1
|
Irwin BWJ, Wanjura CC, Molnar D, Rutter MJ, Payne MC, Chau PL. GABA receptor associated protein changes the electrostatic environment around the GABA type A receptor. Proteins 2021; 90:476-484. [PMID: 34546588 PMCID: PMC9293360 DOI: 10.1002/prot.26241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
We have performed fully atomistic molecular dynamics simulations of the intracellular domain of a model of the GABAA receptor with and without the GABA receptor associated protein (GABARAP) bound. We have also calculated the electrostatic potential due to the receptor, in the absence and presence of GABARAP. We find that GABARAP binding changes the electrostatic properties around the GABAA receptor and could lead to increased conductivity of chloride ions through the receptor. We also find that ion motions that would result in conducting currents are observed nearly twice as often when GABARAP binds. These results are consistent with data from electrophysiological experiments.
Collapse
Affiliation(s)
- Benedict W J Irwin
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Clara C Wanjura
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Daniel Molnar
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Michael J Rutter
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Michael C Payne
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - P-L Chau
- Bioinformatique Structurale, Institut Pasteur, CNRS URA 3528, CB3I CNRS USR 3756, Paris, France
| |
Collapse
|
2
|
Várnai C, Irwin BWJ, Payne MC, Csányi G, Chau PL. Functional movements of the GABA type A receptor. Phys Chem Chem Phys 2020; 22:16023-16031. [DOI: 10.1039/d0cp01128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed a Monte Carlo simulation of the GABA type A receptor. We have analysed the configurations and developed a correlation tensor method to predict receptor gating.
Collapse
Affiliation(s)
- Csilla Várnai
- Centre for Computational Biology
- University of Birmingham
- Birmingham
- UK
| | - B. W. J. Irwin
- Theory of Condensed Matter Group
- Cavendish Laboratory, Department of Physics
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - M. C. Payne
- Theory of Condensed Matter Group
- Cavendish Laboratory, Department of Physics
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - Gábor Csányi
- Department of Engineering
- University of Cambridge
- Cambridge CB2 1PZ
- UK
| | - P.-L. Chau
- Bioinformatique Structurale
- Institut Pasteur CNRS URA 3528
- CB3I CNRS USR 3756
- 75724 Paris
- France
| |
Collapse
|
3
|
Crnjar A, Comitani F, Melis C, Molteni C. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Interface Focus 2019; 9:20180067. [PMID: 31065340 PMCID: PMC6501341 DOI: 10.1098/rsfs.2018.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
Collapse
Affiliation(s)
- Alessandro Crnjar
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudio Melis
- Universitá degli Studi di Cagliari, Complesso Universitario di Monserrato, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700, Monserrato (CA) 09042, Italy
| | - Carla Molteni
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| |
Collapse
|
4
|
Abstract
The pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years. Thus, computational techniques have been extensively combined with experimental data, in order to undertake the study of γ-aminobutyric acid type A receptors and their interaction with drugs. Here, we review the exciting journey made to assess the structures of these receptors and outline major outcomes. Finally, we discuss the brand new structure of the α1β2γ2 subtype and the amazing advances it brings to the field.
Collapse
|
5
|
Irwin BWJ, Vukovič S, Payne MC, ElGamacy M, Chau PL. Prediction of GABARAP interaction with the GABA type A receptor. Proteins 2018; 86:1251-1264. [PMID: 30218455 PMCID: PMC6492159 DOI: 10.1002/prot.25589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 01/05/2023]
Abstract
We have performed docking simulations on GABARAP interacting with the GABA type A receptor using SwarmDock. We have also used a novel method to study hydration sites on the surface of these two proteins; this method identifies regions around proteins where desolvation is relatively easy, and these are possible locations where proteins can bind each other. There is a high degree of consistency between the predictions of these two methods. Moreover, we have also identified binding sites on GABARAP for other proteins, and listed possible binding sites for as yet unknown proteins on both GABARAP and the GABA type A receptor intracellular domain.
