1
|
Xie N, Bai J, Hou Y, Liu J, Zhang Y, Meng X, Wang X. hPSCs-derived brain organoids for disease modeling, toxicity testing and drug evaluation. Exp Neurol 2025; 385:115110. [PMID: 39667657 DOI: 10.1016/j.expneurol.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Due to the differences and variances in genetic background, in vitro and animal models cannot meet the modern medical exploration of real human brain structure and function. Recently, brain organoids generated by human pluripotent stem cells (hPSCs) can mimic the structure and physiological function of human brain, being widely used in medical research. Brain organoids generated from normal hPSCs or patient-derived induced pluripotent stem cells offer a more promising approach for the study of diverse human brain diseases. More importantly, the use of the established brain organoid model for drug evaluation is conducive to shorten the clinical transformation period. Herein, we summarize methods for the identification of brain organoids from cellular diversity, morphology and neuronal activity, brain disease modeling, toxicity testing, and drug evaluation. Based on this, it is hoped that this review will provide new insights into the pathogenesis of brain diseases and drug research and development, promoting the rapid development of brain science.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
2
|
Imani Farahani N, Lin L, Nazir S, Naderi A, Rokos L, McIntosh AR, Julian LM. Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines. Front Cell Neurosci 2025; 18:1478572. [PMID: 39835290 PMCID: PMC11743572 DOI: 10.3389/fncel.2024.1478572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology. hiPSCs derived from accessible patient somatic cells can produce various neural cell types and tissues; current efforts to increase the complexity of these models, incorporating region-specific neural tissues and non-neural cell types of the brain microenvironment, are providing increasingly relevant insights into human-specific neurobiology. Continued advances in tissue engineering combined with innovations in genomics, high-throughput screening and imaging strengthen the physiological relevance of hiPSC models and thus their ability to uncover disease mechanisms, therapeutic vulnerabilities, and tissue and fluid-based biomarkers that will have real impact on neurological disease treatment. True physiological understanding, however, necessitates integration of hiPSC-neural models with patient biophysical data, including quantitative neuroimaging representations. We discuss recent innovations in cellular neuroscience that can provide these direct connections through generative AI modeling. Our focus is to highlight the great potential of synergy between these emerging innovations to pave the way for personalized medicine becoming a viable option for patients suffering from neuropathologies, particularly rare epileptic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Negin Imani Farahani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa Lin
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shama Nazir
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alireza Naderi
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Leanne Rokos
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M. Julian
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
3
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
4
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
5
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Peng H, Kopic I, Potfode SR, Teshima TF, Boustani GA, Hiendlmeier L, Wang C, Hussain MZ, Özkale B, Fischer RA, Wolfrum B. Laser-patterned epoxy-based 3D microelectrode arrays for extracellular recording. NANOSCALE 2024; 16:14295-14301. [PMID: 39011647 DOI: 10.1039/d4nr01727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Microelectrode arrays are commonly used to study the electrophysiological behavior of cells. Recently, there has been a growing interest in fabricating three-dimensional microelectrode arrays. Here, we present a novel process for the fast fabrication of epoxy-based 3D microelectrode array platforms with the assistance of laser-patterning technology. To this end, we photopatterned 3D pillars as scaffolds using epoxy-based dry films. Electrodes and conductor traces were fabricated by laser patterning of sputtered platinum films on top of the 3D structures, followed by deposition of parylene-C for insulation. Microelectrodes at the tip of the 3D structures were exposed using a vertical laser ablation process. The final electrodes demonstrated a low impedance of ∼10 kΩ at 1 kHz in electrochemical impedance spectroscopy measurements under physiological conditions. We investigated the maximum compression force of the 3D structures, which could withstand approximately 0.6 N per pillar. The 3D microelectrode arrays were used to record extracellular signals from HL-1 cells in culture as a proof of principle. Our results show regular firing of action potentials recorded at the tip of the 3D structures, demonstrating the possibility of recording cell signals in non-planar environments.
