1
|
Miao Q, Ji W, Dong H, Zhang Y. Occurrence of phthalate esters in the yellow and Yangtze rivers of china: Risk assessment and source apportionment. J Environ Sci (China) 2025; 149:628-637. [PMID: 39181673 DOI: 10.1016/j.jes.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 08/27/2024]
Abstract
Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.
Collapse
Affiliation(s)
- Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiang Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Shankar UN, Andole S, Das K, Shiraz M, Akif M. Biophysical characterization and structural insights of leptospiral complement regulator-acquiring protein A. Biochem Biophys Res Commun 2024; 739:151003. [PMID: 39556937 DOI: 10.1016/j.bbrc.2024.151003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Many pathogens establish a successful infection by evading the host complement system, an essential arm of innate immunity. Pathogenic Leptospira is reported to escape complement-mediated killing by recruiting the host complement regulators by lipoproteins or outer surface proteins. One of the outer surface proteins, Leptospiral complement regulator-acquiring protein A (LcpA), is known to recruit complement regulators, C4b-binding protein (C4BP), and Factor H (FH) on the bacterial surface. Mapping of interacting domains from C4BP and FH with the LcpA has already been reported. However, the region or structural part of the LcpA mediating the interaction is not known yet. Here, we report cloning, expression, refolding and purification of recombinant LcpA from an inclusion body of E. coli heterologous expression system. We also demonstrate the biophysical characterization of recombinant LcpA and reveal its secondary structure contents. Moreover, the protein displays a moderate thermostability. The change of intrinsic fluorescence and CD spectra demonstrate a change in the secondary structure of protein due to binding with Zn2+ ions. Molecular docking of LcpA with the complement regulators displays important interface residues from both the individual counterparts. Molecular dynamic simulation analysis demonstrates the stability of interactions between LcpA and C4BP. In our understanding, this is the first report on the large-scale purification of LcpA through refolding experiments and biophysical characterization of LcpA. This study may provide additional information on the structural basis of binding with the complement regulators.
Collapse
Affiliation(s)
- Umate Nachiket Shankar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Sowmya Andole
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Kousamvita Das
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Mohd Shiraz
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Verma S, Choudhary S, Amith Kumar K, Mahto JK, Vamsi K AK, Mishra I, Prakash VB, Sircar D, Tomar S, Kumar Sharma A, Singla J, Kumar P. Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme. Structure 2024:S0969-2126(24)00496-9. [PMID: 39642872 DOI: 10.1016/j.str.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kamble Amith Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anil Kumar Vamsi K
- Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ishani Mishra
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
4
|
Rathi R. Potential inhibitors of FemC to combat Staphylococcus aureus: virtual screening, molecular docking, dynamics simulation, and MM-PBSA analysis. J Biomol Struct Dyn 2023; 41:10495-10506. [PMID: 36524526 DOI: 10.1080/07391102.2022.2157328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
FemC is a methicillin resistance factor involved in the alterations of peptidoglycan and glutamine synthesis in Staphylococcus aureus. To identify the potent antibacterial agents, antibacterial molecules were screened against the predicted and validated FemC model. Based on docking scores, presence of essential interactions with active site residues of FemC, pharmacokinetic, and ADMET properties, six candidates were shortlisted and subjected to molecular dynamics to evaluate the stability of FemC-ligand complexes. Further, per residue decomposition analysis and Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) analysis confirmed that S15, M16, S17, R31, R43, Q47, K48 and R49 of FemC played a vital role in the formation of lower energy stable FemC-inhibitor(s) complexes. Therefore, in the present study, the reported six molecules (Z317461228, Z92241701, Z30923155, Z30202349, Z2609517102 and Z92470167) may pave the path to design the scaffold of novel potent antimicrobials against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|
