1
|
Zhao X, Zhuang Y, Cao Y, Cai F, Lv Y, Zheng Y, Yang J, Shi X. Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration. Adv Healthc Mater 2024; 13:e2303134. [PMID: 38348511 DOI: 10.1002/adhm.202303134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Indexed: 05/08/2024]
Abstract
The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.
Collapse
Affiliation(s)
- Xingkai Zhao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yu Zhuang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yongjian Cao
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| |
Collapse
|
2
|
Sun X, Yang J, Ma J, Wang T, Zhao X, Zhu D, Jin W, Zhang K, Sun X, Shen Y, Xie N, Yang F, Shang X, Li S, Zhou X, He C, Zhang D, Wang J. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Biofabrication 2023; 15. [PMID: 36716493 DOI: 10.1088/1758-5090/acb73e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The periosteum is a connective tissue membrane adhering to the surface of bone tissue that primarily provides nutrients and regulates osteogenesis during bone development and injury healing. However, building an artificial periosteum with good adhesion properties and satisfactory osteogenesis for bone defect repair remains a challenge, especially using three-dimensional (3D) bioprinting. In this study, dopamine was first grafted onto the molecular chain of gelatin usingN-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride andN-hydroxysuccinimide (NHS) to activate the carboxyl group and produce modified gelatin-dopamine (GelDA). Next, a methacrylated gelatin, methacrylated silk fibroin, GelDA, and graphene oxide nanosheet composite bioink loaded with bone marrow mesenchymal stem cells was prepared and used for bioprinting. The physicochemical properties, biocompatibility, and osteogenic roles of the bioink and 3D bioprinted artificial periosteum were then systematically evaluated. The results showed that the developed bioink showed good thermosensitivity and printability and could be used to build 3D bioprinted artificial periosteum with satisfactory cell viability and high adhesion. Finally, the 3D bioprinted artificial periosteum could effectively enhance osteogenesis bothin vitroandin vivo. Thus, the developed 3D bioprinted artificial periosteum can prompt new bone formation and provides a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Jin Yang
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xue Zhao
- Department of Radiology, Huangpu Branch of Shanghai Ninth People's Hospital, affiliated to Shanghai Jiao Tong University, No. 58 Puyu East Road, Shanghai 200011, People's Republic of China
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai 201999, People's Republic of China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xuzhou Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Neng Xie
- Shanghai Evaluation and Verification Center for Medical Devices and Cosmetics, No. 210 Nanchang Road, Shanghai 200020, People's Republic of China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China.,School of Rehabilitation Medicine, Weifang Medical University, No. 7166 Baotong West Street, Weifang 261053, Shangdong, People's Republic of China
| |
Collapse
|
3
|
Cohen DJ, Lohmann CH, Scott KM, Olson LC, Boyan BD, Schwartz Z. Osseointegration and Remodeling of Mineralized Bone Graft Are Negatively Impacted by Prior Treatment with Bisphosphonates. J Bone Joint Surg Am 2022; 104:1750-1759. [PMID: 35983995 PMCID: PMC10007861 DOI: 10.2106/jbjs.21.01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bisphosphonates limit resorption by inhibiting osteoclast formation and activation. They are removed during preparation of demineralized bone matrix (DBM) particles, but it is not known if osteogenesis and incorporation of mineralized bone allografts from patients treated with oral bisphosphonates are affected in vivo. METHODS Human block allografts from 3 bisphosphonate-treated donors and 3 age and sex-matched control donors who had not received bisphosphonates were obtained (Musculoskeletal Transplant Foundation); one-half from each donor was demineralized. In the first study, 3 × 2-mm mineralized and demineralized cylindrical grafts were implanted bilaterally in the femoral metaphysis of 56 rats. In the second study, samples from each group were pooled, prepared as particles, and implanted bilaterally in the femoral marrow canal of 24 rats. Osseointegration, defined as native bone in contact with allograft, was assessed at 10 weeks by micro-computed tomography (CT) and histomorphometry. RESULTS Micro-CT showed greater bone volume in sites treated with demineralized samples compared with the control mineralized and bisphosphonate-exposed mineralized samples. More new bone was generated along the cortical-endosteal interface compared with mineralized samples. Histology showed significantly less new bone in contact with the mineralized bisphosphonate-exposed allograft (10.4%) compared with mineralized samples that did not receive bisphosphonates (22.8%) and demineralized samples (31.7% and 42.8%). A gap was observed between native bone and allograft in the bisphosphonate-exposed mineralized samples (0.50 mm 2 ). The gap area was significantly greater compared with mineralized samples that did not receive bisphosphonates (0.16 mm 2 ) and demineralized samples (0.10 and 0.03 mm 2 ). CONCLUSIONS Mineralized allografts were osseointegrated, but not remodeled or replaced by living bone, preventing full regeneration of the bone defect. Prior treatment of the donor with bisphosphonates affected osteogenesis, preventing osteointegration and remodeling of the allograft into the regenerating bone. CLINICAL RELEVANCE Clinical use of mineralized allografts from patients who had received bisphosphonate therapy needs to be evaluated; in this animal model, such grafts were not integrated into the host bone or remodeled, and full regeneration of the bone defects was prevented.