Collapse
Affiliation(s)
- Hu Peng
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Inola Kopic
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Shivani Ratnakar Potfode
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Tetsuhiko F Teshima
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA 94085, USA
| | - George Al Boustani
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Lukas Hiendlmeier
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), Department of Electrical Engineering, TUM School of Computation, Information, and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching 85748, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, School of Natural Sciences and Catalysis Research Centre, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), Department of Electrical Engineering, TUM School of Computation, Information, and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching 85748, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, School of Natural Sciences and Catalysis Research Centre, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA 94085, USA
| |
Collapse
|
8
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Choi MS, Park SM, Kim S, Jegal H, Lee HA, Han HY, Yoon S, Kim SK, Oh JH. Enhanced electrophysiological activity and neurotoxicity screening of environmental chemicals using 3D neurons from human neural precursor cells purified with PSA-NCAM. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116516. [PMID: 38820819 DOI: 10.1016/j.ecoenv.2024.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The assessment of neurotoxicity for environmental chemicals is of utmost importance in ensuring public health and environmental safety. Multielectrode array (MEA) technology has emerged as a powerful tool for assessing disturbances in the electrophysiological activity. Although human embryonic stem cell (hESC)-derived neurons have been used in MEA for neurotoxicity screening, obtaining a substantial and sufficiently active population of neurons from hESCs remains challenging. In this study, we successfully differentiated neurons from a large population of human neuronal precursor cells (hNPC) purified using a polysialylated neural cell adhesion molecule (PSA-NCAM), referred to as hNPCPSA-NCAM+. The functional characterization demonstrated that hNPCPSA-NCAM+-derived neurons improve functionality by enhancing electrophysiological activity compared to total hNPC-derived neurons. Furthermore, three-dimensional (3D) neurons derived from hNPCPSA-NCAM+ exhibited reduced maturation time and enhanced electrophysiological activity on MEA. We employed subdivided population analysis of active mean firing rate (MFR) based on electrophysiological intensity to characterize the electrophysiological properties of hNPCPSA-NCAM+-3D neurons. Based on electrophysiological activity including MFR and burst parameters, we evaluated the sensitivity of hNPCPSA-NCAM+-3D neurons on MEA to screen both inhibitory and excitatory neuroactive environmental chemicals. Intriguingly, electrophysiologically active hNPCPSA-NCAM+-3D neurons demonstrated good sensitivity to evaluate neuroactive chemicals, particularly in discriminating excitatory chemicals. Our findings highlight the effectiveness of MEA approaches using hNPCPSA-NCAM+-3D neurons in the assessment of neurotoxicity associated with environmental chemicals. Furthermore, we emphasize the importance of selecting appropriate signal intensity thresholds to enhance neurotoxicity prediction and screening of environmental chemicals.
Collapse
Affiliation(s)
- Mi-Sun Choi
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, the Republic of Korea
| | - Se-Myo Park
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea
| | - Soojin Kim
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea
| | - Hyun Jegal
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, the Republic of Korea
| | - Hyang-Ae Lee
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea
| | - Hyoung-Yun Han
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, the Republic of Korea
| | - Seokjoo Yoon
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, the Republic of Korea
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, the Republic of Korea.
| | - Jung-Hwa Oh
- Department of predictive toxicology, Korea Institute of Toxicology (KIT), Daejeon, the Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, the Republic of Korea.
| |
Collapse
|
10
|
Kang R, Park S, Shin S, Bak G, Park JC. Electrophysiological insights with brain organoid models: a brief review. BMB Rep 2024; 57:311-317. [PMID: 38919012 PMCID: PMC11289503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling. [BMB Reports 2024; 57(7): 311-317].
Collapse
Affiliation(s)
- Rian Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
| | - Soomin Park
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Saewoon Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyusoo Bak
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
| | - Jong-Chan Park
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Malekoshoaraie MH, Wu B, Krahe DD, Ahmed Z, Pupa S, Jain V, Cui XT, Chamanzar M. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:91. [PMID: 38947533 PMCID: PMC11211464 DOI: 10.1038/s41378-024-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 07/02/2024]
Abstract
Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.