5
|
Rathi R, Kumari R, Pathak SR, Dalal V. Promising antibacterials for LLM of Staphylococcus aureus using virtual screening, molecular docking, dynamics, and MMPBSA. J Biomol Struct Dyn 2023; 41:7277-7289. [PMID: 36073371 DOI: 10.1080/07391102.2022.2119278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
In S. aureus, lipophilic membrane (LLM) protein is a methicillin resistance factor and is an essential role in peptidoglycan metabolism. The virtual screening of antibacterial molecules against the model of LLM was performed to identify the potent antibacterial molecules. Molecular docking results of pharmacokinetic filtered molecules illustrated that five molecules had higher binding affinities than tunicamycin (TUM) and were stabled via non-covalent interactions (hydrogen bond and hydrophobic interactions) at the active site of LLM. Further, molecular dynamics results revealed that binding of identified antibacterial molecules with LLM resulted in stable LLM-inhibitor(s) complexes. Molecular Mechanics/Position-Boltzmann Surface Area (MMPBSA) analysis showed that LLM-inhibitor(s) complexes had high binding affinities in the range of -213.49 ± 2.24 to -227.42 ± 3.05 kJ/mol. The amino acid residues decomposition analysis confirmed that identified antibacterial molecules bound at the active site (Asn148, Leu149, Asp151, Asp208, His269, His271, and His272) of LLM. Noticeably, the current study found five antibacterial molecules (BDE 27575101, BDE 33638168, BDE 33672484, LAS 51502073, and BDE 25098678) were highly potent than TUM and even than earlier reported molecules. Therefore, here reported antibacterial molecules may be used directly or developed to inhibit LLM of S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Seema R Pathak
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Kumari R, Rathi R, Pathak SR, Dalal V. Computational investigation of potent inhibitors against YsxC: structure-based pharmacophore modeling, molecular docking, molecular dynamics, and binding free energy. J Biomol Struct Dyn 2023; 41:930-941. [PMID: 34913841 DOI: 10.1080/07391102.2021.2015446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In S. aureus, ribosome biogenesis GTP-binding (YsxC), a GTPase interacts with 50S subunit and 30S subunit of ribosome, and β' subunit of RNA polymerase and played an important role in protein synthesis. For the identification of potent lead molecules, we have conducted pharmacophore modeling by consideration of pharmacophore features of GTP among YsxC-GTP complex. Virtual screening and molecular docking results displayed that five pharmacokinetic and ADMET filtered molecules-ZINC000006424138, ZINC000095502032, ZINC000225415132, ZINC000095475800, and ZINC000012990761-had higher binding affinities than GTP with YsxC. All the identified molecules shared similar pharmacophore features of GTP and were stabilized via hydrogen bonds and hydrophobic interactions with YsxC. Molecular dynamics analysis revealed that YsxC-inhibitor(s) complexes were lesser dynamics and higher stable than YsxC-GTP complex. Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) results confirmed that identified molecules bound at the active site (Arg33, Ser34, Asn35, Val36, Lys38, Ser39, Thr40, Thr54, Ser55, Pro58, Lys60, Thr61, Thr144, Lys145, Ser178, and Ile179) of YsxC and formed the lower energy (-190.32 ± 3.46 to -217.03 ± 2.55 kJ/mol) complexes than YsxC-GTP (-157.16 ± 2.89 kJ/mol) complex. The identified molecules in this study can be further tested and utilized to design novel antimicrobial agents for S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Seema R Pathak
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Bisht N, Dalal V, Tewari L. Molecular modeling and dynamics simulation of alcohol dehydrogenase enzyme from high efficacy cellulosic ethanol-producing yeast mutant strain Pichia kudriavzevii BGY1-γm. J Biomol Struct Dyn 2022; 40:12022-12036. [PMID: 34424128 DOI: 10.1080/07391102.2021.1967196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major constraints limiting the use of abundantly available lignocellulosic biomass as potential feedstock for alcohol industry is the lack of C6/C5 co-sugar fermenting yeast. The present study explores a mutant yeast Pichia kudriavzevii BGY1-γm as a potential strain for bioconversion of glucose/xylose sugars of green biomass into ethanol under batch fermentation. The mutant strain having higher alcohol dehydrogenase activity (11.31%) showed significantly higher ethanol concentration during co-fermentation of glucose/xylose sugars (14.2%) as compared to the