ig structural proteomes and interactomes in and between any species, and comparative structural, functional, and evolutionary analyses. We review how Ig-domains are classified today as topological and structural variants and highlight the "Ig-fold irreducible structural signature" shared by all of them. The IgStrand numbering scheme lays the foundation for the systematic annotation of structural proteomes by detecting and accurately labeling Ig-, Ig-like and Ig-extended domains in proteins, which are poorly annotated in current databases and opens the door to accurate machine learning. Importantly, it sheds light on the robust Ig protein folding algorithm used by nature to form beta sandwich supersecondary structures. The numbering scheme powers an algorithm implemented in the interactive structural analysis software iCn3D to systematically recognize Ig-domains, annotate them and perform detailed analyses comparing any domain sharing the Ig-fold in sequence, topology and structure, regardless of their diverse topologies or origin. The scheme provides a robust fold detection and labeling mechanism that reveals unsuspected structural homologies among protein structures beyond currently identified Ig- and Ig-like domain variants. Indeed, multiple folds classified independently contain a common structural signature, in particular jelly-rolls. Examples of folds that harbor an "Ig-extended" architecture are given. Applications in protein engineering around the Ig-architecture are straightforward based on the universal numbering.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California, United States of America
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Umesh Khaniya
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California, United States of America
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Galili U. Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution. J Mol Evol 2025:10.1007/s00239-025-10243-x. [PMID: 40159432 DOI: 10.1007/s00239-025-10243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
The human natural anti-carbohydrate antibodies anti-Gal, anti-Neu5Gc, and anti-Forssman are "living-fossils" that appeared in ancestral apes, monkeys and hominins millions of years ago. These antibodies appeared at various evolutionary periods in few mutated-offspring that lost the ability to synthesize the corresponding dispensable (i.e., nonessential) carbohydrate-antigens, α-gal epitope, Neu5Gc (N-glycolyl neuraminic acid) and Forssman-antigen, respectively. Production of these antibodies is stimulated by environmental antigens such as those of the human microbiota. Elimination of carbohydrate-antigens in the few mutated-offspring was caused by accidental nonsense or missense mutations that inactivated genes encoding enzymes involved in their biosynthesis, while most individuals in parental-populations continued synthesizing these carbohydrate-antigens. It has been suggested that dispensable carbohydrate-antigens which are absent in some mammalian species were evolutionary eliminated due to selective pressure by lethal viruses using these carbohydrate-antigens as "docking" receptors. An alternative selective mechanism which is based on the distribution of anti-Gal, anti-Neu5Gc and anti-Forssman in mammals, is presented in this review and is associated with the protective effects of these natural antibodies. It is suggested that epidemics of lethal enveloped-viruses caused the extinction of parental-populations synthesizing the corresponding carbohydrate-antigens of these antibodies, independent of the cell adhesion mechanisms of such viruses. However, the few mutated offspring were protected by these natural antibodies which bound to carbohydrate-antigens synthesized on viruses as a result of their replication in individuals of the parental-populations. Recent studies suggest that these antibodies continue to contribute to the immune protection of humans against zoonotic infections by viruses presenting α-gal, Neu5Gc or Forssman antigens.
Collapse
Affiliation(s)
- Uri Galili
- Rush University Medical Center, 910 South Michigan Avenue, Apt. 904, Chicago, IL, 60605, USA.
| |
Collapse
|
5
|
Yu W, Tao J, Cao H, Zheng W, Zhang B, Zhang Y, Xu P, Zhang Y, Liu X, Wang Y, Cai H, Liu G, Liu F, Wang H, Zhao H, Mysorekar IU, Hu X, Cao B. The HAVCR1-centric host factor network drives Zika virus vertical transmission. Cell Rep 2025; 44:115464. [PMID: 40156834 DOI: 10.1016/j.celrep.2025.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Zika virus (ZIKV) vertical transmission results in devastating congenital malformations and pregnancy complications; however, the specific receptor and host factors facilitating ZIKV maternal-fetal transmission remain elusive. Here, we employ a genome-wide CRISPR screening and identify multiple placenta-intrinsic factors modulating ZIKV infection. Our study unveils that hepatitis A virus cellular receptor 1 (HAVCR1) serves as a primary receptor governing ZIKV entry in placental trophoblasts. The GATA3-HAVCR1 axis regulates heterogeneous cell tropism in the placenta. Notably, placenta-specific Havcr1 deletion in mice significantly impairs ZIKV transplacental transmission and associated adverse pregnancy outcomes. Mechanistically, the immunoglobulin variable-like domain of HAVCR1 binds to ZIKV via domain III of envelope protein and virion-associated phosphatidylserine. Proteomic profiling and function analyses reveal that AP2S1 cooperates with HAVCR1 for ZIKV internalization through clathrin-mediated endocytosis. Overall, our work underscores the pivotal role of HAVCR1 in mediating ZIKV vertical transmission and highlights a therapeutic target for alleviating congenital Zika syndrome.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Tao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongmin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wanshan Zheng
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Beiang Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yue Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Peiqun Xu
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yiwei Zhang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuan Liu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Haiyan Zhao
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoqian Hu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
6
|
Kaikkolante N, Katneni VK, Palliyath GK, Jangam AK, Syamadayal J, Krishnan K, Prabhudas SK, Shekhar MS. Computational insights into host-pathogen protein interactions: unveiling penaeid shrimp and white spot syndrome virus interplay. Mol Genet Genomics 2025; 300:35. [PMID: 40126686 DOI: 10.1007/s00438-025-02242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
White spot syndrome virus (WSSV) has been a major threat in shrimp farming system especially for penaeid shrimps. The lack of effective control measures for WSSV makes this disease a significant threat to aquaculture. This study seeks to explore the mechanisms of WSSV infection and its impact on shrimp by examining host-pathogen interactions (HPI) through in silico approach, which can offer valuable insights into the processes of infection and disease progression. The investigation focused on five Penaeus species, including Penaeus vannamei, Penaeus chinensis, Penaeus monodon, Penaeus japonicus, and Penaeus indicus, studying their interaction with the WSSV. This study employed orthology-based and domain-driven analyses to reveal protein-protein interactions (PPIs) between the host and the pathogen. The combined strategies were found to be effective in detecting shared molecular mechanisms in pathogenesis, unveiling intricate PPI networks critical for virulence and host response. Most interacting proteins in WSSV are immediate early proteins involved in DNA replication and proliferation, and are crucial for ubiquitination, transcription regulation, and nucleotide metabolism. A large number of host proteins interact with WSSV across species (2360-11,704 interactions), with P. chinensis (11,704) and P. japonicus (11,458) exhibiting the highest counts, suggesting greater susceptibility or response. Host hub proteins are crucial in signaling, cellular processes, and metabolism, interacting across the cytoplasm, nucleus, and membrane, highlighting their role in WSSV pathogenesis. This study provides essential insights into host-pathogen interactions, offering a foundation for future research aimed at improving WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Nimisha Kaikkolante
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Vinaya Kumar Katneni
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India.