Collapse
Affiliation(s)
| | - Bingchen Wu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Daniela D. Krahe
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zabir Ahmed
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Stephen Pupa
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Vishal Jain
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Maysamreza Chamanzar
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, 15213 USA
| |
Collapse
|
12
|
Poling HM, Singh A, Krutko M, Reza AA, Srivastava K, Wells JM, Helmrath MA, Esfandiari L. Promoting Human Intestinal Organoid Formation and Stimulation Using Piezoelectric Nanofiber Matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598673. [PMID: 38915647 PMCID: PMC11195230 DOI: 10.1101/2024.06.12.598673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human organoid model systems have changed the landscape of developmental biology and basic science. They serve as a great tool for human specific interrogation. In order to advance our organoid technology, we aimed to test the compatibility of a piezoelectric material with organoid generation, because it will create a new platform with the potential for sensing and actuating organoids in physiologically relevant ways. We differentiated human pluripotent stem cells into spheroids following the traditional human intestinal organoid (HIO) protocol atop a piezoelectric nanofiber scaffold. We observed that exposure to the biocompatible piezoelectric nanofibers promoted spheroid morphology three days sooner than with the conventional methodology. At day 28 of culture, HIOs grown on the scaffold appeared similar. Both groups were readily transplantable and developed well-organized laminated structures. Graft sizes between groups were similar. Upon characterizing the tissue further, we found no detrimental effects of the piezoelectric nanofibers on intestinal patterning or maturation. Furthermore, to test the practical feasibility of the material, HIOs were also matured on the nanofiber scaffolds and treated with ultrasound, which lead to increased cellular proliferation which is critical for organoid development and tissue maintenance. This study establishes a proof of concept for integrating piezoelectric materials as a customizable platform for on-demand electrical stimulation of cells using remote ultrasonic waveforms in regenerative medicine.
Collapse
|
13
|
Rahav N, Marrero D, Soffer A, Glickman E, Beldjilali‐Labro M, Yaffe Y, Tadmor K, Leichtmann‐Bardoogo Y, Ashery U, Maoz BM. Multi-Sensor Origami Platform: A Customizable System for Obtaining Spatiotemporally Precise Functional Readouts in 3D Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305555. [PMID: 38634605 PMCID: PMC11200086 DOI: 10.1002/advs.202305555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Bioprinting technology offers unprecedented opportunities to construct in vitro tissue models that recapitulate the 3D morphology and functionality of native tissue. Yet, it remains difficult to obtain adequate functional readouts from such models. In particular, it is challenging to position sensors in desired locations within pre-fabricated 3D bioprinted structures. At the same time, bioprinting tissue directly onto a sensing device is not feasible due to interference with the printer head. As such, a multi-sensing platform inspired by origami that overcomes these challenges by "folding" around a separately fabricated 3D tissue structure is proposed, allowing for the insertion of electrodes into precise locations, which are custom-defined using computer-aided-design software. The multi-sensing origami platform (MSOP) can be connected to a commercial multi-electrode array (MEA) system for data-acquisition and processing. To demonstrate the platform, how integrated 3D MEA electrodes can record neuronal electrical activity in a 3D model of a neurovascular unit is shown. The MSOP also enables a microvascular endothelial network to be cultured separately and integrated with the 3D tissue structure. Accordingly, how impedance-based sensors in the platform can measure endothelial barrier function is shown. It is further demonstrated the device's versatility by using it to measure neuronal activity in brain organoids.