native strain. Based on 99% sequence similarity of ADH encoding gene from the mutant with the gene sequences from other yeast strains, the ADH enzyme was identified as ADH-1 type. The study reveals first three-dimensional model of ADH-1 utilizing glucose/xylose sugars from P. kudriavzevii BGY1-γm (PkADH mutant). The refined and validated model of PkADH mutant was used for molecular docking against the substrate (acetaldehyde) and product (ethanol). Molecular docking results showed that substrate and product exhibited a binding affinity of -4.55 and -4.5 kcal/mol with PkADH mutant. Acetaldehyde and ethanol interacted at the active site of PkADH mutant via hydrogen bonds (Ser42, His69 and Asp163) and hydrophobic interactions (Cys40, Ser42, His69, Cys95, Trp123 and Asp163) to form the stable protein-ligand complex. Molecular dynamics analysis revealed that PkADH-mutant acetaldehyde and PkADH-mutant ethanol complexes were more stable than PkADH mutant. MMPBSA binding energy confirmed that binding of substrate and product results in the formation of a lower energy stable protein-ligand complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Bisht
- Department of Microbiology, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| |
Collapse
|
8
|
Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40:9833-9847. [PMID: 34096457 DOI: 10.1080/07391102.2021.1936179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus causes various life-threatening diseases in humans and developed resistance to several antibiotics. Lipophilic membrane (LLM) protein regulates bacterial lysis rate and methicillin resistance level in S. aureus. To identify potential lead molecules, we performed a structure-based pharmacophore modeling by consideration of pharmacophore properties from LLM-tunicamycin complex. Further, virtual screening of ZINC database against the LLM was conducted and compounds were assessed for Lipinski and ADMET properties. Based on pharmacokinetic, and molecular docking, five potential inhibitors (ZINC000072380005, ZINC000257219974, ZINC000176045471, ZINC000035296288, and ZINC000008789934) were identified. Molecular dynamics simulation (MDS) of these five molecules was performed to evaluate the dynamics and stability of protein after binding of the ligands. Several MDS analysis like RMSD, RMSF, Rg, SASA, and PCA confirm that identified compounds exhibit higher binding affinity as compared to tunicamycin for LLM. The binding free energy analysis reveals that five compounds exhibit higher binding energy in the range of -218.76 to -159.52 kJ/mol, which is higher as compared to tunicamycin (-116.13 kJ/mol). Individual residue decomposition analysis concludes that Asn148, Asp151, Asp208, His271, and His272 of LLM play a significant role in the formation of lower energy LLM-inhibitor(s) complexes. These predicted molecules displayed pharmacological and structural properties and may be further used to develop novel antimicrobial compounds against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Dalal V, Kumari R. Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of
Staphylococcus aureus
: An in‐Silico Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology Washington University in St. Louis Missouri 63110 USA
| | - Reena Kumari
- Department of Mathematics and Statistics Swami Vivekanand Subharti University Meerut 250005 India
| |
Collapse
|
10
|
Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Das NC, Sen Gupta PS, Biswal S, Patra R, Rana MK, Mukherjee S. In-silico evidences on filarial cystatin as a putative ligand of human TLR4. J Biomol Struct Dyn 2021; 40:8808-8824. [PMID: 33955317 DOI: 10.1080/07391102.2021.1918252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cystatin is a small molecular weight immunomodulatory protein of filarial parasite that plays a pivotal role in downregulating the host immune response to prolong the survival of the parasite inside the host body. Hitherto, this protein is familiar as an inhibitor of human proteases. However, growing evidences on the role of cystatin in regulating inflammatory homeostasis prompted us to investigate the molecular reasons behind the explicit anti-inflammatory trait of this protein. We have explored molecular docking and molecular dynamics simulation approaches to explore the interaction of cystatin of Wuchereria bancrofti (causative parasite of human filariasis) with human Toll-like receptors (TLRs). TLRs are the most crucial component of frontline host defence against pathogenic infections including filarial infection. Our in-silico data clearly revealed that cystatin