| | - Gangaraj Karyath Palliyath
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Ashok Kumar Jangam
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Jagabattulla Syamadayal
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Karthic Krishnan
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Sudheesh Kommu Prabhudas
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Mudagandur Shashi Shekhar
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Tamil Nadu, Chennai, India
| |
Collapse
|
7
|
Wang Q, Wang H, Wang X, Yang C, Li Y, Liao L, Zhu Z, Wang Y, He L. Cell surface heparan sulfate is an attachment receptor for grass carp reovirus. iScience 2025; 28:112033. [PMID: 40104073 PMCID: PMC11914516 DOI: 10.1016/j.isci.2025.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Grass carp reovirus (GCRV) causes hemorrhagic disease in grass carp, leading to significant economic losses in China's aquaculture. However, the cellular receptors responsible for the initiation of GCRV infection remain unclear. This study reveals that cell surface heparan sulfate (HS) acts as a crucial attachment receptor for GCRV. Removing HS with heparinase significantly reduces GCRV attachment and infection. Both HS and its homologue, heparin, inhibit the attachment of GCRV to cells. Altering HS levels in cells affects GCRV attachment and infection accordingly. GCRV outer capsid proteins VP5, VP56, and VP35, as well as purified GCRV virions, directly bind to HS. Pretreating GCRV with heparin or feeding grass carp with feed containing heparin significantly reduces mortality caused by GCRV infection. Collectively, these results highlight the crucial role of HS as an attachment receptor for GCRV and therefore provide a promising target for the prevention and control of this virus.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyue Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhou J, Zhang H, Wu G, Zhang Y, Aweya JJ, Tayyab M, Zhu J, Zhang Y, Yao D. The Na +-K +-ATPase alpha subunit is an entry receptor for white spot syndrome virus. mBio 2025; 16:e0378724. [PMID: 39964166 PMCID: PMC11898654 DOI: 10.1128/mbio.03787-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
White spot syndrome virus (WSSV) is a debilitating viral pathogen that poses a significant threat to the global crustacean farming industry. It has a wide host tropism because it uses several receptors to facilitate its attachment and entry. Thus far, not all the receptors have been identified. Here, we employed a BioID-based screening method to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor in Penaeus vannamei. Although during the early stages of WSSV infection, PvATP1A was induced and underwent oligomerization, clustering, and internalization, knockdown of PvATP1A inhibited viral entry and replication. PvATP1A interacted with the WSSV envelope protein VP28 through its multiple extracellular regions, whereas synthetic PvATP1A extracellular region peptides blocked WSSV entry and replication. We showed that PvATP1A did not affect WSSV attachment but facilitated internalization via caveolin-mediated endocytosis and macropinocytosis. These findings provide a robust receptor screening approach that identified PvATP1A as an entry receptor for WSSV, presenting a novel target for the development of anti-WSSV therapeutics. IMPORTANCE Cell surface receptors are crucial for mediating virus entry into host cells. Identification and characterization of virus receptors are fundamental yet challenging aspects of virology research. In this study, a BioID-based screening method was employed to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor for white spot syndrome virus (WSSV) in the shrimp Penaeus vannamei. We demonstrated that PvATP1A interacted with the WSSV envelope protein VP28 via its multiple extracellular regions, thereby promoting viral internalization through caveolin-mediated endocytosis and macropinocytosis. Importantly, compared with previously identified WSSV receptors such as β-integrin, glucose transporter 1 (Glut1), and polymeric immunoglobulin receptor (pIgR), PvATP1A demonstrated significantly enhanced viral entry, indicating that PvATP1A is a crucial entry receptor of WSSV. This study not only presents a robust approach for screening virus receptors but also identifies PvATP1A as a promising target for the development of anti-WSSV therapeutics.
Collapse
Affiliation(s)
- Junyi Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Huimin Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yinghao Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| |
Collapse
|
9
|
Wang Y, Li A, Ma H, Lan Y, Wang J, Wang X, Zhao L, Wu Q, Guo X. Conserved spike protein in Avastroviruses: A potential factor in cross-species transmission. Poult Sci 2025; 104:104988. [PMID: 40096792 PMCID: PMC11957675 DOI: 10.1016/j.psj.2025.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Avastroviruses (AAstVs) are important pathogens in avian species, with cross-species transmission being a critical factor in their evolutionary dynamics. The spike protein encoded by the ORF2 region plays a central role in viral entry and is believed to influence host range and transmission across species. This study analyzed the evolutionary conservation and divergence of spike proteins across different AAstV strains. Using sequence alignments, structural predictions via AlphaFold 2, and protein structure comparisons, we found significant structural conservation, particularly in β-sheet regions, despite originating from different hosts. Ancestral state reconstruction using BEAST 2.7 traced AAstVs back to a common ancestor from around 780 AD, with host-jumping events contributing to the formation of distinct viral groups. The conserved spike protein structures support the hypothesis that spike similarity plays a crucial role in cross-species transmission. Our findings highlight the crucial role of spike protein conservation in enabling AAstV to infect multiple host species, providing insights into the molecular mechanisms of host adaptation and viral evolution, and future studies will aim to experimentally validate the role of spike proteins in cross-species transmission.