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Christoph H Lohmann
- Department of Orthopaedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Kayla M Scott
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
4
|
He X, Liu W, Liu Y, Zhang K, Sun Y, Lei P, Hu Y. Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic − angiogenic coupling effect via Wnt/ β-catenin pathway. Mater Today Bio 2022; 16:100348. [PMID: 35847378 PMCID: PMC9278078 DOI: 10.1016/j.mtbio.2022.100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 10/27/2022] Open
|
5
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
6
|
Chou YR, Lo WC, Dubey NK, Lu JH, Liu HY, Tsai CY, Deng YH, Wu CM, Huang MS, Deng WP. Platelet-derived biomaterials-mediated improvement of bone injury through migratory ability of embryonic fibroblasts: in vitro and in vivo evidence. Aging (Albany NY) 2021; 13:3605-3617. [PMID: 33461165 PMCID: PMC7906152 DOI: 10.18632/aging.202311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
Bony injuries lead to compromised skeletal functional ability which further increase in aging population due to decreased bone mineral density. Therefore, we aimed to investigate the therapeutic potential of platelet-derived biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB on osteo-inductive characteristics and migration of mouse embryonic fibroblasts (MEFs). Osteogenic lineage, matrix mineralization and cell migration were determined by gene markers (RUNX2, OPN and OCN), alizarin Red S staining, and migration markers (FAK, pFAK and Src) and EMT markers, respectively. The therapeutic impact of TGF-β1, a key component of PDB, was confirmed by employing inhibitor of TGF-β receptor I (Ti). Molecular imaging-based in vivo cellular migration in mice was determined by establishing bone injury at right femurs. Results showed that PDB markedly increased expression of osteogenic markers, matrix mineralization, migration and EMT markers, revealing higher osteogenic and migratory potential of PDB-treated MEFs. In vivo cell migration was manifested by expression of migratory factors, SDF-1 and CXCR4. Compared to control, PDB-treated mice exhibited higher bone density and volume. Ti treatment inhibited both migration and osteogenic potential of MEFs, affirming impact of TGF-β1. Collectively, our study clearly indicated PDB-rescued bone injury through enhancing migratory potential of MEFs and osteogenesis.
Collapse
Affiliation(s)
- Yen-Ru Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hen-Yu Liu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Wu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mao-Suan Huang
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
7
|
Yang G, Liu H, Cui Y, Li J, Zhou X, Wang N, Wu F, Li Y, Liu Y, Jiang X, Zhang S. Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration. Biomaterials 2020; 268:120561. [PMID: 33316630 DOI: 10.1016/j.biomaterials.2020.120561] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Periosteum plays a pivotal role in vascularization, ossification and remodeling during the healing process of bone injury. However, there are few studies focused on the construction of artificial implants with periosteum-mimetic effect. To emulate the primary role of natural periosteum or endosteal tissues in bone regeneration, here we provide a functional biomimetic membrane with micropatterns of site-specific biomineralization. The micropattern is generated by using printed hydroxyapatite nanoparticles (HANPs), combined with selective growth of biomineralized apatite and in situ coprecipitation with growth factors. The biomimetic membrane can sustainably provide a periosteum-mimetic microenvironment, such as long-term topographical guidance for cell recruitment and induced cell differentiation, by releasing calcium phosphate and growth factors. We demonstrated that rat mesenchymal stem cells (rMSCs) on such biomimetic membrane exhibited highly aligned organization, leading to enhanced angiogenesis and osteogenesis. In the rat calvarial defect model, our biomimetic membranes with biomineralized micropatterns could significantly enhance vascularized ossification and accelerate new bone formation. The current work suggests that the functionally biomimetic membranes with specific biomineralized micropatterns can be a promising alternative to periosteal autografts, with great potential for bench-to-bedside translation in orthopedics.
