1
|
Jacobs L, Leemans A, Stobbelaar K, Fransen A, Cos P, Delputte P. Evaluating the Impact of N-Glycan Sequon Removal in the p27 Peptide on RSV F Protein Immunogenicity and Functionality. Viruses 2024; 16:1848. [PMID: 39772158 PMCID: PMC11680209 DOI: 10.3390/v16121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions. Prior research from our group showed that removing the N-glycan at position 116 (N116) in p27 led to higher neutralizing antibody responses and better protection against RSV. In this study, the effect of single, double and triple N-glycan deletion mutations in F p27 was evaluated. Surprisingly, all mutants exhibited similar expressions and functionality to the wild-type F protein. All F p27 glycomutants induced neutralizing antibodies and lowered lung viral loads after an RSV challenge in a mouse model. Although N-glycans in p27 influence immune responses, their exact role in RSV biology remains unclear. Possibly, these glycans, which are mostly conserved, play a role in other aspects of virus replication and biology.
Collapse
Affiliation(s)
- Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
| | - Annelies Leemans
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Axelle Fransen
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (L.J.); (K.S.); (A.F.); (P.C.)
| |
Collapse
|
2
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
3
|
Walimbwa SI, Maly P, Kafkova LR, Raska M. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. J Biomed Sci 2024; 31:83. [PMID: 39169357 PMCID: PMC11337606 DOI: 10.1186/s12929-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Stephen Ian Walimbwa
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Sommerfeld IK, Palm P, Hussnaetter KP, Pieper MI, Bulut S, Lile T, Wagner R, Walkowiak JJ, Elling L, Pich A. Microgels with Immobilized Glycosyltransferases for Enzymatic Glycan Synthesis. Biomacromolecules 2024; 25:3807-3822. [PMID: 38807305 DOI: 10.1021/acs.biomac.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining β4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of β4GalT and β3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Kai Philip Hussnaetter
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Maria Isabell Pieper
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Selin Bulut
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Tudor Lile
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Rebekka Wagner
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| |
Collapse
|
5
|
Xie Z, Lin YC, Steichen JM, Ozorowski G, Kratochvil S, Ray R, Torres JL, Liguori A, Kalyuzhniy O, Wang X, Warner JE, Weldon SR, Dale GA, Kirsch KH, Nair U, Baboo S, Georgeson E, Adachi Y, Kubitz M, Jackson AM, Richey ST, Volk RM, Lee JH, Diedrich JK, Prum T, Falcone S, Himansu S, Carfi A, Yates JR, Paulson JC, Sok D, Ward AB, Schief WR, Batista FD. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 2024; 384:eadk0582. [PMID: 38753770 PMCID: PMC11488660 DOI: 10.1126/science.adk0582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.
Collapse
Affiliation(s)
- Zhenfei Xie
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jon M. Steichen
- These authors contributed equally
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- These authors contributed equally
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jonathan L. Torres
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John E. Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Gordon A. Dale
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T. Richey
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M Volk
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Moderna Inc., Cambridge, MA 02139, USA
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
Bernauer H, Schlör A, Maier J, Bannert N, Hanack K, Ivanusic D. tANCHOR fast and cost-effective cell-based immunization approach with focus on the receptor-binding domain of SARS-CoV-2. Biol Methods Protoc 2023; 8:bpad030. [PMID: 38090673 PMCID: PMC10713279 DOI: 10.1093/biomethods/bpad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024] Open
Abstract
Successful induction of antibodies in model organisms like mice depends strongly on antigen design and delivery. New antigen designs for immunization are helpful for developing future therapeutic monoclonal antibodies (mAbs). One of the gold standards to induce antibodies in mice is to express and purify the antigen for vaccination. This is especially time-consuming when mAbs are needed rapidly. We closed this gap and used the display technology tetraspanin anchor to develop a reliable immunization technique without the need to purify the antigen. This technique is able to speed up the immunization step enormously and we have demonstrated that we were able to induce antibodies against different proteins with a focus on the receptor-binding domain of SARS-CoV-2 and the extracellular loop of canine cluster of differentiation 20 displayed on the surface of human cells.