Collapse
Affiliation(s)
- Noam Rahav
- School of Neurobiology, Biochemistry and BiophysicsThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Denise Marrero
- Instituto de Microelectrónica de Barcelona (IMB‐CNM, CSIC)Campus UABBellaterraBarcelona08193Spain
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y NanomedicinaMadrid50018Spain
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Adi Soffer
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Emma Glickman
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | | | - Yakey Yaffe
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Keshet Tadmor
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | | | - Uri Ashery
- School of Neurobiology, Biochemistry and BiophysicsThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | - Ben M. Maoz
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
14
|
Ozgun A, Lomboni DJ, Aylsworth A, Macdonald A, Staines WA, Martina M, Schlossmacher MG, Tauskela JS, Woulfe J, Variola F. Unraveling the assembloid: Real-time monitoring of dopaminergic neurites in an inter-organoid pathway connecting midbrain and striatal regions. Mater Today Bio 2024; 25:100992. [PMID: 38371467 PMCID: PMC10873721 DOI: 10.1016/j.mtbio.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - David J. Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Allison Macdonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - William A. Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marzia Martina
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Michael G. Schlossmacher
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Joseph S. Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Pathology, The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
15
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
16
|
Rantataro S, Parkkinen I, Airavaara M, Laurila T. Real-time selective detection of dopamine and serotonin at nanomolar concentration from complex in vitro systems. Biosens Bioelectron 2023; 241:115579. [PMID: 37690355 DOI: 10.1016/j.bios.2023.115579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023]
Abstract
Electrochemical sensors provide means for real-time monitoring of neurotransmitter release events, which is a relatively easy process in simple electrolytes. However, this does not apply to in vitro environments. In cell culture media, competitively adsorbing molecules are present at concentrations up to 350 000-fold excess compared to the neurotransmitter-of-interest. Because detection of dopamine and serotonin requires direct adsorption of the analyte to electrode surface, a significant loss of sensitivity occurs when recording is performed in the in vitro environment. Despite these challenges, our single-walled carbon nanotube (SWCNT) sensor was capable of selectively measuring dopamine and serotonin from cell culture medium at nanomolar concentration in real-time. A primary midbrain culture was used to prove excellent biocompatibility of our SWCNT electrodes, which is a necessity for brain-on-a-chip models. Most importantly, our sensor was able to electrochemically record spontaneous transient activity from dopaminergic cell culture without altering the culture conditions, which has not been possible earlier. Drug discovery and development requires high-throughput screening of in vitro models, being hindered by the challenges in non-invasive characterization of complex neuronal models such as organoids. Our neurotransmitter sensors could be used for real-time monitoring of complex neuronal models, providing an alternative tool for their characterization non-invasively.
Collapse
Affiliation(s)
- Samuel Rantataro
- Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland.
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLife, University of Helsinki, Biocenter 2, Helsinki, 00014, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari, 5E, Helsinki, 00014, Finland
| | - Mikko Airavaara
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari, 5E, Helsinki, 00014, Finland; Neuroscience Center, HiLife, University of Helsinki, Biomedicum 1, Haartmaninkatu 8, Helsinki, 00014, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland; Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, Espoo, 02150, Finland.