Collapse
Affiliation(s)
- Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haoming Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi Cui
- Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuan Zhou
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Nuoxin Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feige Wu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yan Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
8
|
Knothe Tate ML. Advanced Design and Manufacture of Mechanoactive Materials Inspired by Skin, Bones, and Skin-on-Bones. Front Bioeng Biotechnol 2020; 8:845. [PMID: 32984263 PMCID: PMC7477045 DOI: 10.3389/fbioe.2020.00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Life is mechanobiological. Natural living materials exhibit remarkable, emergent and smart properties under mechanical loading. Such materials are classified as mechanoactive, in contrast to electroactive polymers and materials that exhibit advanced properties when subjected to electrical stimulation. Cutting edge, multiscale imaging technologies have proven enabling for the elucidation of molecular to meso-scale structure and function of natural mechanoactive materials. Using Microscopy-Aided Design And ManufacturE, (MADAME) this perspective article describes mechanoactive properties of natural materials including skin-on-bones (periosteum) and bone itself. In so doing, it demonstrates the principle to emulate natural smart properties using recursive logic, the basis of many computer algorithms, and to design and manufacture mechanoactive materials and products using advanced manufacturing methods that also incorporate principles of recursive logic. In sum, the MADAME approach translates physically the computer science paradigm of recursion by implementing Jacquard textile methods, which themselves form a historical basis for computing machines, together with additive manufacturing methods including multidimensional printing, stereolithography, laser sintering, etc. These integrated methods provide a foundation and translational pathway for scaled-up manufacture of disruptive mechanoactive materials that will find use in fields as varied as medicine, safety, transport and sports, for internal (implants) and external (wearables) applications.
Collapse
Affiliation(s)
- Melissa Louise Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Director MechBio Team, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ng JL, Putra VDL, Knothe Tate ML. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients. J Mech Behav Biomed Mater 2019; 103:103536. [PMID: 32090942 DOI: 10.1016/j.jmbbm.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
This study conducted biomechanical and biocompatibility tests of textiles and textile composites, created using recursive logic to emulate the properties of natural tissue weaves and their intrinsic mechanical stiffness gradients. Two sets of samples were created, first to test feasibility on textile samples designed as periosteum substitutes with elastane fibers mimicking periosteum's endogenous elastin and nylon fibers substituting for collagen, and then on composites comprising other combinations of suture materials before and after sterilization. In the first part, the bulk tensile mechanical stiffness of elastane-nylon textiles were tuned through respective fiber composition and orientation, i.e., aligned with and orthogonal to loading direction. Cell culture biocompatibility studies revealed no significant differences in proliferation rates of embryonic murine stem cells seeded on textiles compared to collagen membrane controls. Until the 15th day of culture, cells were rarely observed in direct contact with the elastane fibers, similar to previous observations with elastomeric sheets used in periosteum substitute implants. In the second part of the study textile samples were created from FDA-approved medical sutures comprising silk, expanded polytetrafluoroethylene, and polybutester. Biocompatibility and mechanical stiffness were assessed as a function of sterilization/disinfection mode (steam, ethylene oxide, and serial disinfection with ethanol). Cell proliferation rates did not differ significantly from controls, except for silk-suture containing textiles, which showed bacterial contamination and no viable cells after 15 days' culture for all sterilization methods. Sterilization had mixed (mostly not significant) effects on textile stiffness, except for the case of polybutester suture-based textiles that showed a significant increase in stiffness with ethylene oxide sterilization. In general, all textile combinations exhibited significantly higher stiffness than periosteum. Textiles comprising medical sutures of different stiffnesses arranged in engineered patterns offer a novel means to achieve mechanical gradients in medical device materials, emulating those of nature's own.