Collapse
Affiliation(s)
- Yong Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, PR China; Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, PR China
| | - Aolin Li
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, PR China
| | - Hongfu Ma
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, PR China
| | - Yankun Lan
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, PR China
| | - Jiaguo Wang
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, PR China
| | - Xin Wang
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, PR China
| | - Liang Zhao
- Animal Husbandry Development Center of Lu'an, Lu'an, PR China
| | - Qifei Wu
- FeiChi Poultry Ecological Breeding Co., Hefei, PR China
| | - Xu Guo
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
10
|
Hayes WK, Gren ECK, Nelsen DR, Corbit AG, Cooper AM, Fox GA, Streit MB. It's a Small World After All: The Remarkable but Overlooked Diversity of Venomous Organisms, with Candidates Among Plants, Fungi, Protists, Bacteria, and Viruses. Toxins (Basel) 2025; 17:99. [PMID: 40137872 PMCID: PMC11945383 DOI: 10.3390/toxins17030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Numerous organisms, including animals, plants, fungi, protists, and bacteria, rely on toxins to meet their needs. Biological toxins have been classified into three groups: poisons transferred passively without a delivery mechanism; toxungens delivered to the body surface without an accompanying wound; and venoms conveyed to internal tissues via the creation of a wound. The distinctions highlight the evolutionary pathways by which toxins acquire specialized functions. Heretofore, the term venom has been largely restricted to animals. However, careful consideration reveals a surprising diversity of organisms that deploy toxic secretions via strategies remarkably analogous to those of venomous animals. Numerous plants inject toxins and pathogenic microorganisms into animals through stinging trichomes, thorns, spines, prickles, raphides, and silica needles. Some plants protect themselves via ants as venomous symbionts. Certain fungi deliver toxins via hyphae into infected hosts for nutritional and/or defensive purposes. Fungi can possess penetration structures, sometimes independent of the hyphae, that create a wound to facilitate toxin delivery. Some protists discharge harpoon-like extrusomes (toxicysts and nematocysts) that penetrate their prey and deliver toxins. Many bacteria possess secretion systems or contractile injection systems that can introduce toxins into targets via wounds. Viruses, though not "true" organisms according to many, include a group (the bacteriophages) which can inject nucleic acids and virion proteins into host cells that inflict damage rivaling that of conventional venoms. Collectively, these examples suggest that venom delivery systems-and even toxungen delivery systems, which we briefly address-are much more widespread than previously recognized. Thus, our understanding of venom as an evolutionary novelty has focused on only a small proportion of venomous organisms. With regard to this widespread form of toxin deployment, the words of the Sherman Brothers in Disney's iconic tune, It's a Small World, could hardly be more apt: "There's so much that we share, that it's time we're aware, it's a small world after all".
Collapse
Affiliation(s)
- William K. Hayes
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Eric C. K. Gren
- Bitterroot College, University of Montana, Hamilton, MT 59840, USA;
| | - David R. Nelsen
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Aaron G. Corbit
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Allen M. Cooper
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Gerad A. Fox
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - M. Benjamin Streit
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| |
Collapse
|
11
|
Yang QE, Lee N, Johnson N, Hong J, Zhao J(Q, Sun X, Zhang J. Quality assessment strategy development and analytical method selection of GMP grade biological drugs for gene and cell therapy. BBA ADVANCES 2025; 7:100151. [PMID: 40094061 PMCID: PMC11909464 DOI: 10.1016/j.bbadva.2025.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Biological drugs with gene and cell therapy potentials, including natural or rationally created biomacromolecules, recombinant proteins/enzymes, gene-carrying DNA/RNA fragments, oncolytic viruses, plasmid and viral vectors or other gene delivering vehicles with specific therapeutic genes and gene manipulation tools, and genetically modified and reprogrammed human cells comprise a large fraction of drug development candidates in modern precision and regeneration medicine. These drugs have displayed unique capabilities in treating patients with previously incurable diseases. However, most of the drug preparations have complex multimolecular structures and require specific biomanufacturing systems and many other additional biological active materials for drug synthesis, cell expansion, and production enhancement. Thus, the final products would have to be subjected to sequential extensive purification processes to exclude impurities and to concentrate the drug products after manufacturing. The quality evaluation for each drug product is an individualized process and must be specifically designed and performed according to the characteristics of the drug and its manufacturing and purification methods. Some of the Quality Control (QC) assays may be very costly and time-consuming, frequently with inconsistent test results from batch-to-batch. This review focuses on QC assessment strategy development for common gene and cell therapy drugs which use prokaryotic or eukaryotic cells for manufacturing or cell factories for in vitro expansions, especially for drug identification and concentration determination, impurity detection and quantification, drug potency, stability, and safety evaluations; and discusses some key issues for drug quality assessments in different categories and emphasizes the importance of individualized QC strategy design.
Collapse
Affiliation(s)
- Quan-en Yang
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | | | | | | | - Jenny (Qinghua) Zhao
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | - Xiulian Sun
- uBriGene Biosciences, Inc., Germantown, MD, USA
| | | |
Collapse
|
12
|
Xie Z, Angioletti-Uberti S, Dobnikar J, Frenkel D, Curk T. Receptor clustering tunes and sharpens the selectivity of multivalent binding. Proc Natl Acad Sci U S A 2025; 122:e2417159122. [PMID: 39951501 PMCID: PMC11848318 DOI: 10.1073/pnas.2417159122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/11/2025] [Indexed: 02/16/2025] Open
Abstract
The immune system exploits a wide range of strategies to combine sensitivity with selectivity for optimal response. We propose a generic physical mechanism that allows tuning the location and steepness of the response threshold of cellular processes activated by multivalent binding. The mechanism is based on the possibility to modulate the attraction between membrane receptors. We use theory and simulations to show how tuning interreceptor attraction can enhance or suppress the binding of multivalent ligand-coated particles to surfaces. The changes in the interreceptor attraction less than the thermal energy kBT can selectively switch the receptor-clustering and activation on or off in an almost step-wise fashion, which we explain by near-critical receptor density fluctuations. We also show that the same mechanism can efficiently regulate the onset of endocytosis for, e.g., drug delivery vehicles.