Collapse
Affiliation(s)
- B W J Irwin
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Siniša Vukovič
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - M C Payne
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad ElGamacy
- Abteilung Proteinevolution, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - P-L Chau
- Bioinformatique Structurale, CNRS URA 3528, Paris, France
| |
Collapse
|
6
|
Elgarf A, Siebert DCB, Steudle F, Draxler A, Li G, Huang S, Cook JM, Ernst M, Scholze P. Different Benzodiazepines Bind with Distinct Binding Modes to GABA A Receptors. ACS Chem Biol 2018; 13:2033-2039. [PMID: 29767950 PMCID: PMC6102643 DOI: 10.1021/acschembio.8b00144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023]
Abstract
Benzodiazepines are clinically relevant drugs that bind to GABAA neurotransmitter receptors at the α+/γ2- interfaces and thereby enhance GABA-induced chloride ion flux leading to neuronal hyperpolarization. However, the structural basis of benzodiazepine interactions with their high-affinity site at GABAA receptors is controversially debated in the literature, and in silico studies led to discrepant binding mode hypotheses. In this study, computational docking of diazepam into α+/γ2- homology models suggested that a chiral methyl group, which is known to promote preferred binding to α5-containing GABAA receptors (position 3 of the seven-membered diazepine ring), could possibly provide experimental evidence that supports or contradicts the proposed binding modes. Thus, we investigated three pairs of R and S isomers of structurally different chemotypes, namely, diazepam, imidazobenzodiazepine, and triazolam derivatives. We used radioligand displacement studies as well as two-electrode voltage clamp electrophysiology in α1β3γ2-, α2β3γ2-, α3β3γ2-, and α5β3γ2-containing GABAA receptors to determine the ligand binding and functional activity of the three chemotypes. Interestingly, both imidazobenzodiazepine isomers displayed comparable binding affinities, while for the other two chemotypes, a discrepancy in binding affinities of the different isomers was observed. Specifically, the R isomers displayed a loss of binding, whereas the S isomers remained active. These findings are in accordance with the results of our in silico studies suggesting the usage of a different binding mode of imidazobenzodiazepines compared to those of the other two tested chemotypes. Hence, we conclude that different chemically related benzodiazepine ligands interact via distinct binding modes rather than by using a common binding mode.
Collapse
Affiliation(s)
- Alshaimaa
A. Elgarf
- Department
of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
- Department
of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Friederike Steudle
- Department
of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
- Department
of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Draxler
- Department
of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Guanguan Li
- Department
of Chemistry and Biochemistry, University
of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Shengming Huang
- Department
of Chemistry and Biochemistry, University
of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - James M. Cook
- Department
of Chemistry and Biochemistry, University
of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Margot Ernst
- Department
of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Scholze
- Department
of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
A combined X-ray scattering and simulation study of halothane in membranes at raised pressures. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
New and mild method for the synthesis of alprazolam and diazepam and computational study of their binding mode to GABAA receptor. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1585-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
An Electrostatic Funnel in the GABA-Binding Pathway. PLoS Comput Biol 2016; 12:e1004831. [PMID: 27119953 PMCID: PMC4847780 DOI: 10.1371/journal.pcbi.1004831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. Neurotransmitters convey signals from one neuron to the next and are indispensable to the functioning of the nervous system. These small molecules bind to receptors to exert their action. One of the most important neurotransmitters is γ-aminobutyric acid (GABA), which binds to its type A receptor to exert an inhibitory influence on the neuron. Many drugs, both medicinal and nefarious, bind to these neuroreceptors and alter the balance of neuronal signals in the brain. There is a fine balance between these drugs eliciting the desired effect, and causing unwanted and sometimes irreversible alterations in neural behavior. To study this critical binding event, we are using computational simulations to observe precisely how the GABA molecule binds to its type A receptor (GABAA-receptor). One hundred individual simulations were carried out where GABA was placed near the binding site and then allowed to freely bind to the GABAA-receptor. Binding occurred in 19 of these simulations. Statistical analysis of these binding simulations reveals the consistent pathway taken by GABA molecules to enter the binding site. This improved understanding of the binding event enables development of safer medicinal neuroactive drugs and countermeasures for effects of neuronal chemical trauma.