Collapse
Affiliation(s)
- Joanna L Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia.
| |
Collapse
|
10
|
Cherubino M, Corno M, Ronga M, Riva G, di Summa PG, Sallam D, Tamborini F, Maggiulli F, Surace M, Valdatta L. The Adipo-Fascial ALT Flap in Lower Extremities Reconstruction Gustillo IIIC-B Fractures. An Osteogenic Inducer? J INVEST SURG 2019; 34:638-642. [PMID: 31576766 DOI: 10.1080/08941939.2019.1668092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RESULTS Mean time from injury to flap coverage was 72 hours. The mean size of bone defects was 4-7,6 cm. All flaps were Antero Lateral Tight flaps, and the fracture sites did not have any evidence of infection. None of the patients was a smoker. A solid bone union was reached, and full wearing was in a mean of 11 (4-20) weeks after the injury. The lower limb was saved in 100% of the cases. CONCLUSION Despite the goods results, further studies applied on a large number of patients are needed to confirm authors theory, however, we can consider the fascial ALT flap as a valid help for bone healing in 3B-C open tibial fractures.
Collapse
Affiliation(s)
- Mario Cherubino
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| | - Martina Corno
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| | - Mario Ronga
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, Campobasso, Italy
| | - Giacomo Riva
- Division of Orthopedics and Traumatology, Department of Biotechnology and Life Sciences (DBSV), University of Insubria A.S.S.T Sette Laghi, Varese, Italy
| | - Pietro G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Davide Sallam
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| | - Federico Tamborini
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| | - Francesca Maggiulli
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| | - Michele Surace
- Division of Orthopedics and Traumatology, Department of Biotechnology and Life Sciences (DBSV), University of Insubria A.S.S.T Sette Laghi, Varese, Italy
| | - Luigi Valdatta
- Division of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Microsurgery and Hand Surgery Unit, ASST Sette Laghi, Varese, Italy
| |
Collapse
|
11
|
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y, Zhang X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018; 182:279-288. [PMID: 30142527 DOI: 10.1016/j.biomaterials.2018.08.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Periosteum plays an indispensable role in bone repair and reconstruction. To recapitulate the remarkable regenerative capacity of periosteum, a biomimetic tissue-engineered periosteum (TEP) was constructed via layer-by-layer bottom-up strategy utilizing polycaprolactone (PCL), collagen, and nano-hydroxyapatite composite nanofiber sheets seeded with bone marrow stromal cells (BMSCs). When combined with a structural bone allograft to repair a 4 mm segmental bone defect created in the mouse femur, TEP restored donor-site periosteal bone formation, reversing the poor biomechanics of bone allograft healing at 6 weeks post-implantation. Further histologic analyses showed that TEP recapitulated the entire periosteal bone repair process, as evidenced by donor-dependent formation of bone and cartilage, induction of distinct CD31high type H endothelium, reconstitution of bone marrow and remodeling of bone allografts. Compared to nanofiber sheets without BMSC seeding, TEP eliminated the fibrotic tissue capsule elicited by nanofiber sheets, leading to a marked improvement of osseointegration at the compromised periosteal site. Taken together, our study demonstrated a novel layer-by-layer engineering platform for construction of a versatile biomimetic periosteum, enabling further assembly of a multi-component and multifunctional periosteum replacement for bone defect repair and reconstruction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Marc Nuzzo
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xiaochuan Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yunpeng Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
13
|
Ng JL, Kersh ME, Kilbreath S, Knothe Tate M. Establishing the Basis for Mechanobiology-Based Physical Therapy Protocols to Potentiate Cellular Healing and Tissue Regeneration. Front Physiol 2017; 8:303. [PMID: 28634452 PMCID: PMC5460618 DOI: 10.3389/fphys.2017.00303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Life is mechanobiological: mechanical stimuli play a pivotal role in the formation of structurally and functionally appropriate body templates through mechanobiologically-driven cellular and tissue re/modeling. The body responds to mechanical stimuli engendered through physical movement in an integrated fashion, internalizing and transferring forces from organ, through tissue and cellular length scales. In the context of rehabilitation and therapeutic outcomes, such mechanical stimuli are referred to as mechanotherapy. Physical therapists use mechanotherapy and mechanical interventions, e.g., exercise therapy and manual mobilizations, to restore function and treat disease and/or injury. While the effect of directed movement, such as in physical therapy, is well documented at the length scale of the body and its organs, a number of recent studies implicate its integral effect in modulating cellular behavior and subsequent tissue adaptation. Yet the link between movement biomechanics, physical therapy, and subsequent cellular and tissue mechanoadaptation is not well established in the literature. Here we review mechanoadaptation in the context of physical therapy, from organ to cell scale mechanotransduction and cell to organ scale extracellular matrix genesis and re/modeling. We suggest that physical therapy can be developed to harness the mechanosensitivity of cells and tissues, enabling prescriptive definition of physical and mechanical interventions to enhance tissue genesis, healing, and rehabilitation.