Collapse
Affiliation(s)
| | - Anja Schlör
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Josef Maier
- ATG:biosynthetics GmbH, Merzhausen 79249, Germany
| | | | - Katja Hanack
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | | |
Collapse
|
10
|
Haynes BF, Wiehe K, Alam SM, Weissman D, Saunders KO. Progress with induction of HIV broadly neutralizing antibodies in the Duke Consortia for HIV/AIDS Vaccine Development. Curr Opin HIV AIDS 2023; 18:300-308. [PMID: 37751363 PMCID: PMC10552807 DOI: 10.1097/coh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Design of an HIV vaccine that can induce broadly neutralizing antibodies (bnAbs) is a major goal. However, HIV bnAbs are not readily made by the immune system. Rather HIV bnAbs are disfavored by a number of virus and host factors. The purpose of the review is to discuss recent progress made in the design and use of immunogens capable of inducing HIV bnAbs in the Duke Consortia for HIV/AIDS Vaccine Development. RECENT FINDINGS New immunogens capable of binding with high affinity to unmutated common ancestors (UCAs) of bnAb B cell lineages have been designed and strategies for stabilization of HIV Env in its prefusion state are being developed. Success is starting to be translated from preclinical studies of UCA-targeting immunogens in animals, to success of initiating bnAb lineages in humans. SUMMARY Recent progress has been made in both immunogen design and in achieving bnAb B cell lineage induction in animal models and now in human clinical trials. With continued progress, a practical HIV/AIDS vaccine may be possible. However, host constraints on full bnAb maturation remain as potential roadblocks for full maturation of some types of bnAbs.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Ogundiran AI, Chang TL, Ivanov A, Kumari N, Nekhai S, Chandran PL. Shear-reversible clusters of HIV-1 in solution: stabilized by antibodies, dispersed by mucin. J Virol 2023; 97:e0075223. [PMID: 37712704 PMCID: PMC10617397 DOI: 10.1128/jvi.00752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE The phenomenon of reversible clustering is expected to further nuance HIV immune stealth because virus surfaces can escape interaction with antibodies (Abs) by hiding temporarily within clusters. It is well known that mucin reduces HIV virulence, and the current perspective is that mucin aggregates HIV-1 to reduce infections. Our findings, however, suggest that mucin is dispersing HIV clusters. The study proposes a new paradigm for how HIV-1 may broadly evade Ab recognition with reversible clustering and why mucin effectively neutralizes HIV-1.
Collapse
Affiliation(s)
- Ayobami I. Ogundiran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Tzu-Lan Chang
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Preethi L. Chandran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| |
Collapse
|
12
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
13
|
Tayal S, Bhatnagar S. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB. Comput Biol Chem 2023; 106:107919. [PMID: 37463554 DOI: 10.1016/j.compbiolchem.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Mimicry of host proteins is a strategy employed by pathogens to hijack host functions. Domain and motif mimicry was explored in the experimental and predicted SARS-CoV-2-human interactome. The host first interactor proteins were also added to capture the continuum of the interactions. The domains and motifs of the proteins were annotated using NCBI CD Search and ScanProsite, respectively. Host and pathogen proteins with a common host interactor and similar domain/motif constitute a mimicry pair indicating global structural similarity (domain mimicry pair; DMP) or local sequence similarity (motif mimicry pair; MMP). 593 DMPs and 7,02,472 MMPs were determined. AAA, DEXDc and Macro domains were frequent among DMPs whereas glycosylation, myristoylation and RGD motifs were abundant among MMP. The proteins involved in mimicry were visualised as a SARS-CoV-2 mimicry interaction network. The host proteins were enriched in multiple CVD pathways indicating the role of mimicry in COVID-19 associated CVDs. Bridging nodes were identified as potential drug targets. Approved antihypertensive and anti-inflammatory drugs are proposed for repurposing against COVID-19 associated CVDs. The SARS-CoV-2 mimicry data has been updated in ImitateDB (http://imitatedb.sblab-nsit.net/SARSCoV2Mimicry). Determination of key mechanisms, proteins, pathways, drug targets and repurposing candidates is critical for developing therapeutics for SARS CoV-2 associated CVDs.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
14
|
Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith Iii AB, Sodroski JG. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol 2023; 97:e0059223. [PMID: 37696048 PMCID: PMC10537687 DOI: 10.1128/jvi.00592-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
15
|
Azulay A, Cohen-Lavi L, Friedman LM, McGargill MA, Hertz T. Mapping antibody footprints using binding profiles. CELL REPORTS METHODS 2023; 3:100566. [PMID: 37671022 PMCID: PMC10475849 DOI: 10.1016/j.crmeth.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
The increasing use of monoclonal antibodies (mAbs) in biology and medicine necessitates efficient methods for characterizing their binding epitopes. Here, we developed a high-throughput antibody footprinting method based on binding profiles. We used an antigen microarray to profile 23 human anti-influenza hemagglutinin (HA) mAbs using HA proteins of 43 human influenza strains isolated between 1918 and 2018. We showed that the mAb's binding profile can be used to characterize its influenza subtype specificity, binding region, and binding site. We present mAb-Patch-an epitope prediction method that is based on a mAb's binding profile and the 3D structure of its antigen. mAb-Patch was evaluated using four mAbs with known solved mAb-HA structures. mAb-Patch identifies over 67% of the true epitope when considering only 50-60 positions along the antigen. Our work provides proof of concept for utilizing antibody binding profiles to screen large panels of mAbs and to down-select antibodies for further functional studies.