Collapse
|
10
|
Wong LW, Tae HS, Cromer BA. Role of the ρ1 GABA(C) receptor N-terminus in assembly, trafficking and function. ACS Chem Neurosci 2014; 5:1266-77. [PMID: 25347026 DOI: 10.1021/cn500220t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a β sandwich of ten β-strands, which form the agonist-binding pocket at the subunit interface. This β-sandwich is preceded by an N-terminal α-helix in eukaryotic structures but not in prokaryotic structures. The N-terminal α-helix has been shown to be functionally essential in α7 nicotinic acetylcholine receptors. Sequence analysis of GABAC and GABAA receptors predicts an α-helix in a similar position but preceded by 8 to 46 additional residues, of unknown function, which we term the N-terminal extension. To test the functional role of both the N-terminal extension and the putative N-terminal α-helix in the ρ1 GABAC receptor, we created a series of deletions from the N-terminus. The N-terminal extension was not functionally essential, but its removal did reduce both cell surface expression and cooperativity of agonist-gated channel function. Further deletion of the putative N-terminal α-helix abolished receptor function by preventing cell-surface expression. Our results further demonstrate the essential role of the N-terminal α-helix in the assembly and trafficking of eukaryotic pLGICs. They also provide evidence that the N-terminal extension, although not essential, contributes to receptor assembly, trafficking and conformational changes associated with ligand gating.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- Department
of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Han-Shen Tae
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Brett A. Cromer
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
11
|
Middendorp SJ, Hurni E, Schönberger M, Stein M, Pangerl M, Trauner D, Sigel E. Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors. ACS Chem Biol 2014; 9:1846-53. [PMID: 24918742 DOI: 10.1021/cb500186a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.
Collapse
Affiliation(s)
- Simon J. Middendorp
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Evelyn Hurni
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schönberger
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Marco Stein
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Michael Pangerl
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Dirk Trauner
- Department
of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, 81377 Munich, Germany
| | - Erwin Sigel
- Institute
of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
12
|
Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres. Neurochem Res 2013; 39:1005-15. [PMID: 24362592 DOI: 10.1007/s11064-013-1226-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
The ionotropic GABAA receptors (GABAARs) are widely distributed in the central nervous system where they play essential roles in numerous physiological and pathological processes. A high degree of structural heterogeneity of the GABAAR has been revealed and extensive effort has been made to develop selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology models, has provided more insight into the molecular basis for binding. Similar binding modes are proposed for the heterocyclic GABA analogues covered in this review by use of ligand-receptor docking into the receptor homology model and the presented structure-activity relationships. A network of interactions between the analogues and the binding pocket is leaving no room for substituents and underline the limited space in the GABAAR orthosteric binding site when in the agonist conformation.
Collapse
|
13
|
New 6-bromoimidazo[1,2-a]pyridine-2-carbohydrazide derivatives: synthesis and anticonvulsant studies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Approaching the 5-HT₃ receptor heterogeneity by computational studies of the transmembrane and intracellular domains. J Comput Aided Mol Des 2013; 27:491-509. [PMID: 23771549 DOI: 10.1007/s10822-013-9658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
5-hydroxytryptamine type-3 receptor (5-HT₃), an important target of many neuroactive drugs, is a cation selective transmembrane pentamer whose functional stoichiometries and subunit arrangements are still debated, due to the extreme complexity of the system. The three dimensional structure of the 5-HT₃R subunits has not been solved so far. Moreover, most of the available structural and functional data is related to the extracellular ligand-binding domain, whereas the transmembrane and the intracellular receptor domains are far less characterised, although they are crucial for receptor function. Here, for the first time, 3D homology models of the transmembrane and the intracellular receptor domains of all the known human 5-HT₃ subunits have been built and assembled into homopentameric (5-HT(3A)R, 5-HT(3B)R, 5-HT(3C)R, 5-HT(3D)R and 5-HT(3E)R) and heteropentameric receptors (5-HT(3AB), 5-HT(3AC), 5-HT(3AD) and 5-HT(3AE)), on the basis of the known three-dimensional structures of the nicotinic-acetylcholine receptor and of the ligand gated channel from Erwinia chrysanthemi. The comparative analyses of sequences, modelled structures, and computed electrostatic properties of the single subunits and of the assembled pentamers shed new light both on the stoichiometric composition and on the physicochemical requirements of the functional receptors. In particular, it emerges that a favourable environment for the crossing of the pore at the transmembrane and intracellular C terminus domain levels by Ca²⁺ ions is granted by the maximum presence of two B subunits in the 5-HT₃ pentamer.