Collapse
Affiliation(s)
- Joanna L. Ng
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-ChampaignChampaign, IL, United States
| | - Sharon Kilbreath
- Faculty of Health Sciences, University of SydneySydney, NSW, Australia
| | - M. Knothe Tate
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
14
|
Knothe Tate ML, Yu NYC, Jalilian I, Pereira AF, Knothe UR. Periosteum mechanobiology and mechanistic insights for regenerative medicine. BONEKEY REPORTS 2016; 5:857. [PMID: 27974968 PMCID: PMC5129676 DOI: 10.1038/bonekey.2016.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Abstract
Periosteum is a smart mechanobiological material that serves as a habitat and delivery vehicle for stem cells as well as biological factors that modulate tissue genesis and healing. Periosteum's remarkable regenerative capacity has been harnessed clinically for over two hundred years. Scientific studies over the past decade have begun to decipher the mechanobiology of periosteum, which has a significant role in its regenerative capacity. This integrative review outlines recent mechanobiological insights that are key to modulating and translating periosteum and its resident stem cells in a regenerative medicine context.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Iman Jalilian
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - André F Pereira
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ulf R Knothe
- TissuTex Pty. Ltd., Wentworth Falls, NSW, Australia
| |
Collapse
|
15
|
Knothe Tate ML, Gunning PW, Sansalone V. Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate. BIOARCHITECTURE 2016; 6:85-103. [PMID: 27739911 DOI: 10.1080/19490992.2016.1229729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia
| | - Peter W Gunning
- b School of Medical Sciences, University of New South Wales , Sydney , Australia
| | - Vittorio Sansalone
- c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France
| |
Collapse
|
16
|
Yu NY, O'Brien CA, Slapetova I, Whan RM, Knothe Tate ML. Live Tissue Imaging to Elucidate Mechanical Modulation of Stem Cell Niche Quiescence. Stem Cells Transl Med 2016; 6:285-292. [PMID: 28170186 PMCID: PMC5442759 DOI: 10.5966/sctm.2015-0306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
The periosteum, a composite cellular connective tissue, bounds all nonarticular bone surfaces. Like Velcro, collagenous Sharpey's fibers anchor the periosteum in a prestressed state to the underlying bone. The periosteum provides a niche for mesenchymal stem cells. Periosteal lifting, as well as injury, causes cells residing in the periosteum (PDCs) to change from an immobile, quiescent state to a mobile, active state. The physical cues that activate PDCs to home to and heal injured areas remain a conundrum. An understanding of these cues is key to unlocking periosteum's remarkable regenerative power. We hypothesized that changes in periosteum's baseline stress state modulate the quiescence of its stem cell niche. We report, for the first time, a three-dimensional, high-resolution live tissue imaging protocol to observe and characterize ovine PDCs and their niche before and after release of the tissue's endogenous prestress. Loss of prestress results in abrupt shrinkage of the periosteal tissue. At the microscopic scale, loss of prestress results in significantly increased crimping of collagen of periosteum's fibrous layer and a threefold increase in the number of rounded nuclei in the cambium layer. Given the body of published data describing the relationships between stem cell and nucleus shape, structure and function, these observations are consistent with a role for mechanics in the modulation of periosteal niche quiescence. The quantitative characterization of periosteum as a stem cell niche represents a critical step for clinical translation of the periosteum and periosteum substitute-based implants for tissue defect healing. Stem Cells Translational Medicine 2017;6:285-292.