Collapse
Affiliation(s)
- Asaf Azulay
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Liel Cohen-Lavi
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M. Friedman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Canner SW, Shanker S, Gray JJ. Structure-based neural network protein-carbohydrate interaction predictions at the residue level. FRONTIERS IN BIOINFORMATICS 2023; 3:1186531. [PMID: 37409346 PMCID: PMC10318439 DOI: 10.3389/fbinf.2023.1186531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition, cellular differentiation, immune response, and many other cellular processes. Despite the molecular importance of these interactions, there are currently few reliable computational tools to predict potential carbohydrate-binding sites on any given protein. Here, we present two deep learning (DL) models named CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predicts non-covalent carbohydrate-binding sites on proteins: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2) an equivariant graph neural network model (CAPSIF:G). While both models outperform previous surrogate methods used for carbohydrate-binding site prediction, CAPSIF:V performs better than CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test set Matthews correlation coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested CAPSIF:V on AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on both experimentally determined structures and AlphaFold2-predicted structures. Finally, we demonstrate how CAPSIF models can be used in conjunction with local glycan-docking protocols, such as GlycanDock, to predict bound protein-carbohydrate structures.
Collapse
Affiliation(s)
- Samuel W. Canner
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States
| | - Sudhanshu Shanker
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse PJ. Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. Retrovirology 2023; 20:9. [PMID: 37244989 DOI: 10.1186/s12977-023-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations. RESULTS We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes. CONCLUSION Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.
Collapse
Affiliation(s)
- Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA.
| |
Collapse
|
18
|
Allen JD, Ivory DP, Song SG, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses related to SARS-CoV-2. Cell Rep 2023; 42:112307. [PMID: 36972173 PMCID: PMC10015101 DOI: 10.1016/j.celrep.2023.112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Dylan P Ivory
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
19
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
20
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
21
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Canner SW, Shanker S, Gray JJ. Structure-Based Neural Network Protein-Carbohydrate Interaction Predictions at the Residue Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.531382. [PMID: 36993750 PMCID: PMC10054975 DOI: 10.1101/2023.03.14.531382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition, cellular differentiation, immune response, and many other cellular processes. Despite the molecular importance of these interactions, there are currently few reliable computational tools to predict potential carbohydrate binding sites on any given protein. Here, we present two deep learning models named CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predict carbohydrate binding sites on proteins: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2) an equivariant graph neural network model (CAPSIF:G). While both models outperform previous surrogate methods used for carbohydrate binding site prediction, CAPSIF:V performs better than CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test set Matthews correlation coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested CAPSIF:V on AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on both experimentally determined structures and AlphaFold2 predicted structures. Finally, we demonstrate how CAPSIF models can be used in conjunction with local glycan-docking protocols, such as GlycanDock, to predict bound protein-carbohydrate structures.
Collapse
Affiliation(s)
- Samuel W Canner
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Sudhanshu Shanker
- Dept. of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jeffrey J Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States of America
- Dept. of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
23
|
Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse P. Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. RESEARCH SQUARE 2023:rs.3.rs-2613503. [PMID: 36865101 PMCID: PMC9980222 DOI: 10.21203/rs.3.rs-2613503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Background Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations. Results We observed different persistent fractions for NAb neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, but negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes in a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was reduced for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by one of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by the conformational plasticity of B41 Env. Conclusion Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, while shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.