strongly interacts with the extracellular domain of TLR4 (binding energy=-93.5 ± 10 kJ/mol) and this biophysical interaction is mediated by hydrogen bonding and hydrophobic interaction. Molecular dynamics simulation analysis revealed excellent stability of the cystatin-TLR4 complex. Taken together, our data indicated that cystatin appears to be a ligand of TLR4 and we hypothesize that cystatin-TLR4 interaction most likely to play a key role in activating the alternative activation pathways to establish an anti-inflammatory milieu. Thus, the study provokes the development of chemotherapeutics and/or vaccines for targeting the cystatin-TLR4 interaction to disrupt the pathological attributes of human lymphatic filariasis. Our findings are expected to provide a novel dimension to the existing knowledge on filarial immunopathogenesis and it will encourage the scientific communities for experimental validation of the present investigation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
12
|
Gupta DN, Dalal V, Savita BK, Dhankhar P, Ghosh DK, Kumar P, Sharma AK. In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 2021; 40:8725-8739. [PMID: 33939584 DOI: 10.1080/07391102.2021.1916597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huanglongbing (HLB) is a worldwide citrus plant disease-related to non-culturable and fastidious α-proteobacteria Candidatus Liberibacter asiaticus (CLas). In CLas, Peroxiredoxin (Prx) plays a major role in the reduction of the level of reactive species such as reactive oxygen species (ROS), free radicals and peroxides, etc. Here, we have used structure-based drug designing approach was used to screen and identify the potent molecules against 2Cys Prx. The virtual screening of fragments library was performed against the three-dimensional validated model of Prx. To evaluate the binding affinity, the top four molecules (N-Boc-2-amino isobutyric acid (B2AI), BOC-L-Valine (BLV), 1-(boc-amino) cyclobutane carboxylic acid (1BAC), and N-Benzoyl-DL-alanine (BDLA)) were docked at the active site of Prx. The molecular docking results revealed that all the identified molecules had a higher binding affinity than Tert butyl hydroperoxide (TBHP), a substrate of Prx. Molecular dynamics analysis such as RMSD, Rg, SASA, hydrogen bonds, and PCA results indicated that Prx-inhibitor(s) complexes had lesser fluctuations and were more stable and compact than Prx-TBHP complex. MMPBSA results confirmed that the identified compounds could bind at the active site of Prx to form a lower energy Prx-inhibitor(s) complex than Prx-TBHP complex. The identified potent molecules may pave the path for the development of antimicrobial agents against CLA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deena Nath Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Brajesh Kumar Savita
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Poonam Dhankhar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Nagpur, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
13
|
Yi X, Mei J, Lin L, Wang W. Overexpression of Dioxygenase Encoding Gene Accelerates the Phenolic Aldehyde Conversion and Ethanol Fermentability of Zymomonas mobilis. Appl Biochem Biotechnol 2021; 193:3017-3027. [PMID: 33826067 DOI: 10.1007/s12010-021-03551-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
NADH-dependent reductase enzyme catalyzes the phenolic aldehyde conversion and correspondingly improves the ethanol fermentability of the ethanologenic Zymomonas mobilis. This study constructed the transcriptional landscape of mono/dioxygenase genes in Z. mobilis ZM4 under the stress of the toxic phenolic aldehyde inhibitors of 4-hydroxybenzaldehyde, syringaldehyde, and vanillin. One specific dioxygenase encoding gene ZMO1721 was differentially expressed by 3.07-folds under the stress of 4-hydroxybenzaldehyde among the eleven mono/dioxygenase genes. The purified ZMO1721 shared 99.9% confidence and 48.0% identity with the oxidoreductase in Rhodoferax ferrireducens T118 was assayed and the NADH-dependent reduction activity was confirmed for phenolic aldehyde vanillin conversion. The ZMO1721 gene was then overexpressed in Z. mobilis ZM4 and the 4-hydroxybenzaldehyde conversion rate was accelerated. The cell growth, glucose consumption, and ethanol productivity of Z. mobilis ZM4 were also improved by ZMO1721 overexpression. The genes identified on improving phenolic aldehyde tolerance and ethanol fermentability in this study could be used as the synthetic biology tools for modification of ethanologenic strains.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China.