Collapse
Affiliation(s)
- Nicole Y.C. Yu
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Connor A. O'Brien
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa L. Knothe Tate
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Moore SR, Heu C, Yu NYC, Whan RM, Knothe UR, Milz S, Knothe Tate ML. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant. Stem Cells Transl Med 2016; 5:1739-1749. [PMID: 27465072 DOI: 10.5966/sctm.2016-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023] Open
Abstract
: An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. SIGNIFICANCE In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shannon R Moore
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Céline Heu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Ulf R Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan Milz
- Anatomische Anstalt, Ludwig Maximilians University of Munich, Munich, Germany
| | - Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Li J, Li S. Multiscale models of compact bone. INT J BIOMATH 2016. [DOI: 10.1142/s1793524516500479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work is concerned about multiscale models of compact bone. We focus on the lacuna–canalicular system. The interstitial fluid and the ions in it are regarded as solvent and others are treated as solute. The system has the characteristic of solvation process as well as non-equilibrium dynamics. The differential geometry theory of surfaces is adopted. We use this theory to separate the macroscopic domain of solvent from the microscopic domain of solute. We also use it to couple continuum and discrete descriptions. The energy functionals are constructed and then the variational principle is applied to the energy functionals so as to derive desirable governing equations. We consider both long-range polar interactions and short-range nonpolar interactions. The solution of governing equations leads to the minimization of the total energy.
Collapse
Affiliation(s)
- Junfeng Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - Shugang Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
19
|
Shear-mediated crystallization from amorphous calcium phosphate to bone apatite. J Mech Behav Biomed Mater 2016; 54:131-40. [DOI: 10.1016/j.jmbbm.2015.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022]
|
20
|
Mechanical analysis of a rodent segmental bone defect model: The effects of internal fixation and implant stiffness on load transfer. J Biomech 2014; 47:2700-8. [DOI: 10.1016/j.jbiomech.2014.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022]
|
21
|
Moore SR, Saidel GM, Knothe U, Knothe Tate ML. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors. PLoS Comput Biol 2014; 10:e1003604. [PMID: 24967742 PMCID: PMC4072518 DOI: 10.1371/journal.pcbi.1003604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 01/06/2023] Open
Abstract
The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms. Arising as a consequence of trauma, tumor resection, removal of necrotic or infected tissue, and congenital abnormalities, critical-sized defects are too large to heal spontaneously and therefore require surgical intervention. New surgical approaches harness the regenerative power of the periosteum, a tissue membrane covering most bones, which provides a niche for stem cells and plays a key role in healing after injury. The interplay of mechanical, cellular and biochemical mechanisms involved in periosteum-mediated tissue genesis and healing remains elusive, providing the impetus for the current study. Here, we develop a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteum-derived stem cells within a bone defect surrounded by periosteum or a periosteum substitute. A mechanical finite element model is coupled with a model of cellular dynamics to simulate a tested clinical scenario in which the patient's own periosteum is left around the defect after injury. Model predictions incorporating mechanical feedback match spatiotemporal patterns of bone tissue regeneration observed in a series of in vivo ovine experiments. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico. This will provide criteria conducive to endogenous tissue genesis that can be tested in follow on experiments.
Collapse
Affiliation(s)
- Shannon R. Moore
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gerald M. Saidel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (GMS); (MLKT)
| | - Ulf Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Melissa L. Knothe Tate
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
- * E-mail: (GMS); (MLKT)
| |
Collapse
|
22
|
Lyu S, Huang C, Yang H, Zhang X. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 2013; 31:1382-9. [PMID: 23580466 PMCID: PMC4083683 DOI: 10.1002/jor.22367] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/11/2013] [Indexed: 02/04/2023]
Abstract
The purpose of the study is to investigate the effects of electrospun fiber diameter and orientation on differentiation and ECM organization of bone marrow stromal cells (BMSCs), in attempt to provide rationale for fabrication of a periosteum mimetic for bone defect repair. Cellular growth, differentiation, and ECM organization were analyzed on PLGA-based random and aligned fibers using fluorescent microscopy, gene analyses, electron scanning microscopy (SEM), and multiphoton laser scanning microscopy (MPLSM). BMSCs on aligned fibers had a reduced number of ALP+ colony at Day 10 as compared to the random fibers of the same size. However, the ALP+ area in the aligned fibers increased to a similar level as the random fibers at Day 21 following stimulation with osteogenic media. Compared with the random fibers, BMSCs on the aligned fibers showed a higher expression of OSX and RUNX2. Analyses of ECM on decellularized spun fibers showed highly organized ECM arranged according to the orientation of the spun fibers, with a broad size distribution of collagen fibers in a range of 40-2.4 μm. Taken together, our data support the use of submicron-sized electrospun fibers for engineering of oriented fibrous tissue mimetic, such as periosteum, for guided bone repair and reconstruction.