Collapse
|
24
|
Najeeb N, Murukan AB, Renjitha A, Jayaram M, Jabbar AA, Haridasan H, Prijikumar A, Baiju S, Nixon AA, Krishnan PA, Rodriguez S, Kumar S, Polipalli SK, Singh KK, Nair BG, Ghate SD, Rao RSP, Kishor PBK, Aloor A, Suravajhala R, Chaubey G, Suravajhala P. Inferring Recombination Events in SARS-CoV-2 Variants In Silico. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:253-270. [PMID: 37378772 DOI: 10.1007/978-3-031-28012-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Over the last 34 months, at least 10 severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) distinct variants have evolved. Among these, some were more infectious while others were not. These variants may serve as candidates for identification of the signature sequences linked to infectivity and viral transgressions. Based on our previous hijacking and transgression hypothesis, we aimed to investigate whether SARS-CoV-2 sequences associated with infectivity and trespassing of long noncoding RNAs (lncRNAs) provide a possible recombination mechanism to drive the formation of new variants. This work involved a sequence and structure-based approach to screen SARS-CoV-2 variants in silico, taking into account effects of glycosylation and links to known lncRNAs. Taken together, the findings suggest that transgressions involving lncRNAs may be linked with changes in SARS-CoV-2-host interactions driven by glycosylation events.
Collapse
Affiliation(s)
- Nihal Najeeb
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Aparna B Murukan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Anagha Renjitha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Malavika Jayaram
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Ayisha A Jabbar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Haripriya Haridasan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Akshara Prijikumar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Sneha Baiju
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Adrial Ann Nixon
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | | | - Sunu Rodriguez
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Somesh Kumar
- Genome Sequencing Lab, Lok Nayak Hospital, Delhi, India
| | | | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Kaul Genetics Building, Birmingham, AL, USA
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE University, Mangaluru, India
| | | | | | - Arya Aloor
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India.
| |
Collapse
|
25
|
Baboo S, Diedrich JK, Martínez-Bartolomé S, Wang X, Schiffner T, Groschel B, Schief WR, Paulson JC, Yates JR. DeGlyPHER: Highly sensitive site-specific analysis of N-linked glycans on proteins. Methods Enzymol 2022; 682:137-185. [PMID: 36948700 PMCID: PMC11032187 DOI: 10.1016/bs.mie.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Xiaoning Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
26
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
27
|
Leggat DJ, Cohen KW, Willis JR, Fulp WJ, deCamp AC, Kalyuzhniy O, Cottrell CA, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Schiffner T, Liguori A, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Yates NL, Williams LD, Greene K, Gao H, Mahoney CR, Corcoran MM, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Hu X, Tingle R, Georgeson E, Eskandarzadeh S, Alavi N, Lu D, Mullen TM, Kubitz M, Groschel B, Maenza J, Kolokythas O, Khati N, Bethony J, Crotty S, Roederer M, Karlsson Hedestam GB, Tomaras GD, Montefiori D, Diemert D, Koup RA, Laufer DS, McElrath MJ, McDermott AB, Schief WR. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 2022; 378:eadd6502. [PMID: 36454825 PMCID: PMC11103259 DOI: 10.1126/science.add6502] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) can protect against HIV infection but have not been induced by human vaccination. A key barrier to bnAb induction is vaccine priming of rare bnAb-precursor B cells. In a randomized, double-blind, placebo-controlled phase 1 clinical trial, the HIV vaccine-priming candidate eOD-GT8 60mer adjuvanted with AS01B had a favorable safety profile and induced VRC01-class bnAb precursors in 97% of vaccine recipients with median frequencies reaching 0.1% among immunoglobulin G B cells in blood. bnAb precursors shared properties with bnAbs and gained somatic hypermutation and affinity with the boost. The results establish clinical proof of concept for germline-targeting vaccine priming, support development of boosting regimens to induce bnAbs, and encourage application of the germline-targeting strategy to other targets in HIV and other pathogens.