Collapse
|
15
|
Kozuska JL, Paulsen IM. The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol 2012; 90:771-82. [PMID: 22493950 DOI: 10.1139/y2012-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This year, 2011, the Department of Pharmacology at the University of Alberta celebrated its 50th anniversary. This timeframe covers nearly the entire history of Cys-loop pentameric ligand-gated ion channel (pLGIC) research. In this review we consider how major technological advancements affected our current understanding of pLGICs, and highlight the contributions made by members of our department. The individual at the center of our story is Susan Dunn; her passing earlier this year has robbed the Department of Pharmacology and the research community of a most insightful colleague. Her dissection of ligand interactions with the nAChR, together with their interpretation, was the hallmark of her extensive collaborations with Michael Raftery. Here, we highlight some electrophysiological studies from her laboratory over the last few years, using the technique that she introduced to the department in Edmonton, the 2-electrode voltage-clamp of Xenopus oocytes. Finally, we discuss some single-channel studies of the anionic GlyR and GABA(A)R that prefaced the introduction of this technique to her laboratory.
Collapse
Affiliation(s)
- Janna L Kozuska
- Department of Pharmacology, University of Alberta, 9-55 Medical Sciences Building, Edmonton, AB T6G2H7, Canada.
| | | |
Collapse
|
16
|
Richter L, de Graaf C, Sieghart W, Varagic Z, Mörzinger M, de Esch IJP, Ecker GF, Ernst M. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol 2012; 8:455-64. [PMID: 22446838 DOI: 10.1038/nchembio.917] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/02/2012] [Indexed: 11/09/2022]
Abstract
Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an unbiased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design.
Collapse
Affiliation(s)
- Lars Richter
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
GABA is the major inhibitory neurotransmitter in the adult mammalian CNS. The ionotropic GABA type A receptors (GABA(A)Rs) belong to the Cys-loop family of receptors. Each member of the family is a large pentameric protein in which each subunit traverses the cell membrane four times. Within this family, the GABA type A receptors are particularly important for their rich pharmacology as they are targets for a range of therapeutically important drugs, including the benzodiazepines, barbiturates, neuroactive steroids and anesthetics. This review discusses new insights into receptor properties that allow us to begin to relate the structure of an individual receptor to its functional and pharmacological properties.
Collapse
|
18
|
Sander T, Frølund B, Bruun AT, Ivanov I, McCammon JA, Balle T. New insights into the GABA(A) receptor structure and orthosteric ligand binding: receptor modeling guided by experimental data. Proteins 2011; 79:1458-77. [PMID: 21365676 DOI: 10.1002/prot.22975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 01/15/2023]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in, e.g., ligand binding and functional properties of this pharmaceutically important target. Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the α(1)β(2)γ(2) subtype of the GABA(A)R ligand binding domain, and we demonstrate its usefulness in understanding details of orthosteric ligand binding. The model was constructed by using multiple templates and by incorporation of knowledge from biochemical/pharmacological experiments. It was validated on the basis of objective energy functions, its ability to account for available residue specific information, and its stability in molecular dynamics (MD) compared with that of the two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABA(A)R antagonists to create a detailed hypothesis for their binding modes. Excellent agreement with key experimental data was found, including the ability of the model to accommodate and explain a previously developed pharmacophore model. A coupling to agonist binding was thereby established and discussed in relation to activation mechanisms. Our results highlight the importance of critical evaluation and optimization of each step in the homology modeling process. The approach taken here can greatly aid in increasing the understanding of GABA(A)Rs and related receptors where structural insight is limited and reliable models are difficult to obtain.
Collapse
Affiliation(s)
- Tommy Sander
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Chau PL. New insights into the molecular mechanisms of general anaesthetics. Br J Pharmacol 2010; 161:288-307. [PMID: 20735416 PMCID: PMC2989583 DOI: 10.1111/j.1476-5381.2010.00891.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 01/22/2023] Open
Abstract
This paper provides new insights of how general anaesthetic research should be carried out in the future by an analysis of what we know, what we do not know and what we would like to know. I describe previous hypotheses on the mechanism of action of general anaesthetics (GAs) involving membranes and protein receptors. I provide the reasons why the GABA type A receptor, the NMDA receptor and the glycine receptor are strong candidates for the sites of action of GAs. I follow with a review on attempts to provide a mechanism of action, and how future research should be conducted with the help of physical and chemical methods.