| |
Collapse
|
17
|
Ishibashi Y, Nagafuku N, Kanda Y, Suzuki I. Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 2023; 93:105668. [PMID: 37633473 DOI: 10.1016/j.tiv.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
18
|
Lv S, He E, Luo J, Liu Y, Liang W, Xu S, Zhang K, Yang Y, Wang M, Song Y, Wu Y, Cai X. Using Human-Induced Pluripotent Stem Cell Derived Neurons on Microelectrode Arrays to Model Neurological Disease: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301828. [PMID: 37863819 PMCID: PMC10667858 DOI: 10.1002/advs.202301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/04/2023] [Indexed: 10/22/2023]
Abstract
In situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human-induced pluripotent stem cell (hiPSC) derived neurons (hiPSC-DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two-dimensional (2D), and more recently, three-dimensional (3D) neural stem cell-derived in vitro models of the human brain to monitor their physiological activity in real time. Therefore, MEAs are emerging and useful tools to model neurological disorders and disease in vitro using human iPSCs. This is enabling a real-time window into neuronal signaling at the network scale from patient derived. This paper provides a comprehensive review of MEA's role in analyzing neural disease models established by hiPSC-DNs. It covers the significance of MEA fabrication, surface structure and modification schemes for hiPSC-DNs culturing and signal detection. Additionally, this review discusses advances in the development and use of MEA technology to study in vitro neural disease models, including epilepsy, autism spectrum developmental disorder (ASD), and others established using hiPSC-DNs. The paper also highlights the application of MEAs combined with hiPSC-DNs in detecting in vitro neurotoxic substances. Finally, the future development and outlook of multifunctional and integrated devices for in vitro medical diagnostics and treatment are discussed.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Enhui He
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- The State Key Lab of Brain‐Machine IntelligenceZhejiang UniversityHangzhou321100China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Liang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shihong Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kui Zhang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yan Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
19
|
Phouphetlinthong O, Partiot E, Bernou C, Sebban A, Gaudin R, Charlot B. Protruding cantilever microelectrode array to monitor the inner electrical activity of cerebral organoids. LAB ON A CHIP 2023; 23:3603-3614. [PMID: 37489118 DOI: 10.1039/d3lc00294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Stem cell-derived cerebral organoids are artificially grown miniature organ-like structures mimicking embryonic brain architecture. They are composed of multiple neural cell types with 3D cell layer organization exhibiting local field potential. Measuring the extracellular electrical activity by means of conventional planar microelectrode arrays is particularly challenging due to the 3D architecture of organoids. In order to monitor the intra-organoid electrical activity of thick spheroid-shaped samples, we developed long protruding microelectrode arrays able to penetrate the inner regions of cerebral organoids to measure the local potential of neurons within the organoids. A new microfabrication process has been developed which, thanks to the relaxation of internal stresses of a stack of materials deposited over a sacrificial layer, allows one to build a protruding cantilever microelectrode array placed at the apex of beams which rise vertically, over two hundred microns. These slender beams inserted deeply into the organoids give access to the recording of local field potential from neurons buried inside the organoid. This novel device shall provide valuable tools to study neural functions in greater detail.
Collapse
Affiliation(s)
- Oramany Phouphetlinthong
- IES, Institut d'Electronique et des Systèmes, UMR 5214 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| | - Emma Partiot
- IRIM, Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| | - Corentin Bernou
- IRIM, Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| | - Audrey Sebban
- IES, Institut d'Electronique et des Systèmes, UMR 5214 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| | - Raphael Gaudin
- IRIM, Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| | - Benoit Charlot
- IES, Institut d'Electronique et des Systèmes, UMR 5214 CNRS, Montpellier, France
- University of Montpellier, Montpellier, France.
| |
Collapse
|
20
|
Kubanek J, Wilson M, Rabbitt RD, Armstrong CJ, Farley AJ, Ullah HMA, Shcheglovitov A. Stem cell-derived brain organoids for controlled studies of transcranial neuromodulation. Heliyon 2023; 9:e18482. [PMID: 37576248 PMCID: PMC10412769 DOI: 10.1016/j.heliyon.2023.e18482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Transcranial neuromodulation methods have the potential to diagnose and treat brain disorders at their neural source in a personalized manner. However, it has been difficult to investigate the direct effects of transcranial neuromodulation on neurons in human brain tissue. Here, we show that human brain organoids provide a detailed and artifact-free window into neuromodulation-evoked electrophysiological effects. We derived human cortical organoids from induced pluripotent stem cells and implanted 32-channel electrode arrays. Each organoid was positioned in the center of the human skull and subjected to low-intensity transcranial focused ultrasound. We found that ultrasonic stimuli modulated network activity in the gamma and delta ranges of the frequency spectrum. The effects on the neural networks were a function of the ultrasound stimulation frequency. High gamma activity remained elevated for at least 20 minutes following stimulation offset. This approach is expected to provide controlled studies of the effects of ultrasound and other transcranial neuromodulation modalities on human brain tissue.