Collapse
Affiliation(s)
- David J. Leggat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jordan R. Willis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William J. Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Oleksandr Kalyuzhniy
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Abhinaya Srikanth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason R. Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Torben Schiffner
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th floor, New York, NY 10004, USA
| | | | | | - Rachael E. Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexis M. Ruppel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L. Yates
- Center for Human Systems Immunology; Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke University, Durham, NC 27701, USA
| | - LaTonya D. Williams
- Center for Human Systems Immunology; Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke University, Durham, NC 27701, USA
| | - Kelli Greene
- Duke University Medical Center, Durham NC 27701, USA
| | - Hongmei Gao
- Duke University Medical Center, Durham NC 27701, USA
| | - Celia R. Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Martin M. Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Taylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M. Brown
- The Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Troy Sincomb
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaozhen Hu
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Tingle
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Saman Eskandarzadeh
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nushin Alavi
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Danny Lu
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tina-Marie Mullen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bettina Groschel
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Georgia D. Tomaras
- Center for Human Systems Immunology; Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke University, Durham, NC 27701, USA
| | | | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William R. Schief
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
29
|
Trattnig N, Li Z, Bosman GP, Kosma P, Boons G. Site-Specific Multi-Functionalization of the Carrier Protein CRM 197 by Disulfide Rebridging for Conjugate Vaccine Development. Chembiochem 2022; 23:e202200408. [PMID: 36098623 PMCID: PMC9538913 DOI: 10.1002/cbic.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Indexed: 11/12/2022]
Abstract
Conjugation of an antigen to a carrier protein is widely used for vaccine development. To develop the next generation of conjugate vaccines, we describe here a method for the controlled multi-functionalization of the widely employed carrier protein CRM197 with a carbohydrate-based antigen and an immune potentiator. The approach is based on the selective reduction of one of the disulfides of CRM197 followed by disulfide rebridging employing an appropriately functionalized dibromopyridazinedione. Efficient protein modification required that the reduction and functionalization with a dibromopyridazinedione was performed as a one-step procedure with control over the reaction temperature. Furthermore, ligations were most successful when dibromopyridazinediones were employed having a functional entity such as a TLR7/8 agonist and a cyclooctyne for further modification. Site-specific conjugation avoids modification of T-epitopes of the carrier protein and covalent attachment of an immune potentiator will ensure that cytokines are produced where the vaccine interacts with relevant immune cells resulting in efficient immune potentiation.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18A-1190ViennaAustria
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
| | - Gerlof P. Bosman
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
| | - Paul Kosma
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18A-1190ViennaAustria
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA 30602USA
- Bijvoet Center for Biomolecular ResearchUtrecht University3584 CHUtrechtThe Netherlands
- Chemistry DepartmentUniversity of GeorgiaAthensGA 30602USA
| |
Collapse
|
30
|
Allen JD, Ivory D, Ge Song S, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses closely related to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.24.505118. [PMID: 36052375 PMCID: PMC9435400 DOI: 10.1101/2022.08.24.505118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the impact of SARS-CoV-2. Vaccines remain successful at limiting severe disease and death, however the continued emergence of SARS-CoV-2 variants, together with the potential for further coronavirus zoonosis, motivates the search for pan-coronavirus vaccines that induce broadly neutralizing antibodies. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of several sarbecovirus glycan shields. Many N-linked glycan attachment sites are shared by all sarbecoviruses, and the processing state of certain sites is highly conserved. However, there are significant differences in the processing state at several glycan sites that surround the receptor binding domain. Our studies reveal similarities and differences in the glycosylation of sarbecoviruses and show how subtle changes in the protein sequence can have pronounced impacts on the glycan shield.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dylan Ivory
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
31
|
Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022; 122:14066-14084. [PMID: 35863749 PMCID: PMC9344915 DOI: 10.1021/acs.chemrev.1c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
The global spread
of SARS-CoV-2 has proceeded at an unprecedented
rate. Remarkably, characterization of the virus using modern tools
in structural biology has also progressed at exceptional speed. Advances
in electron-based imaging techniques, combined with decades of foundational
studies on related viruses, have enabled the research community to
rapidly investigate structural aspects of the novel coronavirus from
the level of individual viral proteins to imaging the whole virus
in a native context. Here, we provide a detailed review of the structural
biology and pathobiology of SARS-CoV-2 as it relates to all facets
of the viral life cycle, including cell entry, replication, and three-dimensional
(3D) packaging based on insights obtained from X-ray crystallography,
cryo-electron tomography, and single-particle cryo-electron microscopy.
The structural comparison between SARS-CoV-2 and the related earlier
viruses SARS-CoV and MERS-CoV is a common thread throughout this review.
We conclude by highlighting some of the outstanding unanswered structural
questions and underscore areas that are under rapid current development
such as the design of effective therapeutics that block viral infection.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Gandeeva Therapeutics Inc., Vancouver, British Columbia, Canada, V5C 6N5
| |
Collapse
|
32
|
Sun J, Zhao G, Bylund T, Lee M, Adibhatla S, Kwong PD, Chuang GY, Rawi R, Bewley CA. C3-Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity. ACS Chem Biol 2022; 17:1450-1459. [PMID: 35537058 PMCID: PMC10091857 DOI: 10.1021/acschembio.1c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.