| | - Jun Mei
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Ling Lin
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Saini G, Dalal V, Gupta DN, Sharma N, Kumar P, Sharma AK. A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1888948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gunjan Saini
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deena Nath Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nidhi Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
15
|
Kumari R, Dhankhar P, Dalal V. Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. J Mol Graph Model 2021; 105:107870. [PMID: 33647754 DOI: 10.1016/j.jmgm.2021.107870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
In humans, transthyretin (hTTR) is a plasma protein act as a transporter of thyroxine (T4) in the blood. Polychlorinated biphenyls (PCBs) are used in coolants, transformers, plasticizers, and pesticide extenders, etc. due to their physical properties, chemical stability, and dielectric properties. Cytochrome P450 can oxidize the PCBs into hydroxylated PCBs (OHPCBs) which can further interact with hTTR results in hepatoxicity, loss of metabolic rate, memory problems, and neurotoxicity. Molecular docking results show that OHPCBs bind at the active site of hTTR with a more binding affinity as compared to T4. Further, molecular dynamics simulation has been done to confirm the stability of hTTR-OHPCBs complexes. Several analysis parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds numbers, PCA, and FEL revealed that binding of OHPCBs with hTTR results in the formation of stable hTTR-OHPCBs complexes. Individual residues decomposition analysis confirms that Lys15, Leu17, Ala108, Ala109, Leu110, Ser117, and Thr119 of hTTR plays a major role in the binding of OHPCBs to form the lower energy hTTR-OHPCBs complexes. Molecular docking and simulations results emphasize that OHPCBs can efficiently bind at the active site of hTTR, which further leads to inhibition of transportation of T4 in human blood.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, 250005, India
| | - Poonam Dhankhar
- Department of Biotechnology, IIT Roorkee, Uttarakhand, 247667, India
| | - Vikram Dalal
- Department of Biotechnology, IIT Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
16
|
Dalal V, Dhankhar P, Singh V, Singh V, Rakhaminov G, Golemi-Kotra D, Kumar P. Structure-Based Identification of Potential Drugs Against FmtA of Staphylococcus aureus: Virtual Screening, Molecular Dynamics, MM-GBSA, and QM/MM. Protein J 2021; 40:148-165. [PMID: 33421024 DOI: 10.1007/s10930-020-09953-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is resistant to β-lactam antibiotics and causes several skin diseases to life-threatening diseases. FmtA is found to be one of the main factors involved in methicillin resistance in S. aureus. FmtA exhibits an esterase activity that removes the D-Ala from teichoic acid. Teichoic acids played a significant role in cell wall synthesis, cell division, colonization, biofilm formation, virulence, antibiotic resistance, and pathogenesis. The virtual screening of drug molecules against the crystal structure of FmtA was performed and the binding affinities of top three molecules (ofloxacin, roflumilast, and furazolidone) were predicted using molecular docking. The presence of positive potential and electron affinity regions in screened drug molecules by DFT analysis illustrated that these molecules are reactive in nature. The protein-ligand complexes were subjected to molecular dynamics simulation. Molecular dynamics analysis such as RMSD, RMSF, Rg, SASA, PCA, and FEL results suggested that FmtA-drug(s) complexes are stable. MM-GBSA binding affinity and QM/MM results (ΔG, ΔH, and ΔS) revealed that active site residues (Ser127, Lys130, Tyr211, Asp213, and Asn343) of FmtA played an essential for the binding of the drug(s) to form a lower energy stable protein-ligand complexes. FmtAΔ42 was purified using cation exchange and gel filtration chromatography. Fluorescence spectroscopy and circular dichroism results showed that interactions of drugs with FmtAΔ42 affect the tertiary structure and increase the thermostability of the protein. The screened molecules need to be tested and could be further modified to develop the antimicrobial compounds against S. aureus.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Poonam Dhankhar
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Vishakha Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Vishakha Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Gaddy Rakhaminov
- Department of Biology, York University, 4700 Keele Street, Toronto, Canada
| | | | - Pravindra Kumar
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India.