Collapse
Affiliation(s)
- Jan Kubanek
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Matthew Wilson
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Richard D. Rabbitt
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Celeste J. Armstrong
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
| | - Alexander J. Farley
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - H. M. Arif Ullah
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
| | - Alex Shcheglovitov
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| |
Collapse
|
21
|
Acero VP, Das S, Rivellini O, Purvis EM, Adewole DO, Cullen DK. Emergent structural and functional properties of hippocampal multi-cellular aggregates. Front Neurosci 2023; 17:1171115. [PMID: 37397454 PMCID: PMC10311220 DOI: 10.3389/fnins.2023.1171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified in vitro models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm3) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days in vitro (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures in vivo. We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Abstract
Advances in bioelectronic implants have been offering valuable chances to interface and modulate neural systems. Potential mismatches between bioelectronics and targeted neural tissues require devices to exhibit "tissue-like" properties for better implant-bio integration. In particular, mechanical mismatches pose a significant challenge. In the past years, efforts were made in both materials synthesis and device design to achieve bioelectronics mechanically and biochemically mimicking biological tissues. In this perspective, we mainly summarized recent progress of developing "tissue-like" bioelectronics and categorized them into different strategies. We also discussed how these "tissue-like" bioelectronics were utilized for modulating in vivo nervous systems and neural organoids. We concluded the perspective by proposing further directions including personalized bioelectronics, novel materials design and the involvement of artificial intelligence and robotic techniques.
Collapse
Affiliation(s)
- Changxu Sun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhe Cheng
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jj Abu-Halimah
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
McDonald M, Sebinger D, Brauns L, Gonzalez-Cano L, Menuchin-Lasowski Y, Mierzejewski M, Psathaki OE, Stumpf A, Wickham J, Rauen T, Schöler H, Jones PD. A mesh microelectrode array for non-invasive electrophysiology within neural organoids. Biosens Bioelectron 2023; 228:115223. [PMID: 36931193 DOI: 10.1016/j.bios.2023.115223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Organoids are emerging in vitro models of human physiology. Neural models require the evaluation of functional activity of single cells and networks, which is commonly measured by microelectrode arrays. The characteristics of organoids clash with existing in vitro or in vivo microelectrode arrays. With inspiration from implantable mesh electronics and growth of organoids on polymer scaffolds, we fabricated suspended hammock-like mesh microelectrode arrays for neural organoids. We have demonstrated the growth of organoids enveloping these meshes and the culture of organoids on meshes for up to one year. Furthermore, we present proof-of-principle recordings of spontaneous electrical activity across the volume of an organoid. Our concept enables a new class of microelectrode arrays for in vitro models of three-dimensional electrically active tissue.
Collapse
Affiliation(s)
- Matthew McDonald
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany; Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - David Sebinger
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Lisa Brauns
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany; Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Laura Gonzalez-Cano
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | | | - Michael Mierzejewski
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany; Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Olympia-Ekaterini Psathaki
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany; University of Osnabrück, CellNanOs (Center of Cellular Nanoanalytics), Integrated Bioimaging Facility iBiOs, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Angelika Stumpf
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Jenny Wickham
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Thomas Rauen
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.
| | - Hans Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Peter D Jones
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany.