Collapse
Affiliation(s)
- Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Srikar Adibhatla
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Tayal S, Bhatia V, Mehrotra T, Bhatnagar S. ImitateDB: A database for domain and motif mimicry incorporating host and pathogen protein interactions. Amino Acids 2022; 54:923-934. [PMID: 35487995 PMCID: PMC9054641 DOI: 10.1007/s00726-022-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
Abstract
Molecular mimicry of host proteins by pathogens constitutes a strategy to hijack the host pathways. At present, there is no dedicated resource for mimicked domains and motifs in the host-pathogen interactome. In this work, the experimental host-pathogen (HP) and host-host (HH) protein-protein interactions (PPIs) were collated. The domains and motifs of these proteins were annotated using CD Search and ScanProsite, respectively. Host and pathogen proteins with a shared host interactor and similar domain/motif constitute a mimicry pair exhibiting global structural similarity (domain mimicry pair; DMP) or local sequence motif similarity (motif mimicry pair; MMP). Mimicry pairs are likely to be co-expressed and co-localized. 1,97,607 DMPs and 32,67,568 MMPs were identified in 49,265 experimental HP-PPIs and organized in a web-based resource, ImitateDB ( http://imitatedb.sblab-nsit.net ) that can be easily queried. The results are externally integrated using hyperlinked domain PSSM ID, motif ID, protein ID and PubMed ID. Kinase, UL36, Smc and DEXDc were frequent DMP domains whereas protein kinase C phosphorylation, casein kinase 2 phosphorylation, glycosylation and myristoylation sites were frequent MMP motifs. Novel DMP domains SANT, Tudor, PhoX and MMP motif microbody C-terminal targeting signal, cornichon signature and lipocalin signature were proposed. ImitateDB is a novel resource for identifying mimicry in interacting host and pathogen proteins.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Tanya Mehrotra
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
34
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
35
|
Scherbinina SI, Frank M, Toukach PV. Carbohydrate structure database (CSDB) oligosaccharide conformation tool. Glycobiology 2022; 32:460-468. [PMID: 35275211 DOI: 10.1093/glycob/cwac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Population analysis in terms of glycosidic torsion angles is frequently used to reveal preferred conformers of glycans. However, due to high structural diversity and flexibility of carbohydrates, conformational characterization of complex glycans can be a challenging task. Herein we present a conformation module of oligosaccharide fragments occurring in natural glycan structures developed on the platform of the Carbohydrate Structure Database (CSDB). Currently, this module deposits free energy surface and conformer abundance maps plotted as a function of glycosidic torsions for 194 inter-residue bonds. Data are automatically and continuously derived from explicit-solvent molecular dynamics (MD) simulations. The module was also supplemented with high-temperature MD data of saccharides (2403 maps) provided by GlycoMapsDB (hosted by GLYCOSCIENCES.de project). Conformational data defined by up to four torsional degrees of freedom can be freely explored using a web interface of the module available at http://csdb.glycoscience.ru/database/core/search_conf.html.
Collapse
Affiliation(s)
- S I Scherbinina
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - M Frank
- Biognos AB, Box 8963, 40274 Göteborg, Sweden
| | - P V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
36
|
High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022; 7:27. [PMID: 35228534 PMCID: PMC8885667 DOI: 10.1038/s41541-022-00446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.