| |
Collapse
|
17
|
Dhankhar P, Dalal V, Singh V, Tomar S, Kumar P. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. J Biomol Struct Dyn 2020; 40:4084-4099. [PMID: 33251943 PMCID: PMC7754992 DOI: 10.1080/07391102.2020.1852968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity. There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent requirement for the development of drugs to control this emerging disease. Owing to the importance of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocapsid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds by computational approaches such as pharmacophore modeling, virtual screening, docking and molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP) within the N-terminal domain active site and exhibiting high binding affinity (>−8.0 kcalmol−1). All the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-terminal domain. Additionally, the aromatic ring of lead molecules formed π interactions with Tyr109 of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson–Boltzmann surface area results revealed that N-terminal domain – ligand(s) complexes are less dynamic and more stable than N-terminal domain – GMP complex. As the identified compounds share the same corresponding pharmacophore properties, therefore, the present results may serve as a potential lead for the development of inhibitors against severe acute respiratory syndrome coronavirus 2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Poonam Dhankhar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vishakha Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
18
|
Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2020; 40:2395-2406. [DOI: 10.1080/07391102.2020.1839558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Regenerative Medicine and Stem Cells Laboratory, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Regenerative Medicine and Stem Cells Laboratory, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
19
|
Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch Biochem Biophys 2020; 693:108590. [DOI: 10.1016/j.abb.2020.108590] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
|
20
|
Perpetuo EA, da Silva ECN, Karolski B, do Nascimento CAO. Biodegradation of diethyl-phthalate (DEP) by halotolerant bacteria isolated from an estuarine environment. Biodegradation 2020; 31:331-340. [PMID: 32980965 DOI: 10.1007/s10532-020-09913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2020] [Indexed: 11/27/2022]
Abstract
Phthalates are widely used as plasticizers in many industrial products due to their chemical properties that confer flexibility and durability to building materials, lubricants, solvents, insect repellents, clothing, cosmetics, being widely distributed in the environment. Besides persistent, they are also considered endocrine-disrupting compounds (EDCs), causing a global concern about their release into the environment, once they can alter the reproductive and endocrine health of humans systems. Under natural conditions, photodegradation and hydrolysis rates of phthalates are often very slow; therefore, microbial degradation is a natural way to treat these pollutants. In this context, three bacterial consortia (CMS, GMS and GMSS) were isolated from environmental samples from the Santos Estuarine System (SES) and were able to grow on diethyl-phthalate (DEP) as an only carbon source. From the GMSS consortium, three different strains were isolated and identified as Burkholderia cepacia, Pseudomonas koreensis and Ralstonia pickettii by molecular and mass spectrometry (MALDI-TOF-Biotyper) techniques. Considering there are no reports about Ralstonia genus on phthalates degradation, this strain was chosen to proceed the kinetics experiments. Ralstonia pickettii revealed a great ability to degrade DEP (300 mg/L) in less than 24 h. This is the first report implicating R. pickettii in DEP degradation.
Collapse
Affiliation(s)
- Elen Aquino Perpetuo
- The Interunits Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil. .,Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil. .,Institute of Marine Sciences, Universidade Federal de São Paulo, IMar-UNIFESP, Av. Carvalho de Mendonça, 144, Santos, SP, Brazil.
| | | | - Bruno Karolski
- Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil
| | - Claudio Augusto Oller do Nascimento
- Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil.,Chemical Engineering Department, Universidade de São Paulo, POLI-USP, Av. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Zhu Q, Liu L, Zhou X, Ma M. In silico study of molecular mechanisms of action: Estrogenic disruptors among phthalate esters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113193. [PMID: 31521998 DOI: 10.1016/j.envpol.2019.113193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 09/06/2019] [Indexed: 05/22/2023]
Abstract
Phthalate esters (PAEs), as widely used plasticizers, have been concerned for their possible disruption of estrogen functions via binding to and activating the transcription of estrogen receptors (ERs). Nevertheless, the computational interpretation of the mechanism of ERs activities modulated by PAEs at the molecular level is still insufficient, which hinders the reliable screening of the ERs-active PAEs with high speed and high throughput. To bridge the gap, the in silico simulations considering the effects of coactivators were accomplished to explore the molecular mechanism of action for the purpose of predicting the estrogenic potencies of PAEs. The transcriptional activation functions of human ERα (hERα) modulated by PAEs is predicted via the simulations including binding interaction of PAEs and hERα, conformational changes of PAEs-hERα complexes and recruitment of coactivators. Molecular insight into the diverse estrogen mechanism of action among PAEs with regard to hERα agonists and selective estrogen receptor modulators (SERMs) is provided. Agonist-modulated conformational change of hERα leads to the optimal exposure of its Activation Function 2 (AF-2) surface which, in turn, facilitates the recruitment of coactivators, therefore promoting the transcriptional activation functions of hERα. Conversely, binding interaction of hERα with SERMs among PAEs leads to the conformational change with blocked AF-2 surface, thus preventing the recruitment of coactivators and consequently inhibiting the AF-2 activity. The two-hybrid recombinant yeast is experimentally used for verification. The established in silico evaluation methodology exhibits great promise to speed up the prediction of chemicals which work as hERα agonist or SERMs.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Singh N, Dalal V, Kumar P. Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1662002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|