Collapse
MESH Headings
- Anesthetics, General/adverse effects
- Anesthetics, General/chemistry
- Anesthetics, General/pharmacology
- Animals
- Biomedical Research/methods
- Biomedical Research/trends
- Brain/drug effects
- Brain/metabolism
- Humans
- Models, Molecular
- Molecular Structure
- Point Mutation
- Protein Binding
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- P-L Chau
- Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur, Paris, France.
| |
Collapse
|
20
|
|
21
|
Peters JA, Cooper MA, Carland JE, Livesey MR, Hales TG, Lambert JJ. Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. J Physiol 2010; 588:587-96. [PMID: 19933751 PMCID: PMC2828133 DOI: 10.1113/jphysiol.2009.183137] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acetylcholine (nACh) and 5-hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective ion channels of the pentameric ligand-gated ion channel (pLGIC) superfamily. Multiple lines of evidence adduced over the last 30 years indicate that the lining of the channel of such receptors is formed by the alpha-helical second transmembrane (TM2) domain and flanking sequences contributed by each of the five subunits present within the receptor complex. Specific amino acid residues within, and adjacent to, the TM2 domain influence single channel conductance, ion selectivity, and other aspects of receptor function that include gating and desensitization. However, more recent work has revealed important structural determinants of single channel conductance and ion selectivity that are not associated with the TM2 domain. Direct experimental evidence indicates that the intracellular domain of eukaryotic pLGICs, in particular a region of the loop linking TM3 and TM4 termed the membrane-associated (MA) stretch, exerts a strong influence upon ion channel biophysics. Moreover, recent computational approaches, complemented by experimentation, implicate the extracellular domain as an additional important determinant of ion conduction. This brief review describes how our knowledge of ion conduction and selectivity in cation-selective pLGICs has evolved beyond TM2.
Collapse
Affiliation(s)
- John A Peters
- Centre for Neuroscience, Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Guan LP, Sui X, Deng XQ, Quan YC, Quan ZS. Synthesis and anticonvulsant activity of a new 6-alkoxy-[1,2,4]triazolo[4,3-b]pyridazine. Eur J Med Chem 2010; 45:1746-52. [PMID: 20116141 DOI: 10.1016/j.ejmech.2009.12.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
A series of 6-alkoxy-[1,2,4]triazolo[4,3-b]pyridazine derivatives were synthesized. In initial screening and quantitative evaluation, compound 2r was among the most active agents, exhibiting in the same time the lowest toxicity. In the anti-maximal electroshock test, it showed median effective dose (ED50) of 17.3 mg/kg and median toxicity dose (TD50) of 380.3 mg/kg, and the protective index (PI) of 22.0, which is much better than PI of the reference drugs. In a subsequent test, compound 2r had median hypnotic dose (HD50) of 746.6 mg/kg, thus demonstrating much better margin of safety compared to reference drugs. Compound 2r also showed oral activity against MES-induced seizures and lower oral neurotoxicity. For explanation of the putative mechanism of action, compound 2r was tested in chemical induced models.
Collapse
Affiliation(s)
- Li-Ping Guan
- School of Food, Drug & Medicine Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, PR China.
| | | | | | | | | |
Collapse
|
23
|
Tan KR, Baur R, Charon S, Goeldner M, Sigel E. Relative positioning of diazepam in the benzodiazepine-binding-pocket of GABA receptors. J Neurochem 2009; 111:1264-73. [PMID: 19804380 DOI: 10.1111/j.1471-4159.2009.06419.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.
Collapse
Affiliation(s)
- Kelly R Tan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Paulsen IM, Martin IL, Dunn SMJ. Isomerization of the proline in the M2-M3 linker is not required for activation of the human 5-HT3A receptor. J Neurochem 2009; 110:870-8. [PMID: 19457066 DOI: 10.1111/j.1471-4159.2009.06180.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Each subunit of the cation-selective members of the Cys-loop family of ligand-gated ion channels contains a conserved proline residue in the extracellular loop between the second and third transmembrane domains. In the mouse homomeric 5-hydroxytryptamine type 3A (5-HT(3)A) receptor, the effects of substitution of this proline by unnatural amino acids led to the suggestion that trans-cis isomerization of the protein backbone at this position is integral to agonist-induced channel opening [Nature (2005) vol. 438, pp. 248-252]. We explored the generality of this conclusion using natural amino acid mutagenesis of the homologous human 5-HT(3)A receptor. The conserved proline (P303) was substituted by either a histidine or tryprophan and the mutant receptors were expressed in Xenopus oocytes. These mutations did not significantly affect the magnitude of agonist-mediated currents, compromise channel gating by 5-HT or inhibition of 5-HT-induced currents by either picrotoxin or d-tubocurarine. The mutations did, however, result in altered dependence on extracellular Ca(2+) concentration and a 10-fold increase in the rate of receptor desensitization. These results demonstrate an important role for P303 in 5-HT(3)A receptor function but indicate that trans-cis isomerization at this proline is unlikely to be a general mechanism underlying the gating process.