Collapse
Affiliation(s)
- Zhaoping Xie
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | | | - Jure Dobnikar
- Chinese Academy of Sciences Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325011, China
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tine Curk
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
13
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
14
|
Huang Y, Wu J, Zhang X, Zhang S, Wu S, Bao W. Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection. Vet Microbiol 2025; 301:110370. [PMID: 39765007 DOI: 10.1016/j.vetmic.2025.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication. Firstly, we mapped the expression profile of DPP4 in different tissues of 7-day-old piglets and found that DPP4 was highly expressed in the liver, lung, kidney, duodenum, jejunum, and ileum tissues of piglets. In addition, the immunohistochemical results showed that DPP4 was mainly distributed at the apical of intestinal villous epithelial cells in the jejunum of piglets. Further studies revealed that DPP4 expression was significantly lower in PEDV-infected porcine jejunal tissues and IPEC-J2 cells than in uninfected controls. PEDV invasion and replication could be inhibited by DPP4 inhibitor and specific antibody. Moreover, DPP4 knockout was able to significantly inhibit PEDV infection. Then, we found that endogenous DPP4 interacted with PEDV, and that preincubation of PEDV with endogenous DPP4 reduced viral infection. Finally, we predicted the docking of DPP4 and PEDV-S1-RBD proteins in silico, showing a strong binding tendency. Taken together, our study supports the hypothesis that DPP4 is a cofactor for PEDV infection.
Collapse
Affiliation(s)
- Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu of Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Popović ME, Tadić V, Popović M. (R)evolution of Viruses: Introduction to biothermodynamics of viruses. Virology 2025; 603:110319. [PMID: 39642612 DOI: 10.1016/j.virol.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
As of 26 April 2024, the International Committee on Taxonomy of Viruses has registered 14690 virus species. Of these, only several dozen have been chemically and thermodynamically characterized. Every virus species is characterized by a specific empirical formula and thermodynamic properties - enthalpy, entropy and Gibbs energy. These physical properties are used in a mechanistic model of virus-host interactions at the cell membrane and in the cytoplasm. This review article presents empirical formulas and Gibbs energies for all major variants of SARS-CoV-2. This article also reports and suggests a mechanistic model of evolutionary changes, with the example of time evolution of SARS-CoV-2 from 2019 to 2024.
Collapse
Affiliation(s)
- Marko E Popović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Vojin Tadić
- Department for Experimental Testing of Precious Metals, Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Marta Popović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
16
|
Valério M, Buga CC, Melo MN, Soares CM, Lousa D. Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections. FEBS Open Bio 2025; 15:269-284. [PMID: 39402013 PMCID: PMC11788750 DOI: 10.1002/2211-5463.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 02/04/2025] Open
Abstract
Viral infections are a major global health concern, affecting millions of people each year. Viral entry is one of the crucial stages in the infection process, but its details remain elusive. Enveloped viruses are enclosed by a lipid membrane that protects their genetic material and these viruses are linked to various human illnesses, including influenza, and COVID-19. Due to the advancements made in the field of molecular simulation, significant progress has been made in unraveling the dynamic processes involved in viral entry of enveloped viruses. Simulation studies have provided deep insight into the function of the proteins responsible for attaching to the host receptors and promoting membrane fusion (fusion proteins), deciphering interactions between these proteins and receptors, and shedding light on the functional significance of key regions, such as the fusion peptide. These studies have already significantly contributed to our understanding of this critical aspect of viral infection and assisted the development of effective strategies to combat viral diseases and improve global health. This review focuses on the vital role of fusion proteins in facilitating the entry process of enveloped viruses and highlights the contributions of molecular simulation studies to uncover the molecular details underlying their mechanisms of action.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Carolina C. Buga
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisbonPortugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Diana Lousa
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
17
|
Cho Y, Jeong I, Kim KE, Rhee HW. Painting Cell-Cell Interactions by Horseradish Peroxidase and Endogenously Generated Hydrogen Peroxide. ACS Chem Biol 2025; 20:86-93. [PMID: 39692451 DOI: 10.1021/acschembio.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cell-cell interactions are fundamental in biology for maintaining physiological conditions with direct contact being the most straightforward mode of interaction. Recent advancements have led to the development of various chemical tools for detecting or identifying these interactions. However, the use of exogenous cues, such as toxic reagents, bulky probes, and light irradiation, can disrupt normal cell physiology. For example, the toxicity of hydrogen peroxide (H2O2) limits the applications of peroxidases in the proximity labeling field. In this study, we aimed to address this limitation by demonstrating that membrane-localized horseradish peroxidase (HRP-TM) efficiently utilizes endogenously generated extracellular H2O2. By harnessing endogenous H2O2, we observed that HRP-TM-expressing cells can effectively label contacting cells without the need for exogenous H2O2 treatment. Furthermore, we confirmed that HRP-TM labels proximal cells in an interaction-dependent manner. These findings offer a novel approach for studying cell-cell interactions under more physiological conditions without the confounding effects of exogenous stimuli. Our study contributes to elucidating cell-cell interaction networks in various model organisms, providing valuable insights into the dynamic interplay between cells in their native network.