Collapse
Affiliation(s)
- Seungyoun Lyu
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Hong Yang
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
23
|
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2013; 102:2884-900. [DOI: 10.1002/jbm.a.34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Janin Reifenrath
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Nina Angrisani
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Mareike Lalk
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Silke Besdo
- Institute of Continuum Mechanics; Leibniz Universität Hannover; Appelstr. 11 30167 Hannover Germany
| |
Collapse
|
24
|
Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 2013; 34:1878-87. [DOI: 10.1016/j.biomaterials.2012.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/13/2012] [Indexed: 12/25/2022]
|
25
|
Evans SF, Parent JB, Lasko CE, Zhen X, Knothe UR, Lemaire T, Knothe Tate ML. Periosteum, bone's "smart" bounding membrane, exhibits direction-dependent permeability. J Bone Miner Res 2013; 28:608-17. [PMID: 23018813 DOI: 10.1002/jbmr.1777] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
Abstract
The periosteum serves as bone's bounding membrane, exhibits hallmarks of semipermeable epithelial barrier membranes, and contains mechanically sensitive progenitor cells capable of generating bone. The current paucity of data regarding the periosteum's permeability and bidirectional transport properties provided the impetus for the current study. In ovine femur and tibia samples, the periosteum's hydraulic permeability coefficient, k, was calculated using Darcy's Law and a custom-designed permeability tester to apply controlled, volumetric flow of phosphate-buffered saline through periosteum samples. Based on these data, ovine periosteum demonstrates mechanically responsive and directionally dependent (anisotropic) permeability properties. At baseline flow rates comparable to interstitial fluid flow (0.5 µL/s), permeability is low and does not exhibit anisotropy. In contrast, at high flow rates comparable to those prevailing during traumatic injury, femoral periosteum exhibits an order of magnitude higher permeability compared to baseline flow rates. In addition, at high flow rates permeability exhibits significant directional dependence, with permeability higher in the bone to muscle direction than vice versa. Furthermore, compared to periosteum in which the intrinsic tension (pre-stress) is maintained, free relaxation of the tibial periosteum after resection significantly increases its permeability in both flow directions. Hence, the structure and mechanical stress state of periosteum influences its role as bone's bounding membrane. During periods of homeostasis, periosteum may serve as a barrier membrane on the outer surface of bone, allowing for equal albeit low quiescent molecular communication between tissue compartments including bone and muscle. In contrast, increases in pressure and baseline flow rates within the periosteum resulting from injury, trauma, and/or disease may result in a significant increase in periosteum permeability and consequently in increased molecular communication between tissue compartments. Elucidation of the periosteum's permeability properties is key to understanding periosteal mechanobiology in bone health and healing, as well as to elucidate periosteum structure and function as a smart biomaterial that allows bidirectional and mechanically responsive fluid transport.
Collapse
Affiliation(s)
- Sarah F Evans
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Evans SF, Chang H, Knothe Tate ML. Elucidating multiscale periosteal mechanobiology: a key to unlocking the smart properties and regenerative capacity of the periosteum? TISSUE ENGINEERING PART B-REVIEWS 2013. [PMID: 23189933 DOI: 10.1089/ten.teb.2012.0216] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure-function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials.
Collapse
Affiliation(s)
- Sarah F Evans
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
27
|
Evans SF, Chang H, Knothe Tate ML. Elucidating multiscale periosteal mechanobiology: a key to unlocking the smart properties and regenerative capacity of the periosteum? TISSUE ENGINEERING PART B-REVIEWS 2013. [PMID: 23189933 DOI: 10.1089/ten] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure-function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials.