Collapse
Affiliation(s)
- Isabelle M Paulsen
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
25
|
Tai K, Fowler P, Mokrab Y, Stansfeld P, Sansom MSP. Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms. Methods Cell Biol 2009; 90:233-65. [PMID: 19195554 DOI: 10.1016/s0091-679x(08)00812-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ion channels are integral membrane proteins that enable selected ions to flow passively across membranes. Channel proteins have been the focus of computational approaches to relate their three-dimensional (3D) structure to their physiological function. We describe a number of computational tools to model ion channels. Homology modeling may be used to construct structural models of channels based on available X-ray structures. Electrostatics calculations enable an approximate evaluation of the energy profile of an ion passing through a channel. Molecular dynamics simulations and free-energy calculations provide information on the thermodynamics and kinetics of channel function.
Collapse
Affiliation(s)
- Kaihsu Tai
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Chen CYC. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2008.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Barrera NP, Edwardson JM. The subunit arrangement and assembly of ionotropic receptors. Trends Neurosci 2008; 31:569-76. [PMID: 18774187 DOI: 10.1016/j.tins.2008.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/17/2022]
Abstract
Ionotropic receptors mediate rapid communication between neurons. These receptors are oligomers and are usually assembled from multiple subunit types. Receptors built from different subunit combinations have distinct functional properties, such as single-channel conductances, rates of desensitization and sensitivities to activators and inactivators; they can also have different intracellular locations. Methods are now available for determining not only the subunit stoichiometry but also the subunit arrangement within ionotropic receptors. This information will inform experiments designed to understand the molecular basis of receptor assembly and function. It will also permit the modelling of potential ligand-binding sites at the interfaces between the subunits and should lead to a more rational approach to drug development.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
28
|
Barrera NP, Betts J, You H, Henderson RM, Martin IL, Dunn SMJ, Edwardson JM. Atomic force microscopy reveals the stoichiometry and subunit arrangement of the alpha4beta3delta GABA(A) receptor. Mol Pharmacol 2008; 73:960-7. [PMID: 18079275 DOI: 10.1124/mol.107.042481] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The GABA(A) receptor is a chloride-selective ligand-gated ion channel of the Cys-loop superfamily. The receptor consists of five subunits arranged pseudosymmetrically around a central pore. The predominant form of the receptor in the brain contains alpha(1)-, beta(2)-, and gamma(2)-subunits in the arrangement alphabetaalphagammabeta, counter-clockwise around the pore. GABA(A) receptors containing delta-instead of gamma-subunits, although a minor component of the total receptor population, have interesting properties, such as an extrasynaptic location, high sensitivity to GABA, and potential association with conditions such as epilepsy. They are therefore attractive targets for drug development. Here we addressed the subunit arrangement within the alpha(4)beta(3)delta form of the receptor. Different epitope tags were engineered onto the three subunits, and complexes between receptors and anti-epitope antibodies were imaged by atomic force microscopy. Determination of the numbers of receptors doubly decorated by each of the three antibodies revealed a subunit stoichiometry of 2alpha:2beta:1delta. The distributions of angles between pairs of antibodies against the alpha- and beta-subunits both had peaks at around 144 degrees , indicating that these pairs of subunits were nonadjacent. Decoration of the receptor with ligands that bind to the extracellular domain (i.e., the lectin concanavalin A and an antibody that recognizes the beta-subunit N-terminal sequence) showed that the receptor preferentially binds to the mica extracellular face down. Given this orientation, the geometry of complexes of receptors with both an antibody against the delta-subunit and Fab fragments against the alpha-subunits indicates a predominant subunit arrangement of alphabetaalphadeltabeta, counter-clockwise around the pore when viewed from the extracellular space.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antigen-Antibody Complex/chemistry
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Cell Line
- Clone Cells
- DNA, Complementary/chemistry
- Fluorescent Antibody Technique, Indirect
- Histidine/chemistry
- Horseradish Peroxidase/metabolism
- Humans
- Kidney/cytology
- Microscopy, Atomic Force
- Protein Subunits/chemistry
- Rats
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/isolation & purification
- Receptors, GABA-A/metabolism
- Receptors, GABA-A/ultrastructure
- Simian virus 40/physiology
- Solubility
- Transfection
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|