Collapse
Affiliation(s)
- Youngjoon Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Inyoung Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
19
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
21
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2024:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
22
|
Dirvin B, Noh H, Tomassoni L, Cao D, Zhou Y, Ke X, Qian J, Jangra S, Schotsaert M, García-Sastre A, Karan C, Califano A, Cardoso WV. Identification and Targeting of Regulators of SARS-CoV-2-Host Interactions in the Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617898. [PMID: 39464067 PMCID: PMC11507692 DOI: 10.1101/2024.10.11.617898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the impact of SARS-CoV-2 in the lung has been extensively studied, the molecular regulators and targets of the host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. This is in part ascribed to the use of nonprimary cell systems, overreliance on single-cell gene expression profiling that does not ultimately reflect protein activity, and bias toward the downstream effects rather than their mechanistic determinants. Here we address these issues by network-based analysis of single cell transcriptomic profiles of pathophysiologically relevant human adult basal, ciliated and secretory cells to identify master regulator (MR) protein modules controlling their SARS-CoV-2-mediated reprogramming. This uncovered chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR analyses as components of the host response collectively or selectively activated in these cells. Large-scale perturbation assays, using a clinically relevant drug library, identified 11 drugs able to invert the entire MR signature activated by SARS-CoV-2 in these cell types. Leveraging MR analysis and perturbational profiles of human primary cells represents a novel mechanism-based approach and resource that can be directly generalized to interrogate signatures of other airway conditions for drug prioritization.
Collapse
Affiliation(s)
- Brooke Dirvin
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Heeju Noh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- Institute for Systems Biology, Seattle, WA, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Danting Cao
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA 1003
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Charles Karan
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Andrea Califano
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
23
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
24
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
25
|
Lefebvre M, Chahinian H, La Scola B, Fantini J. Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants. Viruses 2024; 16:1836. [PMID: 39772146 PMCID: PMC11680242 DOI: 10.3390/v16121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane. We characterize a binding area that presents point mutations and deletions in successive SARS-CoV-2 variants from the initial strain to omicron KP.3 circulating in many countries in 2024. We show that ivermectin has exceptional flexibility, allowing the drug to bind to the spike protein of all variants tested. The energy of interaction is specific to each variant, allowing a classification according to their affinity for ivermectin in the following ascending order: Omicron KP.3 < Delta < Omicron BA.5 < Alpha < Wuhan (B.1) < Omicron BA.1. The binding site of ivermectin is subject to important variations of the NTD, including the Y144 deletion. It overlaps with the ganglioside binding domain of the NTD, as demonstrated by docking and physicochemical studies. These results suggest a new mechanism of antiviral action for ivermectin based on competitive inhibition for initial virus attachment to lipid rafts. The current KP.3 variant is still recognized by ivermectin, although with an affinity slightly lower than the Wuhan strain.
Collapse
Affiliation(s)
- Marine Lefebvre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Henri Chahinian
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| |
Collapse
|
26
|
Goens MM, Howard EL, Warner BM, Susta L, Wootton SK. Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses 2024; 16:1794. [PMID: 39599908 PMCID: PMC11599079 DOI: 10.3390/v16111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
The emergence and re-emergence of pathogens with pandemic potential has been a persistent issue throughout history. Recent decades have seen significant outbreaks of zoonotic viruses from members of the Coronaviridae, Filoviridae, Paramyxoviridae, Flaviviridae, and Togaviridae families, resulting in widespread infections. The continual emergence of zoonotic viral pathogens and associated infections highlights the need for prevention strategies and effective treatments. Central to this effort is the availability of suitable animal models, which are essential for understanding pathogenesis and assessing transmission dynamics. These animals are also critical for evaluating the safety and efficacy of novel vaccines or therapeutics and are essential in facilitating regulatory approval of new products. Rapid development of animal models is an integral aspect of pandemic response and preparedness; however, their establishment is fraught by several rate-limiting steps, including selection of a suitable species, the logistical challenges associated with sharing and disseminating transgenic animals (e.g., the time-intensive nature of breeding and maintaining colonies), the availability of technical expertise, as well as ethical and regulatory approvals. A method for the rapid development of relevant animal models that has recently gained traction, in large part due to the COVID-19 pandemic, is the use of gene therapy vectors to express human viral receptors in readily accessible laboratory animals to enable virus infection and development of clinical disease. These models can be developed rapidly on any genetic background, making mechanistic studies and accelerated evaluation of novel countermeasures possible. In this review, we will discuss important considerations for the effective development of animal models using viral vector approaches and review the current vector-based animal models for studying viral pathogenesis and evaluating prophylactic and therapeutic strategies, with an emphasis on models of SARS-CoV-2 infection based on the vectorized expression of human angiotensin-converting enzyme 2.
Collapse
Affiliation(s)
- Melanie M. Goens
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Erin L. Howard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bryce M. Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada;
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
27
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
28
|
McCallum M, Veesler D. Computational design of prefusion-stabilized Herpesvirus gB trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619923. [PMID: 39484573 PMCID: PMC11526958 DOI: 10.1101/2024.10.23.619923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the absence of effective vaccines, human-infecting members of the Herpesvirus family cause considerable morbidity and mortality worldwide. Herpesvirus infection relies on receptor engagement by a gH/gL glycoprotein complex which induces large-scale conformational changes of the gB glycoprotein to mediate fusion of the viral and host membranes and infection. The instability of all herpesvirus gBs have hindered biochemical and functional studies, thereby limiting our understanding of the infection mechanisms of these pathogens and preventing vaccine design. Here, we computationally stabilized and structurally characterized the Epstein-Barr virus prefusion gB ectodomain trimer, providing an atomic-level description of this key therapeutic target. We show that this stabilization strategy is broadly applicable to other herpesvirus gB trimers and identified conformational intermediates supporting a previously unanticipated mechanism of gB-mediated fusion. These findings provide a blueprint to develop vaccine candidates for these pathogens with major public health burden.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Arifin JC, Tsai BY, Chen CY, Chu LW, Lin YL, Lee CH, Chiou A, Ping YH. Quantification of the interaction forces between dengue virus and dopamine type-2 receptor using optical tweezers. Virol J 2024; 21:215. [PMID: 39261951 PMCID: PMC11391641 DOI: 10.1186/s12985-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) causes the most significant mosquito-borne viral disease with a wide spectrum of clinical manifestation, including neurological symptoms associated with lethal dengue diseases. Dopamine receptors are expressed in central nervous system, and dopamine antagonists have been reported to exhibit antiviral activity against DENV infection in vivo and in vitro. Although identification of host-cell receptor is critical to understand dengue neuropathogenesis and neurotropism, the involvement of dopamine receptors in DENV infection remains unclear. RESULTS We exploited the sensitivity and precision of force spectroscopy to address whether dopamine type-2 receptors (D2R) directly interact with DENV particles at the first step of infection. Using optical tweezers, we quantified and characterized DENV binding to D2R expressed on Chinese hamster ovary (CHO) cells. Our finding suggested that the binding was D2R- and DENV-dependent, and that the binding force was in the range of 50-60 pN. We showed that dopamine antagonists prochlorperazine (PCZ) and trifluoperazine (TFP), previously reported to inhibit dengue infection, interrupt the DENV-D2R specific binding. CONCLUSIONS This study demonstrates that D2R could specifically recognize DENV particles and function as an attachment factor on cell surfaces for DENV. We propose D2R as a host receptor for DENV and as a potential therapeutic target for anti-DENV drugs.