Collapse
|
37
|
Lavado-García J, Zhang T, Cervera L, Gòdia F, Wuhrer M. Differential N- and O-glycosylation signatures of HIV-1 Gag virus-like particles and coproduced extracellular vesicles. Biotechnol Bioeng 2022; 119:1207-1221. [PMID: 35112714 PMCID: PMC9303603 DOI: 10.1002/bit.28051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being non-infectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence down-stream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this work, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies in order to optimize downstream processing and move forward in VLP-based vaccine production technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Cattin M, Bruxelle JF, Ng K, Blaukopf M, Pantophlet R, Kosma P. Synthetic neoglycoconjugates of hepta- and nonamannoside ligands for eliciting oligomannose-specific HIV-1-neutralizing antibodies. Chembiochem 2022; 23:e202200061. [PMID: 35104013 PMCID: PMC9108342 DOI: 10.1002/cbic.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that, subsequently, were converted into BSA and CRM 197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using 4+3 or 4+5 block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man 9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Matteo Cattin
- University of Natural Resources and Life Sciences: Universitat fur Bodenkultur Wien, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| | - Jean-François Bruxelle
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, Burnaby, CANADA
| | - Kurtis Ng
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, CANADA
| | - Markus Blaukopf
- University of Natural Resources and Life Sciences Vienna: Universitat fur Bodenkultur Wien, Chemistry, AUSTRIA
| | - Ralph Pantophlet
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, V5A 1S6, Burnaby, CANADA
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| |
Collapse
|
39
|
Abstract
The immune response elicited by vaccines against microorganisms makes it the most successful medical interventions against infectious diseases. Conventional vaccines have limitations in inducing immunity against many types of pathogenic microorganism. The genetic diversity of microorganisms, coupled with the high degree of sequence variability in antigenic proteins, presents a challenge to developing broadly effective conventional vaccines. Atomic-resolution structure determination is crucial for understanding antigenic protein function. Cryo-electron microscopy, nuclear magnetic resonance spectroscopy coupled with bioinformatics provide three-dimensional structure of the antigenic proteins and provide a wealth of information about the organization of individual atoms and their chemical makeup. The atomic detail information of proteins offers enormous potential to rationally engineer proteins to enhance their properties and act as effective immunogens to induce immunity. The observation that whole protein antigens are not necessarily essential for inducing immunity has led to the emergence "structural vaccinology." Structure-based vaccines are designed on the rationale that protective epitopes should be sufficient to induce immune responses and provide protection against pathogens. In 2013 we published a review on structure-based vaccines (Thomas and Luxon. Expert Rev Vaccines 12 1301-11, 2013). This review states the progress in development of structure-based vaccines since the first review.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Ann Abraham
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
40
|
Williams WB, Wiehe K, Saunders KO, Haynes BF. Strategies for induction of HIV-1 envelope-reactive broadly neutralizing antibodies. J Int AIDS Soc 2021; 24 Suppl 7:e25831. [PMID: 34806332 PMCID: PMC8606870 DOI: 10.1002/jia2.25831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION A primary focus of HIV-1 vaccine development is the activation of B cell receptors for naïve or precursor broadly neutralizing antibodies (bnAbs), followed by expansion and maturation of bnAb B cell lineage intermediates leading to highly affinity-matured bnAbs. HIV-1 envelope (Env) encodes epitopes for bnAbs of different specificities. Design of immunogens to induce bnAb precursors of different specificities and mature them into bnAb status is a goal for HIV-1 vaccine development. We review vaccine strategies for bnAb lineages development and highlight the immunological barriers that these strategies must overcome to generate bnAbs. METHODS We provide perspectives based on published research articles and reviews. DISCUSSION The recent Antibody Mediated Protection (AMP) trial that tested the protective efficacy of one HIV-1 Env bnAb specificity demonstrated that relatively high levels of long-lasting serum titers of multiple specificities of bnAbs will be required for protection from HIV-1 transmission. Current vaccine efforts for induction of bnAb lineages are focused on immunogens designed to expand naïve HIV-1 bnAb precursor B cells following the recent success of vaccine-induction of bnAb precursor B cells in macaques and humans. BnAb precursor B cells serve as templates for priming-immunogen design. However, design of boosting immunogens for bnAb maturation requires knowledge of the optimal immunogen design and immunological environment for bnAb B cell lineage affinity maturation. BnAb lineages acquire rare genetic changes as mutations during B cell maturation. Moreover, the immunological environment that supports bnAb development during HIV-1 infection is perturbed with an altered B cell repertoire and dysfunctional immunoregulatory controls, suggesting that in normal settings, bnAb development will be disfavoured. Thus, strategies for vaccine induction of bnAbs must circumvent immunological barriers for bnAb development that normally constrain bnAb B cell affinity maturation. CONCLUSIONS A fully protective HIV-1 vaccine needs to induce durable high titers of bnAbs that can be generated by a sequential set of Env immunogens for expansion and maturation of bnAb B cell lineages in a permitted immunological environment. Moreover, multiple specificities of bnAbs will be required to be sufficiently broad to prevent the escape of HIV-1 strains during transmission.
Collapse
Affiliation(s)
- Wilton B. Williams
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin Wiehe
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin O. Saunders
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Barton F. Haynes
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
41
|
Zhang Y, Zheng S, Zhao W, Mao Y, Cao W, Zeng W, Liu Y, Hu L, Gong M, Cheng J, Chen Y, Yang H. Sequential Analysis of the N/O-Glycosylation of Heavily Glycosylated HIV-1 gp120 Using EThcD-sceHCD-MS/MS. Front Immunol 2021; 12:755568. [PMID: 34745128 PMCID: PMC8567067 DOI: 10.3389/fimmu.2021.755568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host’s immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.