| |
Collapse
|
24
|
Yu J, Yin Y, Leng Y, Zhang J, Wang C, Chen Y, Li X, Wang X, Liu H, Liao Y, Jin Y, Zhang Y, Lu K, Wang K, Wang X, Wang L, Zheng F, Gu Z, Li Y, Fan Y. Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: current progress and future perspectives. Adv Drug Deliv Rev 2023; 197:114842. [PMID: 37105398 DOI: 10.1016/j.addr.2023.114842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Collapse
Affiliation(s)
- Jiaheng Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqi Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubing Leng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingcheng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanyun Chen
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaorui Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xudong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yishan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yihan Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Keyu Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kehao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| |
Collapse
|
25
|
Walters RO, Haigh CL. Organoids for modeling prion diseases. Cell Tissue Res 2023; 392:97-111. [PMID: 35088182 PMCID: PMC9329493 DOI: 10.1007/s00441-022-03589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Human cerebral organoids are an exciting and novel model system emerging in the field of neurobiology. Cerebral organoids are spheres of self-organizing, neuronal lineage tissue that can be differentiated from human pluripotent stem cells and that present the possibility of on-demand human neuronal cultures that can be used for non-invasively investigating diseases affecting the brain. Compared with existing humanized cell models, they provide a more comprehensive replication of the human cerebral environment. The potential of the human cerebral organoid model is only just beginning to be elucidated, but initial studies have indicated that they could prove to be a valuable model for neurodegenerative diseases such as prion disease. The application of the cerebral organoid model to prion disease, what has been learned so far and the future potential of this model are discussed in this review.
Collapse
Affiliation(s)
- Ryan O Walters
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
26
|
Puppo F, Muotri AR. Network and Microcircuitry Development in Human Brain Organoids. Biol Psychiatry 2023; 93:590-593. [PMID: 35981907 DOI: 10.1016/j.biopsych.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Francesca Puppo
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California
| | - Alysson Renato Muotri
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center, La Jolla, California.
| |
Collapse
|
27
|
Jeong E, Choi S, Cho SW. Recent Advances in Brain Organoid Technology for Human Brain Research. ACS APPLIED MATERIALS & INTERFACES 2023; 15:200-219. [PMID: 36468535 DOI: 10.1021/acsami.2c17467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Brain organoids are self-assembled three-dimensional aggregates with brain-like cell types and structures and have emerged as new model systems that can be used to investigate human neurodevelopment and neurological disorders. However, brain organoids are not as mature and functional as real human brains due to limitations of the culture system with insufficient developmental patterning signals and a lack of components that are important for brain development and function, such as the non-neural population and vasculature. In addition, establishing the desired brain-like environment and monitoring the complex neural networks and physiological functions of the brain organoids remain challenging. The current protocols to generate brain organoids also have problems with heterogeneity and batch variation due to spontaneous self-organization of brain organoids into complex architectures of the brain. To address these limitations of current brain organoid technologies, various engineering platforms, such as extracellular matrices, fluidic devices, three-dimensional bioprinting, bioreactors, polymeric scaffolds, microelectrodes, and biochemical sensors, have been employed to improve neuronal development and maturation, reduce structural heterogeneity, and facilitate functional analysis and monitoring. In this review, we provide an overview of the latest engineering techniques that overcome these limitations in the production and application of brain organoids.
Collapse
Affiliation(s)
- Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Suah Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics 2022; 14:2301. [PMID: 36365119 PMCID: PMC9699341 DOI: 10.3390/pharmaceutics14112301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
There is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D. Thus, this platform opens new avenues to create a relevant in vitro approach for preclinical applications in neuroscience. The transfer to the pharmaceutical industry in drug discovery stages and the adoption of this approach by the scientific community requires the proposition of innovative microphysiological systems allowing the generation of reproducible cerebral organoids of high quality in terms of structural and functional maturation, and compatibility with automation processes and high-throughput screening. In this review, we will focus on the promising advantages of cerebral organoids for disease modeling and how their combination with microfluidic systems can enhance the reproducibility and quality of these in vitro models. Then, we will finish by explaining why brain organoids-on-chips could be considered promising platforms for pharmacological applications.