Collapse
Affiliation(s)
- Jane C Arifin
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Bo-Ying Tsai
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chun-Yu Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Li-Wei Chu
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chau-Hwang Lee
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh-Hsin Ping
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
30
|
Ullah S, Ullah F, Rahman W, Ullah A, Haider S, Yueguang C. Elucidating the inhibitory mechanism of Zika virus NS2B-NS3 protease with dipeptide inhibitors: Insights from molecular docking and molecular dynamics simulations. PLoS One 2024; 19:e0307902. [PMID: 39116118 PMCID: PMC11309477 DOI: 10.1371/journal.pone.0307902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024] Open
Abstract
Microcephaly, Guillain-Barré syndrome, and potential sexual transmission stand as prominent complications associated with Zika virus (ZIKV) infection. The absence of FDA-approved drugs or vaccines presents a substantial obstacle in combatting the virus. Furthermore, the inclusion of pregnancy in the pharmacological screening process complicates and extends the endeavor to ensure molecular safety and minimal toxicity. Given its pivotal role in viral assembly and maturation, the NS2B-NS3 viral protease emerges as a promising therapeutic target against ZIKV. In this context, a dipeptide inhibitor was specifically chosen as a control against 200 compounds for docking analysis. Subsequent molecular dynamics simulations extending over 200 ns were conducted to ascertain the stability of the docked complex and confirm the binding of the inhibitor at the protein's active site. The simulation outcomes exhibited conformity to acceptable thresholds, encompassing parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), ligand-protein interaction analysis, ligand characterization, and surface area analysis. Notably, analysis of ligand angles bolstered the identification of prospective ligands capable of inhibiting viral protein activity and impeding virus dissemination. In this study, the integration of molecular docking and dynamics simulations has pinpointed the dipeptide inhibitor as a potential candidate ligand against ZIKV protease, thereby offering promise for therapeutic intervention against the virus.
Collapse
Affiliation(s)
- Shahid Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farhan Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | | | - Anees Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | | | - Cao Yueguang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Nanshan, Shenzhen, China
| |
Collapse
|
31
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
32
|
Elste J, Saini A, Mejia-Alvarez R, Mejía A, Millán-Pacheco C, Swanson-Mungerson M, Tiwari V. Significance of Artificial Intelligence in the Study of Virus-Host Cell Interactions. Biomolecules 2024; 14:911. [PMID: 39199298 PMCID: PMC11352483 DOI: 10.3390/biom14080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
A highly critical event in a virus's life cycle is successfully entering a given host. This process begins when a viral glycoprotein interacts with a target cell receptor, which provides the molecular basis for target virus-host cell interactions for novel drug discovery. Over the years, extensive research has been carried out in the field of virus-host cell interaction, generating a massive number of genetic and molecular data sources. These datasets are an asset for predicting virus-host interactions at the molecular level using machine learning (ML), a subset of artificial intelligence (AI). In this direction, ML tools are now being applied to recognize patterns in these massive datasets to predict critical interactions between virus and host cells at the protein-protein and protein-sugar levels, as well as to perform transcriptional and translational analysis. On the other end, deep learning (DL) algorithms-a subfield of ML-can extract high-level features from very large datasets to recognize the hidden patterns within genomic sequences and images to develop models for rapid drug discovery predictions that address pathogenic viruses displaying heightened affinity for receptor docking and enhanced cell entry. ML and DL are pivotal forces, driving innovation with their ability to perform analysis of enormous datasets in a highly efficient, cost-effective, accurate, and high-throughput manner. This review focuses on the complexity of virus-host cell interactions at the molecular level in light of the current advances of ML and AI in viral pathogenesis to improve new treatments and prevention strategies.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Akash Saini
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA;
| | - Rafael Mejia-Alvarez
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Armando Mejía
- Departamento de Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - Cesar Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Michelle Swanson-Mungerson
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| |
Collapse
|
33
|
Nelli RK, Harm TA, Siepker C, Groeltz-Thrush JM, Jones B, Twu NC, Nenninger AS, Magstadt DR, Burrough ER, Piñeyro PE, Mainenti M, Carnaccini S, Plummer PJ, Bell TM. Sialic Acid Receptor Specificity in Mammary Gland of Dairy Cattle Infected with Highly Pathogenic Avian Influenza A(H5N1) Virus. Emerg Infect Dis 2024; 30:1361-1373. [PMID: 38861554 PMCID: PMC11210646 DOI: 10.3201/eid3007.240689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.