Collapse
Affiliation(s)
- Yong Zhang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yueqiu Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Baboo S, Diedrich JK, Martínez-Bartolomé S, Wang X, Schiffner T, Groschel B, Schief WR, Paulson JC, Yates JR. DeGlyPHER: An Ultrasensitive Method for the Analysis of Viral Spike N-Glycoforms. Anal Chem 2021; 93:13651-13657. [PMID: 34597027 DOI: 10.1021/acs.analchem.1c03059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each N-glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Xiaoning Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, United States.,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, United States
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, United States.,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Aljedani SS, Liban TJ, Tran K, Phad G, Singh S, Dubrovskaya V, Pushparaj P, Martinez-Murillo P, Rodarte J, Mileant A, Mangala Prasad V, Kinzelman R, O’Dell S, Mascola JR, Lee KK, Karlsson Hedestam GB, Wyatt RT, Pancera M. Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathog 2021; 17:e1009543. [PMID: 34559844 PMCID: PMC8494329 DOI: 10.1371/journal.ppat.1009543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 μg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a β-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.
Collapse
Affiliation(s)
- Safia S. Aljedani
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Tyler J. Liban
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Karen Tran
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Viktoriya Dubrovskaya
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Justas Rodarte
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Alex Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Rachel Kinzelman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Richard T. Wyatt
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr Opin HIV AIDS 2021; 15:267-274. [PMID: 32675574 DOI: 10.1097/coh.0000000000000639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The surface of the HIV-1 Env glycoprotein, the target of neutralizing antibodies, is extensively covered by N-linked glycans that create a glycan shield. Broadly neutralizing antibodies (bNAbs), the primary targets of HIV-1 vaccine design, have to negotiate this glycan shield. Here, we review the barriers and opportunities that the HIV-1 glycan shield presents for vaccine induction of bNAbs. RECENT FINDINGS Glycan shields can impact the nature of the antibody response and influence the development of neutralization breadth in HIV-1 infections. The architecture of the glycan shield arising from glycan interactions and dynamics have been modeled, and its fine structure, that is, the site-wise glycan heterogeneity, has been determined for some isolates. Although the extent of glycan shielding is conserved, the precise number, location and processing of glycans, however, is strain-dependent. New insights continue to reveal how such differences can impact bNAb activity and development. Novel approaches have exploited the glycan shield for designing immunogens that bind the germline precursors of bNAbs, a critical roadblock for vaccine-induction of bNAbs. SUMMARY The HIV-1 glycan shield can significantly impact the induction and maturation of bNAbs, and a better understanding of how to manipulate it will improve immunogen design.
Collapse
|
45
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
46
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
47
|
Turner HL, Andrabi R, Cottrell CA, Richey ST, Song G, Callaghan S, Anzanello F, Moyer TJ, Abraham W, Melo M, Silva M, Scaringi N, Rakasz EG, Sattentau QJ, Irvine DJ, Burton DR, Ward AB. Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. SCIENCE ADVANCES 2021; 7:eabh2791. [PMID: 34321200 PMCID: PMC8318364 DOI: 10.1126/sciadv.abh2791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.
Collapse
Affiliation(s)
- Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyson J Moyer
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole Scaringi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative-Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
49
|
Neralkar M, Tian L, Redman RL, Krauss IJ. Synthesis of Mannosidase-Stable Man 3 and Man 4 Glycans Containing S-linked Manα1→2Man Termini. Org Lett 2021; 23:3053-3057. [PMID: 33793242 DOI: 10.1021/acs.orglett.1c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oligomannose glycans are of interest as HIV vaccine components, but they are subject to mannosidase degradation in vivo. Herein, we report the synthesis of oligosaccharides containing a thio linkage at the nonreducing end. A thio-linked dimannose donor participates in highly stereoselective glycosylations to afford trimannose and tetramannose fragments. Saturation transfer difference nuclear magnetic resonance (STD NMR) studies show that these glycans are recognized by HIV antibody 2G12, and we confirm that the reducing terminal S-linkage confers complete stability against x. manihotis mannosidase.
Collapse
Affiliation(s)
- Mahesh Neralkar
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Leiming Tian
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Richard L Redman
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
50
|
Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. NPJ Vaccines 2021; 6:50. [PMID: 33837212 PMCID: PMC8035178 DOI: 10.1038/s41541-021-00307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
The development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we show that mRNA-LNP immunization compared to protein immunization elicits either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope or HIV-1 Env gp160 induces durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 μg are immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.
Collapse
|