Collapse
Affiliation(s)
- Héloïse Castiglione
- NETRI, 69007 Lyon, France
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | - Frank Yates
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | | |
Collapse
|
29
|
Geramifard N, Lawson J, Cogan SF, Black BJ. A Novel 3D Helical Microelectrode Array for In Vitro Extracellular Action Potential Recording. MICROMACHINES 2022; 13:1692. [PMID: 36296045 PMCID: PMC9611359 DOI: 10.3390/mi13101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in cell and tissue engineering have enabled long-term three-dimensional (3D) in vitro cultures of human-derived neuronal tissues. Analogous two-dimensional (2D) tissue cultures have been used for decades in combination with substrate integrated microelectrode arrays (MEA) for pharmacological and toxicological assessments. While the phenotypic and cytoarchitectural arguments for 3D culture are clear, 3D MEA technologies are presently inadequate. This is mostly due to the technical challenge of creating vertical electrical conduction paths (or 'traces') using standardized biocompatible materials and fabrication techniques. Here, we have circumvented that challenge by designing and fabricating a novel helical 3D MEA comprised of polyimide, amorphous silicon carbide (a-SiC), gold/titanium, and sputtered iridium oxide films (SIROF). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) testing confirmed fully-fabricated MEAs should be capable of recording extracellular action potentials (EAPs) with high signal-to-noise ratios (SNR). We then seeded induced pluripotent stems cell (iPSC) sensory neurons (SNs) in a 3D collagen-based hydrogel integrated with the helical MEAs and recorded EAPs for up to 28 days in vitro from across the MEA volume. Importantly, this highly adaptable design does not intrinsically limit cell/tissue type, channel count, height, or total volume.
Collapse
Affiliation(s)
- Negar Geramifard
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jennifer Lawson
- Biomedical Engineering Department, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Stuart F. Cogan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bryan James Black
- Biomedical Engineering Department, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
30
|
Tran HN, Gautam V. Micro/nano devices for integration with human brain organoids. Biosens Bioelectron 2022; 218:114750. [DOI: 10.1016/j.bios.2022.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
31
|
Sharf T, van der Molen T, Glasauer SMK, Guzman E, Buccino AP, Luna G, Cheng Z, Audouard M, Ranasinghe KG, Kudo K, Nagarajan SS, Tovar KR, Petzold LR, Hierlemann A, Hansma PK, Kosik KS. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat Commun 2022; 13:4403. [PMID: 35906223 PMCID: PMC9338020 DOI: 10.1038/s41467-022-32115-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
Human brain organoids replicate much of the cellular diversity and developmental anatomy of the human brain. However, the physiology of neuronal circuits within organoids remains under-explored. With high-density CMOS microelectrode arrays and shank electrodes, we captured spontaneous extracellular activity from brain organoids derived from human induced pluripotent stem cells. We inferred functional connectivity from spike timing, revealing a large number of weak connections within a skeleton of significantly fewer strong connections. A benzodiazepine increased the uniformity of firing patterns and decreased the relative fraction of weakly connected edges. Our analysis of the local field potential demonstrate that brain organoids contain neuronal assemblies of sufficient size and functional connectivity to co-activate and generate field potentials from their collective transmembrane currents that phase-lock to spiking activity. These results point to the potential of brain organoids for the study of neuropsychiatric diseases, drug action, and the effects of external stimuli upon neuronal networks.
Collapse
Affiliation(s)
- Tal Sharf
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. .,Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Elmer Guzman
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alessio P Buccino
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Zhuowei Cheng
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kenneth R Tovar
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Linda R Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Paul K Hansma
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
32
|
Pak C, Sun Y. Organoids: expanding applications enabled by emerging technologies. J Mol Biol 2021; 434:167411. [PMID: 34933020 DOI: 10.1016/j.jmb.2021.167411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- ChangHui Pak
- Department of Biochemistry & Molecular Biology, UMass Amherst, 01003
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, 01003
| |
Collapse
|
33
|
Colombi I, Nieus T, Massimini M, Chiappalone M. Spontaneous and Perturbational Complexity in Cortical Cultures. Brain Sci 2021; 11:1453. [PMID: 34827452 PMCID: PMC8615728 DOI: 10.3390/brainsci11111453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity.
Collapse
Affiliation(s)
- Ilaria Colombi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
- IRCCS, Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics and System Engineering, 16145 Genova, Italy
- Rehab Technologies Lab., Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|