Collapse
|
34
|
Alissa M, Alsuwat MA, Alzahrani KJ. Neurological manifestations of Flaviviridae, Togaviridae, and Peribunyaviridae as vector-borne viruses. Rev Med Virol 2024; 34:e2571. [PMID: 39039630 DOI: 10.1002/rmv.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Vector-borne viruses pose a significant health problem worldwide, as they are transmitted to humans through the bite of infected arthropods such as mosquitoes and ticks. In recent years, emerging and re-emerging vector-borne diseases have gained attention as they can cause a wide spectrum of neurological manifestations. The neurological manifestations of vector-borne viruses encompass a board spectrum of clinical manifestations, ranging from mild and self-limiting symptoms to severe and life-threatening conditions. Common neurological complications include viral encephalitis, acute flaccid paralysis, aseptic meningitis, and various neuromuscular disorders. The specific viruses responsible for these neurological sequelae vary by geographic region and include Orthoflavivirus nilense, Zika virus, dengue virus, chikungunya virus, Japanese encephalitis virus, and tick-borne encephalitis virus. This review focuses on the pathogenesis of these neurologic complications and highlights the mechanisms by which vector-borne viruses invade the central nervous system and trigger neuroinflammatory responses. Diagnostic challenges and strategies for early detection of neurological manifestations are discussed, emphasising the importance of clinical suspicion and advanced laboratory testing.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
35
|
Wang B, Yang F, Wang W, Zhao F, Sun X. TurboID-mediated proximity labeling technologies to identify virus co-receptors. Front Cell Infect Microbiol 2024; 14:1371837. [PMID: 38994005 PMCID: PMC11236563 DOI: 10.3389/fcimb.2024.1371837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.
Collapse
Affiliation(s)
- Bo Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Wuqian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Jiaxing Maternity and Children Health Care Hospital, Affiliated Women and Children Hospital Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Zhao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Xiaofang Sun
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Shibamoto A, Kitsu Y, Shibata K, Kaneko Y, Moriizumi H, Takahashi T. microRNA-guided immunity against respiratory virus infection in human and mouse lung cells. Biol Open 2024; 13:bio060172. [PMID: 38875000 PMCID: PMC11212637 DOI: 10.1242/bio.060172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Viral infectivity depends on multiple factors. Recent studies showed that the interaction between viral RNAs and endogenous microRNAs (miRNAs) regulates viral infectivity; viral RNAs function as a sponge of endogenous miRNAs and result in upregulation of its original target genes, while endogenous miRNAs target viral RNAs directly and result in repression of viral gene expression. In this study, we analyzed the possible interaction between parainfluenza virus RNA and endogenous miRNAs in human and mouse lungs. We showed that the parainfluenza virus can form base pairs with human miRNAs abundantly than mouse miRNAs. Furthermore, we analyzed that the sponge effect of endogenous miRNAs on viral RNAs may induce the upregulation of transcription regulatory factors. Then, we performed RNA-sequence analysis and observed the upregulation of transcription regulatory factors in the early stages of parainfluenza virus infection. Our studies showed how the differential expression of endogenous miRNAs in lungs could contribute to respiratory virus infection and species- or tissue-specific mechanisms and common mechanisms could be conserved in humans and mice and regulated by miRNAs during viral infection.
Collapse
Affiliation(s)
- Ayaka Shibamoto
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | - Yoshiaki Kitsu
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | - Keiko Shibata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuka Kaneko
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Harune Moriizumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
37
|
Saha T, Fojtů M, Nagar AV, Thurakkal L, Srinivasan BB, Mukherjee M, Sibiyon A, Aggarwal H, Samuel A, Dash C, Jang HL, Sengupta S. Antibody nanoparticle conjugate-based targeted immunotherapy for non-small cell lung cancer. SCIENCE ADVANCES 2024; 10:eadi2046. [PMID: 38875335 PMCID: PMC11177938 DOI: 10.1126/sciadv.adi2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
The use of immune checkpoint inhibitors, which activate T cells, is a paradigm shift in the treatment of non-small cell lung cancer. However, the overall response remains low. To address this limitation, here we describe a novel platform, termed antibody-conjugated drug-loaded nanotherapeutics (ADN), which combines immunotherapy and molecularly targeted therapy. An ADN was designed with an anti-CD47 and anti-programmed death ligand 1 (PDL1) antibody pair on the surface of the nanoparticle and a molecularly targeted inhibitor of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway, PI103, entrapped in the nanoparticle. The anti-CD47-PDL1-ADN exhibited greater antitumor efficacy than current treatment options with a PDL1 inhibitor in vivo in an aggressive lung cancer immunocompetent mouse model. Dual antibody-drug-loaded nanotherapeutics can emerge as an attractive platform to improve outcomes with cancer immunotherapy.