Collapse
Affiliation(s)
- Sarah F Evans
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
28
|
Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 2012; 30:1869-78. [PMID: 22778049 PMCID: PMC4620732 DOI: 10.1002/jor.22181] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/05/2012] [Indexed: 02/04/2023]
Abstract
While century old clinical reports document the periosteum's remarkable regenerative capacity, only in the past decade have scientists undertaken mechanistic investigations of its regenerative potential. At a Workshop at the 2012 Annual Meeting of Orthopaedic Research Society, we reviewed the molecular, cellular, and tissue scale approaches to elucidate the mechanisms underlying the periosteum's regenerative potential as well as translational therapies engineering solutions inspired by its remarkable regenerative capacity. The entire population of osteoblasts within periosteum, and at endosteal and trabecular bone surfaces within the bone marrow, derives from the embryonic perichondrium. Periosteal cells contribute more to cartilage and bone formation within the callus during fracture healing than do cells of the bone marrow or endosteum, which do not migrate out of the marrow compartment. Furthermore, a current healing paradigm regards the activation, expansion, and differentiation of periosteal stem/progenitor cells as an essential step in building a template for subsequent neovascularization, bone formation, and remodeling. The periosteum comprises a complex, composite structure, providing a niche for pluripotent cells and a repository for molecular factors that modulate cell behavior. The periosteum's advanced, "smart" material properties change depending on the mechanical, chemical, and biological state of the tissue. Understanding periosteum development, progenitor cell-driven initiation of periosteum's endogenous tissue building capacity, and the complex structure-function relationships of periosteum as an advanced material are important for harnessing and engineering ersatz materials to mimic the periosteum's remarkable regenerative capacity.
Collapse
Affiliation(s)
- Céline Colnot
- Institut National de la Santé et de la Recherche Médicale, U781, Hopital Necker Enfants Malades, Paris, France
| | - Xinping Zhang
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Melissa L. Knothe Tate
- Departments of Biomedical and Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
29
|
|
30
|
Knothe UR, Dolejs S, Matthew Miller R, Knothe Tate ML. Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing. J Biomech 2010; 43:2728-37. [PMID: 20673900 DOI: 10.1016/j.jbiomech.2010.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 12/21/2022]
Abstract
The goal of this study is to elucidate whether mechanobiological factors, including mechanical loading patterns, presence of bone graft, and proximity to the periosteum, correlate to de novo tissue generation and healing in critical sized long bone defects, which are enveloped by periosteum in situ and are bridged at 16 weeks, in sheep femora. Quantitative histomorphometric measures of defect cross sections show that, along the axis least able to resist bending loads (minor centroidal axis, CA), bone laid down in the first two weeks after surgery exhibits more mineralization albeit less total area compared to bone along the axis most able to resist bending loads (major CA). Similarly, areas of the cross section along the minor CA show a higher degree of perfusion albeit less total area of perfusion compared to bone along the major CA. Furthermore, proximity to the periosteal niche, in conjunction with the presence of bone graft and predominant loading patterns, relates significantly to the radial distribution of early bone apposition and perfusion of bone at 16 weeks after surgery (linear regression with R(2)>0.80). In the absence of graft, early bone density is relatively evenly distributed in the defect zone, as is the intensity of perfused tissue. As measured by a steeper average slope in intensity of fluorochrome (new bone) distribution between the periosteum and the IM nail, the presence of bone graft retards initial bone formation in the defect zone and is associated with less evenly distributed tissue perfusion (steeper slope) persisting 16 weeks after surgery. Finally, although the mean area of bone resorption is not significantly different within or between groups defined by the presence of graft and/or mechanical loading patterns in the defect zone, the mean area of infilling resorption spaces is significantly higher in areas of the defect zone least able to resist bending (minor CA) but is not significantly related to the presence of bone graft. To our knowledge, the use of the major and minor centroidal axes to relate prevailing mechanical loading patterns to area and density of early bone generation in bone defects has not been reported prior to this study and may provide a new means to assess structure-function relationships in de novo bone generation and healing of bone defects.
Collapse
Affiliation(s)
- Ulf R Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Ave., A41, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|