Collapse
Affiliation(s)
- Tanmoy Saha
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela Fojtů
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Astha Vinay Nagar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liya Thurakkal
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Balaaji Baanupriya Srinivasan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghma Mukherjee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Astralina Sibiyon
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heena Aggarwal
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Akash Samuel
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chinmayee Dash
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hae Lin Jang
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiladitya Sengupta
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
38
|
Shang P, Dos Santos Natividade R, Taylor GM, Ray A, Welsh OL, Fiske KL, Sutherland DM, Alsteens D, Dermody TS. NRP1 is a receptor for mammalian orthoreovirus engaged by distinct capsid subunits. Cell Host Microbe 2024; 32:980-995.e9. [PMID: 38729153 PMCID: PMC11176008 DOI: 10.1016/j.chom.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kay L Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium; WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Ashraf HN, Uversky VN. Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles. Viruses 2024; 16:916. [PMID: 38932209 PMCID: PMC11209445 DOI: 10.3390/v16060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Hafiza Nimra Ashraf
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
40
|
Hwang J, Kim BK, Moon S, Park W, Kim KW, Yoon JH, Oh H, Jung S, Park Y, Kim S, Kim M, Kim S, Jung Y, Park M, Kim JH, Jung ST, Kim SJ, Kim YS, Chung WJ, Song MS, Kweon DH. Conversion of Host Cell Receptor into Virus Destructor by Immunodisc to Neutralize Diverse SARS-CoV-2 Variants. Adv Healthc Mater 2024; 13:e2302803. [PMID: 38329411 DOI: 10.1002/adhm.202302803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Beom Kyu Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunseok Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Sangwon Jung
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Youngseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Misoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| |
Collapse
|
41
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|
42
|
Park A, Lee C, Lee JY. Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis. J Microbiol 2024; 62:393-407. [PMID: 38451451 DOI: 10.1007/s12275-024-00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/08/2024]
Abstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
43
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Yu L, Liu X, Wei X, Ren J, Wang X, Wu S, Lan K. C1QTNF5 is a novel attachment factor that facilitates the entry of influenza A virus. Virol Sin 2024; 39:277-289. [PMID: 38246238 PMCID: PMC11074642 DOI: 10.1016/j.virs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinjin Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wei
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junrui Ren
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueyun Wang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
45
|
Aghajani Mir M. Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities. Genes Dis 2024; 11:772-787. [PMID: 37692527 PMCID: PMC10491885 DOI: 10.1016/j.gendis.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
The physicochemical characteristics of RNA admit non-coding RNAs to perform a different range of biological acts through various mechanisms and are involved in regulating a diversity of fundamental processes. Notably, some reports of pathological conditions have proved abnormal expression of many non-coding RNAs guides the ailment. Vault RNAs are a class of non-coding RNAs containing stem regions or loops with well-conserved sequence patterns that play a fundamental role in the function of vault particles through RNA-ligand, RNA-RNA, or RNA-protein interactions. Taken together, vault RNAs have been proposed to be involved in a variety of functions such as cell proliferation, nucleocytoplasmic transport, intracellular detoxification processes, multidrug resistance, apoptosis, and autophagy, and serve as microRNA precursors and signaling pathways. Despite decades of investigations devoted, the biological function of the vault particle or the vault RNAs is not yet completely cleared. In this review, the current scientific assertions of the vital vault RNAs functions were discussed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Health Research Institute, Babol University of Medical Sciences, Babol 47176-4774, Iran
| |
Collapse
|
46
|
García-Rodríguez I, Moreni G, Capendale PE, Mulder L, Aknouch I, Vieira de Sá R, Johannesson N, Freeze E, van Eijk H, Koen G, Wolthers KC, Pajkrt D, Sridhar A, Calitz C. Assessment of the broad-spectrum host targeting antiviral efficacy of halofuginone hydrobromide in human airway, intestinal and brain organotypic models. Antiviral Res 2024; 222:105798. [PMID: 38190972 DOI: 10.1016/j.antiviral.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Giulia Moreni
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Pamela E Capendale
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Lance Mulder
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Ikrame Aknouch
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; Viroclinics Xplore, Schaijk, the Netherlands
| | - Renata Vieira de Sá
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105, BE, Amsterdam, the Netherlands
| | - Nina Johannesson
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Eline Freeze
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Hetty van Eijk
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Gerrit Koen
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Adithya Sridhar
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Carlemi Calitz
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Valero-Rello A, Baeza-Delgado C, Andreu-Moreno I, Sanjuán R. Cellular receptors for mammalian viruses. PLoS Pathog 2024; 20:e1012021. [PMID: 38377111 PMCID: PMC10906839 DOI: 10.1371/journal.ppat.1012021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/01/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
The interaction of viral surface components with cellular receptors and other entry factors determines key features of viral infection such as host range, tropism and virulence. Despite intensive research, our understanding of these interactions remains limited. Here, we report a systematic analysis of published work on mammalian virus receptors and attachment factors. We build a dataset twice the size of those available to date and specify the role of each factor in virus entry. We identify cellular proteins that are preferentially used as virus receptors, which tend to be plasma membrane proteins with a high propensity to interact with other proteins. Using machine learning, we assign cell surface proteins a score that predicts their ability to function as virus receptors. Our results also reveal common patterns of receptor usage among viruses and suggest that enveloped viruses tend to use a broader repertoire of alternative receptors than non-enveloped viruses, a feature that might confer them with higher interspecies transmissibility.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Carlos Baeza-Delgado
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
48
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
49
|
Sensevdi ER, Sourrouille ZA, Quax TE. Host range and cell recognition of archaeal viruses. Curr Opin Microbiol 2024; 77:102423. [PMID: 38232492 DOI: 10.1016/j.mib.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Archaea are members of a separate domain of life that have unique properties, such as the composition of their cell walls and the structure of their lipid bilayers. Consequently, archaeal viruses face different challenges to infect host cells in comparison with viruses of bacteria and eukaryotes. Despite their significant impact on shaping microbial communities, our understanding of infection processes of archaeal viruses remains limited. Several receptors used by archaeal viruses to infect cells have recently been identified. The interactions between viruses and receptors are one of the determinants of the host range of viruses. Here, we review the current literature on host ranges of archaeal viruses and factors that might impact the width of these host ranges.
Collapse
Affiliation(s)
- Emine Rabia Sensevdi
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Zaloa Aguirre Sourrouille
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Tessa Ef Quax
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands.
| |
Collapse
|
50
|
Sigdel TK, Sur S, Boada P, McDermott SM, Arlehamn CSL, Murray KO, Bockenstedt LK, Kerwin M, Reed EF, Harris E, Stuart K, Peters B, Sesma A, Montgomery RR, Sarwal MM. Proteome Analysis for Inflammation Related to Acute and Convalescent Infection. Inflammation 2024; 47:346-362. [PMID: 37831367 PMCID: PMC10799112 DOI: 10.1007/s10753-023-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.
Collapse
Affiliation(s)
- Tara K Sigdel
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Swastika Sur
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Patrick Boada
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | | | - Cecilia S Lindestam Arlehamn
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Maggie Kerwin
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eva Harris
- University of California Berkeley, Berkeley, CA, USA
| | - Ken Stuart
- Seattle Children Research Institute, Seattle, WA, USA
| | - Bjoern Peters
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ana Sesma
- Mount Sinai School of Medicine, New York, NY, USA
| | | | - Minnie M Sarwal
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA.
| |
Collapse
|